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ESTIMATIONS OF NONCONTINUABLE SOLUTIONS
OF SECOND ORDER DIFFERENTIAL EQUATIONS

WITH p-LAPLACIAN

Eva Pekárková

Abstract. We study asymptotic properties of solutions for a system of second
differential equations with p-Laplacian. The main purpose is to investigate
lower estimates of singular solutions of second order differential equations
with p-Laplacian (A(t)Φp(y′))′ +B(t)g(y′) +R(t)f(y) = e(t). Furthermore,
we obtain results for a scalar equation.

1. Introduction

Consider the differential equation

(1)
(
A(t)Φp(y′)

)′ +B(t)g(y′) +R(t)f(y) = e(t) ,

where p > 0, A(t), B(t), R(t) are continuous, matrix-valued function on
R+ := [0,∞), A(t) is regular for all t ∈ R+, e : R+ → Rn and f, g : Rn →
Rn are continuous mappings and Φp(u) = (|u1|p−1u1, . . . , |un|p−1un) for u =
(u1, . . . , un) ∈ Rn. We shall use the norm ‖u‖ = max

1≤i≤n
|ui| where u = (u1, . . . , un) ∈

Rn.

Definition 1. A solution y of (1) defined on t ∈ [0, T ) is called noncontinuable
or nonextendable if T < ∞ and lim sup

t→T−
‖y′(t)‖ = ∞. The solution y is called

continuable if T =∞.

Note, that noncontinuable solutions are also called singular of the second kind,
see e.g. [3], [8], [13].

Definition 2. A noncontinuable solution y : [0, T ] → Rn is called oscillatory if
there exists an increasing sequence {tk}∞k=1 of zeros of y such that lim

k→∞
tk = T ;

otherwise y is called nonoscillatory.

In the last two decades the existence and properties of noncontinuable solutions
of special types of (1) are investigated. For the scalar case, see e.g. [3], [4], [5],
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[6], [9], [11], [12], [13], [15] and references therein. In particular, noncontinuable
solutions do not exist if f and g satisfy the following conditions
(2)

∣∣g(x)
∣∣ ≤ |x|p and

∣∣f(x)
∣∣ ≤ |x|p for |x| large

and R is positive. Hence, noncontinuable solutions may exist mainly in the case
|f(x)| ≥ |x|m with m > p.

As concern the system (1), see papers [7], [14], where sufficient conditions are
given for (1) to have continuable solutions.

The scalar equation (1) can be applied in problems of radially symmetric solutions
of the p-Laplace differential equation, see e.g. [14]; noncontinuable solutions appear
e.g. in water flow problems (flood waves, a flow in sewerage systems), see e.g. [10].

The present paper deals with the estimations from bellow of norms of a noncon-
tinuable solution of (1) and its derivative. Estimations of solutions are important
e.g. in proofs of the existence of such solutions, see e.g. [4], [8] for
(3) y(n) = f

(
t, y, . . . , y(n−1))

with n ≥ 2 and f ∈ C0(R+,Rn). For generalized Emden-Fowler equation of the
form (3), some estimation are proved in [1].

In the paper [14] the differential equation (1) is studied with the initial conditions
(4) y(0) = y0 , y′(0) = y1

where y0, y1 ∈ Rn.
We will use results from [7, Theorem 1.2].

Theorem A. Let m > p and there exist positive constants K1, K2 such that
‖g(u)‖ ≤ K1‖u‖m , ‖f(v)‖ ≤ K2‖v‖m , u, v ∈ Rn .(5)

and
∫∞

0 ‖R(s)‖smds <∞. Denote

A∞ := sup
0≤t<∞

‖A(t)−1‖ <∞ , E∞ := sup
0≤t<∞

∫ t

0
‖e(s)‖ds <∞ ,

R∞ :=
∫ ∞

0
‖R(s)‖ ds , B∞ :=

∫ ∞
0
‖B(t)‖ dt .

