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SPECIAL EINSTEIN’S EQUATIONS ON KÄHLER MANIFOLDS

Irena Hinterleitner and Volodymyr Kiosak

Abstract. This work is devoted to the study of Einstein equations with a
special shape of the energy-momentum tensor. Our results continue Stepanov’s
classification of Riemannian manifolds according to special properties of the
energy-momentum tensor to Kähler manifolds. We show that in this case the
number of classes reduces.

1. Introduction

The geometric properties of (pseudo-) Riemannian manifolds Vn, depending on
the form the Einstein equations acquire in them, were studied by many authors. A
large number of papers is devoted to the study of Einstein’s equations with certain
restrictions on the energy-momentum tensor and its first covariant derivatives
[2, 5, 6, 7, 9].

S. E. Stepanov [8, 10] classified space-time manifolds according to certain
relations among the first covariant derivatives of the energy-momentum tensor.
He found three fundamental classes, related to geometrical assumptions about
space-time. By combinations of the conditions determining the three fundamental
classes he found three further classes. A seventh class is characterized by the
vanishing of the covariant derivative of the energy-momentum tensor.

In the present paper we partially take over Stepanov’s classification to Kähler
spaces and investigate analogous, generalized classifying conditions. We show that
for two out of the three fundamental classes space-time is Ricci symmetric and the
energy-momentum tensor is covariantly constant.

In consequence, the energy-momentum tensor is covariantly constant also for
the three classes derived from the fundamental ones. Thus for Kähler spaces the
number of classes of Einstein equations reduces to one with covariantly constant
and one with non-constant energy-momentum tensor. We study some of their
properties and generalizations.

All geometric objects are formulated locally under the assumption of sufficient
smoothness. Whereas S. E. Stepanov formulated his classifications by making use
of bundles, for our purpose it is sufficient to write down the classifying relations in
form of tensor equations.
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2. Einstein’s equations

The equation Ric− 1
2 Rg = T is called Einstein’s equation. Here Ric is the Ricci

tensor on the manifold Vn, g is the metric tensor, R is the scalar curvature, and T
is the energy-momentum tensor. In components this reads as follows:

(1) Rij −
1
2 Rgij = Tij ,

where Rij , gij and Tij are components of Ric, g and T .
From the Bianchi identities of the Ricci tensor follows Tαi,βgβα = 0, (where

the comma denotes the covariant derivative with respect to a connection on the
manifold Vn), and gij are elements of the inverse matrix to gij .

Stepanov distinguishes the following three fundamental types of manifolds in
terms of covariant derivatives of the energy-momentum tensor:

Ω1 : Tij,k + Tjk,i + Tki,j = 0 ,(2)

Ω2 : Tij,k − Tik,j = 0 ,(3)

Ω3 : Tij,k = akgij + bigjk + bjgik ,(4)

where ak and bi are arbitrary vectors.
In space-time manifolds of type Ω1 the scalar curvature is covariantly constant and
the Ricci tensor is a Killing tensor, i.e. Rij dx

i

ds
dxj

ds is constant along geodesic curves
with parameter s.

In the case Ω2 the scalar curvature is constant, too, and the Levi-Civita connec-
tion of the metric, considered as a connection on the tangent bundle TM , satisfies
the conditions of a Yang-Mills potential.

Ω3 is a slight generalization in comparison with the condition in [8, 10] on Rij,k,
reformulated in terms of Tij,k. The original conditions of Stepanov characterise
manifolds with non-constant curvature that admit non-trivial geodesic mappings.

In [8, 10] three further classes are derived by simultanously imposing conditions
Ω1 and Ω2, Ω2 and Ω3, and Ω1 and Ω3, respectively.

Using a generalized form of the introduced dependencies, we are going to study
manifolds characterized by the following conditions:

Ω∗1 : Tij,k + Tjk,i + Tki,j = λkTij + λiTjk + λjTki + µkgij + µigjk + µjgik,(5)

Ω∗2 : Tij,k − Tik,j = ρkTij − ρjTik + σkgij − σjgik,(6)

Ω∗3 : Tij,k = φkTij + γiTjk + γjTki + ηkgij + χigjk + χjgik,(7)

where φi, λi, µi, ρi, γi, ηi, σi and χi are arbitrary vectors.