Let the following conditions be satisfied:
(i) Let m > 1 and

m− p
p

A∞D
m−p
p

1

∫ ∞
0

(
K1‖B(s)‖+ 2m−1K2s

m‖R(s)‖
)

ds < 1

for all t ∈ R+, where
D1 = A∞

{
‖A(0)Φp(y1)‖+ 2m−1K2‖y0‖mR∞ + E∞

}
.

(ii) Let m ≤ 1 and

2m+1m− p
p

A∞D
m−p
p

2

∫ ∞
0

(
K1‖B(s)‖+K2s

m‖R(s)‖
)

ds < 1

for all t ∈ R+, where
D2 = A∞

{
‖A(0)Φp(y1)‖+ 2mK1‖y1‖mB∞ + 22m+1K2R∞‖y0‖m + E∞

}
.
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Then any solution y(t) of the initial value problem (1), (4) is continuable.

Proof. First let us prove the assertion (i). We will use [7, Theorem 1.2]. From (5)
and its proof, it follows that equation (2.3) in [7] may have form∥∥Φp

(
u(t)

)∥∥ ≤ ‖A(t)−1‖
{
‖A(0)Φp(y1)‖+K1

∫ t

0
‖B(s)‖ ‖u(s)‖m ds

+K2

∫ t

0
‖R(s)‖ ‖ y0 +

∫ s

0
u(τ)dτ ‖m ds

}
(6)

where

c = A∞
{
‖A(0)Φp(y1)‖+ 2m−1K2‖y0‖mR∞

}
and

F (t) = 2m−1K2A∞

∫ ∞
t

‖R(s)‖sm−1ds+K1A∞‖B(t)‖ .

Now, the results follows from [7, Theorem 1.2].
The assertion (ii) follows from [7, Theorem 1.2]. �

2. Main results

In this chapter we will derive estimates for a noncontinuable solution y on the
fixed definition interval [T, τ) ⊂ R+, τ <∞.

Theorem 1. Let y be a noncontinuable solution of the system (1) on the interval
[T, τ) ⊂ R+, τ − T ≤ 1,

A0 := max
T≤t≤τ

‖A(t)−1‖ , B0 := max
T≤t≤τ

‖B(t)‖ , E0 := max
T≤t≤τ

‖e(t)‖ ,

R0 := max
T≤t≤τ

‖R(t)‖ ,
∫ ∞

0
‖R(s)‖sm ds <∞

and let there exist positive constants K1,K2 and m > p such that

(7) ‖g(u)‖ ≤ K1‖u‖m , ‖f(v)‖ ≤ K2‖v‖m , u, v ∈ Rn .

Then the following assertions hold:
(i) If p > 1 and M = 22m+1(2m+3)

(m+1)(m+2) , then

(8) ‖A(t)Φp(y′(t))‖+ 2m−1K2‖y(t)‖mR0 + 2E0(τ − t) ≥ C1(τ − t)−
p

m−p

for t ∈ [T, τ), where

C1 = A
− m
m−p

0

(m− p
p

)− p
m−p

[3
2K1B0 +MK2R0

]− p
m−p

.

(ii) If p ≤ 1, then

‖A(t)Φp(y′(t))‖+ 2mK1B0‖y′(t)‖m + 22m+1K2R0‖y(t)‖m

+ 2E0(τ − t) ≥ C2(τ − t)−
p

p−m(9)
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for t ∈ [T, τ) where

C2 = 2−
p(m+1)
m−p A

− m
m−p

0

(m− p
p

)− p
m−p

[3
2K1B0 +MK2R0

]− p
m−p

.

Proof. First let us prove the assertion (i). Let y be a singular solution of system
(1) on the interval [T, τ). We take t to be fixed in the interval [T, τ) and for the
simplicity denote

(10) D = A
− p
m−p

0

(m− p
p

)− p
m−p

.

Assume, by contradiction, that
‖A(t)Φp(y′(t))‖+ 2m−1K2‖y(t)‖mR0 + 2E0(τ − t)

< D
[3

2K1B0 +MK2R0

]− p
m−p (τ − t)−

p
m−p .(11)

Together with the Cauchy problem

(12)
(
A(x)Φp(y′)

)′ +B(x)g(y′) +R(x)f(y) = e(x) , x ∈ [t, τ)
and
(13) y(t) = y0 , y′(t) = y1

we construct an auxiliary system

(14)
(
Ā(s)Φp(z′)

)′ + B̄(s)g(z′) + R̄(s)f(z) = ē(s) ,

(15) z(0) = z0 , z′(0) = z1

where s ∈ R+, z0, z1 ∈ Rn, Ā(s), B̄(s), R̄(s) are continuous, matrix-valued function
on R+ given by

(16) Ā(s) =
{
A(s+ t) if 0 ≤ s < τ − t ,
A(τ) if τ − t ≤ s <∞ ,

(17) B̄(s) =


B(s+ t) if 0 ≤ s < τ − t ,
−B(τ−t)

τ−t s+ 2B(τ − t) if τ − t ≤ s < 2(τ − t) ,
0 if 2(τ − t) ≤ s <∞ ,

(18) R̄(s) =


R(s+ t) if 0 ≤ s < τ − t ,
−R(τ−t)

τ−t s+ 2R(τ − t) if τ − t ≤ s < 2(τ − t) ,
0 if 2(τ − t) ≤ s <∞ ,

(19) ē(s) =


e(s) if 0 ≤ s < τ − t ,
− e(τ−t)

τ−t s+ 2e(τ − t) if τ − t ≤ s < 2(τ − t) ,
0 if 2(τ − t) ≤ s <∞ .

We can see that Ā(s) is regular for all s ∈ R+.
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Hence, the systems (12) on [t, τ) and (14) on [0, τ − t) are equivalent with the
change of independent variable x− t→ s. Let z0 = y(t) and z1 = y′(t). Then the
definitions of the functions Ā, B̄, R̄, ē give that

(20) z(s) = y(s+ t) , s ∈ [0, τ − t) is a noncontinuable solution

of the system (14), (15) on [0, τ − t). By the application of Theorem A (i) to the
system (14), (15) we will see that every solution z of the system (14), (15) satisfying

‖Ā(0)Φp(z1)‖+ 2m−1K2‖z0‖mR0 +
∫ ∞

0
‖ē(s)‖ds

< D
[ ∫ ∞

0

(
K1‖B̄(w)‖+ 2m−1K2‖R̄(w)‖wm

)
dw
]− p

m−p(21)

is continuable. Note, that according to (16)–(21) all assumptions of Theorem A
are valid. Furthermore, we will show that (11) yields (21).

We estimate the right-hand side of inequality (21):

G := D
[ ∫ ∞

0

(
K1‖B̄(w)‖+ 2m−1K2‖R̄(w)‖wm

)
dw
]− p

m−p

≥ D
[ ∫ 2(τ−t)

0

(
K1‖B̄(w)‖+ 2m−1K2‖R̄(w)‖wm

)
dw
]− p

m−p

≥ D
[
K1 max

0≤s≤τ−t
‖B(s+ t)‖(τ − t)

+K1

∫ 2(τ−t)

τ−t

∥∥∥− B(τ − t)
τ − t

w + 2B(τ − t)
∥∥∥dw

+ 2m−1K2 max
0≤s≤(τ−t)

‖R(s+ t)‖ (τ − t)m+1

m+ 1 dw

+ 2m−1K2

∫ 2(τ−t)

τ−t

∥∥∥− R(τ − t)
τ − t

w + 2R(τ − t)
∥∥∥wm dw

]− p
m−p

,

G ≥ D
[
K1 max

T≤t≤τ
‖B(t)‖(τ − t) + 1

2K1‖B(τ − t)‖(τ − t)

+M1K2 max
T≤t≤τ

‖R(t)‖(τ − t)m+1 +M2K2‖R(τ − t)‖(τ − t)m+1
]− p

m−p
,

where

M1 = 2m−1

m+ 1 and M2 = 2m−1 2m+2(2m+ 3)− 3m− 5
(m+ 1)(m+ 2) .