3. Kähler spaces

An n-dimensional (pseudo-)Riemannian manifold (Mn, g) is called a Kähler
space Kn if besides the metric tensor g, a structure F , which is an affinor (i.e. a
tensor field of type (1, 1)), is given on Mn such that the following holds [3, 4, 11]:
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F 2 = − Id, g(FX,X) = 0 (∀X ∈ TKn), ∇F = 0, i.e. in coordinate form
(8) FhαF

α
i = −δhi ; Fαi gαj + Fαj gαi = 0 ; Fhi,j = 0 ,

where δij is the Kronecker symbol.
Making use of this we can show that

(9) gij = gαβF
α
i F

β
j ; Rij = RαβF

α
i F

β
j .

Then due to (1), for the energy-momentum tensor the following relation holds

(10) Tij = TαβF
α
i F

β
j ; Fαi Tαj + Fαj Tαi = 0 .

We prove the following theorem.

Theorem 1. If in a Kähler space the condition Ω∗2 or Ω∗3 holds, then the energy-mo-
mentum tensor satisfies
(11) Tij,k = ρkTij + σkgij .

Proof. Assume that in a Kähler space Kn the condition (6) holds, multiply it by
F il F

j
h , contract with respect to i and j and exchange l for i and h for j. We obtain

Tαβ,kF
α
i F

β
j − Tαk,βF

α
i F

β
j = ρkTαβF

α
i F

β
j − ρβTαkF

α
i F

β
j

+ σkgαβF
α
i F

β
j − σβgαkF

α
i F

β
j .(12)

With the aid of (9) and (10) we can rewrite the last equation in the form

(13) Tij,k − Tαk,βFαi F
β
j = ρkTij − ρβTαkFαi F

β
j + σkgij − σβgαkFαi F

β
j .

After symmetrization of the indices i and k we get
(14) Tij,k + Tjk,i = ρkTij + ρiTjk + σkgij − σigjk .
Exchanging the indices i and j we obtain
(15) Tij,k + Tik,j = ρkTij + ρjTik + σkgij + σjgik .

Addition of (15) and (13) gives (11). Note that spaces satisfying Ω∗3 satisfy also
the condition Ω∗2 as can be seen, when
(16) ρi = φi − γi; σi = ηi − χi
holds. �

By analyzing this result it is not difficult to prove

Theorem 2. Kähler spaces Kn belonging to class Ω2 or Ω3 are characterized by
the following conditions
(17) Tij,k = 0 , Rij,k = 0 .

From this theorem it follows immediately that for Kähler spaces also in the
derived cases (Ω1 and Ω2, Ω2 and Ω3, Ω1 and Ω3) the energy-momentum tensor is
covariantly constant. So all the classes of Einstein equations, with the exception of
Ω1, can be summarized under the characterization Tij,k = 0. From this follows that
for Kähler spaces Kn of class Ωi (respectively Ω∗i ) only those fulfilling condition
(2) (resp. (5)) are relevant.
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In a further step of generalization we consider Kähler spaces characterized by
the following conditions

Ω∗4 : Tij,k − Tik,j = ρkTij − ρjTik + σkgij − σjgik + ραTiβF
α
k F

β
j

− ρβTiαFαk F
β
j + σαgiβF

α
k F

β
j − σβgiαF

α
k F

β
j .(18)

Ω∗5 : Tij,k = φkTij + γiTjk + γjTki + ηkgij + χigjk + χjgik

+ γαTβkF
α
i F

β
j + γβTkαF

α
i F

β
j + χαgβkF

α
i F

β
j + χβgαkF

α
i F

β
j .(19)

Applying the methods used in the proof of Theorem 1 to (18) and taking into
account (8), (9), (10) we convince ourselves that (18) acquires the form (19), this
proves the next theorem.

Theorem 3. There are no Kähler spaces Kn in the class Ω∗4 other than spaces
belonging to Ω∗5.

In this way the Kähler spaces with non-constant energy-momentum tensor,
considered in this paper, are divided into two essential classes: Ω∗1 and Ω∗5.
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