Hence,

(22) G > D
[3

2K1B0(τ − t) +MK2R0(τ − t)m+1
]− p

m−p

as M > M1 +M2.
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As we assume that τ − t ≤ 1, inequalities (11) and (22) imply

G > D
[3

2K1B0 +MK2R0

]− p
m−p (τ − t)−

p
m−p = C1(τ − t)−

p
m−p

≥ ‖A(t)Φp(y′(t))‖+ 2m−1K2‖y(t)‖mR0 + 2E0(τ − t)

≥ ‖Ā(0)Φp(z1)‖+ 2m−1K2‖z0‖mR0 +
∫ ∞

0
‖ē(s)‖ ds ,(23)

where C1 = D
[ 3

2K1B0 + MK2R0
]− p

m−p . Hence (21) holds and the solution z of
(14) satisfying the initial condition z(0) = y0 and z′(0) = y1 is continuable. This
contradiction with (20) proves the statement.

Now we shall prove the assertion (ii). If p ≤ 1 then the proof is similar, we have
to use only Theorem A (ii) instead of Theorem A (i). �

Now consider the following special case of equation (1):

(24)
(
A(t)Φp(y′)

)′ +R(t)f(y) = 0

for all t ∈ R+. In this case a better estimation than before can be proved.

Theorem 2. Let m > p and y be a noncontinuable solution of system (24) on
interval [T, τ) ⊂ R+. Let there exists a constant K2 > 0 such that

(25) ‖f(v)‖ ≤ K2‖v‖m, v ∈ Rn .

Let R0 and M to be given by Theorem 1. Then

(26) ‖A(t)Φp(y′(t))‖+ 2m+2K2‖y(t)‖mR0 ≥ C1(τ − t)−
p(m+1)
m−p

where

C1 = A
− m
m−p

0

(m− p
p

)− p
m−p [

MK2R0
]− p

m−p in case p > 1

and
‖A(t)Φp(y′)‖+ 22m+1K2‖y(t)‖mR0 ≥ C2(τ − t)−

p(m+1)
m−p

with

C2 = 2−
p(m+1)
m−p A

− m
m−p

0

(m− p
p

)− p
m−p [

MK2R0
]− p

m−p in case p ≤ 1 .

Proof. Proof is similar the one of the Theorem 1 for B(t) ≡ 0 and e(t) ≡ 0. Let
p > 1. We do not use assumption τ − t ≤ 1 and we are able to improve an exponent
of the estimation (8). The inequality (23) has changed to

G ≥ C1(τ − t)−
p(m+1)
m−p

≥ ‖A(t)Φp(y′(t))‖+ 2m−1K2‖y(t)‖mR0

≥ ‖Ā(0)Φp(z′(0))‖+ 2m−1K2‖z(0)‖mR0 ,(27)

where C1 = D[MK2R0]−
p

(m−p) . If p ≤ 1, the proof is similar. �
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3. Applications

In this case we study the scalar differential equation
(28)

(
a(t)Φp(y′)

)′ + r(t)f(y) = 0 ,
where p > 0, a(t), r(t) are continuous functions on R+, a(t) > 0 for t ∈ R+,
f : R→ R is a continuous mapping and Φp(u) = |u|p−1u.

Corollary 3. Let y be a noncontinuable oscillatory solution of equation (28) defined
on [T, τ). Let there exist constants K2 > 0 and m > 0 such that
(29)

∣∣f(v)
∣∣ ≤ K2|v|m , v ∈ R

and let {tk}∞1 and {τk}∞1 be increasing sequences of all local extrema of the solution
y and of y[1] = a(t)Φp(y′) on [T, τ), respectively. Then there exist constants C1 and
C2 such that

(30)
∣∣y(tk)

∣∣ ≥ C1(τ − tk)−
p(m+1)
m(m−p)

and, in the case r 6= 0 on R+,

(31)
∣∣y[1](τk)

∣∣ ≥ C2(τ − τk)−
p(m+1)
m−p

for k ≥ 1, 2, . . . .

Proof. Let m > p and y be an oscillatory noncontinuable solution of equation
(28) defined on [T, τ). An application of Theorem 2 to (28) gives

(32)
∣∣y[1](t)

∣∣+ 22m+1K2
∣∣y(t)

∣∣mr0 ≥ C(τ − t)−
p(m+1)
m−p ,

where C is a suitable constant and r0 = maxT≤t≤τ |r(t)|. Note that according
to (30), x (x[1]) has a local extremum at t0 ∈ (T, τ) if and only if x[1](t0) = 0
(x(t0) = 0). From this it follows that an accumulation point of zeros of x (x[1])
does not exist in [T, τ). Otherwise, it holds y(τ) = 0 and y′(τ) = 0. That is in
contradiction with (32). If {tk}∞1 is the sequence of all extrema of a solution y, then
y′(tk) = 0, i.e. y[1](tk) = 0. We obtain the following estimate for y(tk) from (32)

(33)
∣∣y(tk)

∣∣ ≥ C1(τ − tk)−
p(m+1)
m(m−p) ,

where C1 = C
1
m (22m+1K2r0)− 1

m and (30) is valid. If {τk}∞1 is the sequence of all
extrema of y[1](τk), then y(τk) = 0. We obtain the following estimate for y[1](τk)
from (32)

(34)
∣∣y[1](τk)

∣∣ ≥ C2(τ − τk)−
p(m+1)
m−p ,

where C2 = C. �

Example 1. Consider (28) and (29) with m = 2, p = 1. Then from Corollary 3
we obtain the following estimates∣∣y(tk)

∣∣ ≥ C1(τ − tk)− 3
2 ,

∣∣y[1](τk)
∣∣ ≥ C2(τ − τk)−3 ,

where M = 56
3 , C1 =

√
42

448K2a0r0
and C2 = 3

448K2a2
0r0

.
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Example 2. Consider (28) and (29) with m = 3, p = 2. Then from Corollary 3
we obtain the following estimates∣∣y(tk)

∣∣ ≥ C1(τ − tk)− 8
3 ,

∣∣y[1](τk)
∣∣ ≥ C2(τ − τk)−8 ,

where M = 288
5 , C1 = 1

32K2r0

( 10a0
9
) 2

3 and C2 =
( 5a0

144K2r0

)2.

The following lemma is a special case of [13, Lemma 11.2].

Lemma 1. Let y ∈ C2[a, b), δ ∈ (0, 1
2 ) and y′(t)y(t) > 0, y′′(t)y(t) ≥ 0 on [a, b).

Then

(35)
(
y′(t)y(t)

)− 1
1−2δ ≥ ω

∫ b

t

|y′′(s)|δ
∣∣y(s)

∣∣3δ−2 ds , t ∈ [a, b) ,

where ω = [(1− 2δ)δδ(1− δ)1−δ]−1.

Now, let us turn our attention to nonoscillatory solutions of (28).

Theorem 4. Let m > p and M ≥ 0 be such that
(36)

∣∣f(x)
∣∣ ≤ |x|m for |x| ≥M .

If y is a nonoscillatory noncontinuable solution of (28) defined on [T, τ), then
constants C, C0 and a left neighborhood J of τ exist such that

(37)
∣∣y′(t)∣∣ ≥ C(τ − t)−

p(m+1)
m(m−p) , t ∈ J .

Let, moreover, m < p+
√
p2 + p. Then

(38)
∣∣y(t)

∣∣ ≥ C0(τ − t)m1 with m1 = m2 − 2mp− p
m(m− p) < 0 .

Proof. Let y be a nonoscillatory noncontinuable solutions of (28) defined on [T, τ).
Then there exists t0 ∈ [T, τ) such that y(t)y[1](t) > 0 for t ∈ [t0, τ). Let

y(t) > 0 and y′(t) > 0 for t ∈ J := [t0, τ);
the opposite case y(t) < 0 and y′(t) < 0 can be studied similarly. As y is noncon-
tinuable, lim

t→τ−
y′(t) = ∞. Moreover, lim

t→∞
y(t) = ∞ as, otherwise, y[1] and y are

bounded on the finite interval J . Hence, there exists t1 ∈ J such that y′(t) ≥ 1 for
[t1, τ), y(t) ≥M for t ≥ t1 and

(39) y(t) = y(t0) +
∫ t

t0

y′(s) ds ≤ y(t0) + τy′(t) ≤ 2τy′(t) , t ∈ [t1, τ) .

Note, that due to y ≥M it is sufficient to suppose (36) instead of (25) for an ap-
plication of Theorem 2. Hence, Theorem 2 applied to (28), (39) and y′ ≥ 1 imply

C1(τ − t)−
p(m+1)
m−p ≤ a(t)(y′(t))p + C2y

m(t)

≤ a(t)(y′(t))p + C2(2τ)m(y′(t))m

≤ C3(y′(t))m
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or
y′(t) ≥ C4(τ − t)−

p(m+1)
m(m−p) on [t1, τ) ,

where C1, C2, C3 and C4 are positive constants which do not depend on y. Moreover,
the integration of (37) yields

y(t) = y(t0) +
∫ t

t0

y′(s)ds ≥ C
∫ t

t0

(τ − s)−
p(m+1)
m(m−p) ds

≥ C

|m1|
[(τ − t)m1 − (τ − t0)m1 ] ≥ C

2|m1|
(τ − t)m1

for t lying in a left neighbourhood I1 of τ . Hence, (37) and (38) are valid. �

Our last application is devoted to the equation

(40) y′′ = r(t)|y|m sgn y ,

where r ∈ C0(R+), m > 1.

Theorem 5. Let τ ∈ (0,∞), T ∈ [0, τ) and r(t) > 0 on [t, τ ].
(i) Then (40) has a nonoscillatory noncontinuable solution which is defined in

a left neighbourhood of τ .
(ii) Let y be a nonoscillatory noncontinuable solution of (40) defined on [T, τ).

Then constants C, C1, C2 and a left neighbourhood I of τ exist such that

|y(t)| ≤ C(τ − t)−
2(m+3)
m−1 and |y′(t)| ≥ C1(τ − t)−

m+1
m(m−1) , t ∈ I .

If, moreover, m < 1 +
√

2, then

|y(t)| ≤ C2(τ − t)m1 with m1 = m2 − 2m− 1
m(m− 1) < 0 .

Proof. The assertion (i) follows from [2, Theorem 2].
Let us prove the assertion (ii). Let y be a noncontinuable solution of (40) defined
on [T, τ). According to Theorem 4 and its proof we have lim

t→τ−
|y(t)| =∞ and (37)

holds. Hence, suppose that t0 ∈ [T, τ) is such that

y(t) ≥ 1 and y′(t) > 0 on [t0, τ) .

Furthermore, there exists t1 ∈ [t0, τ) such that

(41) y(t) = y(t0) +
∫ t

t0

y′(s) ds ≤ y(t0) + y′(t)(τ − t0) ≤ C3y
′(t)

for t ∈ [t1, τ) with C3 = 2(τ − t0). Now, we estimate y from below. By applying
Lemma 1 with [a, b) = [t1, τ) and δ = 2

m+3 ∈ (0, 1
2 ). We have δm+ 3δ − 2 = 0 and

C
m+3
m−1
3 y−

2(m+3)
m−1 (t)m ≥ (y′(t)y(t))−

1
1−2δ ≥ ω

∫ τ

t

(y′′(s))δ(y(s))3δ−2ds

≥ C4

∫ τ

t

yδm+3δ−2(s)ds = C4(τ − t) on [t1, τ) ,(42)
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where C4 = ω min
t0≤σ≤τ

|r(σ)|. From this we have

y(t) ≤ C(τ − t)−
m−1

2(m+3) on [t1, τ)
with a suitable positive C. The rest of the statement follows from Theorem 4. �
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