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ALMOST PERIODIC SEQUENCES AND FUNCTIONS
WITH GIVEN VALUES

MICHAL VESELY

ABSTRACT. We present a method for constructing almost periodic sequences
and functions with values in a metric space. Applying this method, we find
almost periodic sequences and functions with prescribed values. Especially,
for any totally bounded countable set X in a metric space, it is proved the
existence of an almost periodic sequence {¢ }recz such that {¢y; k € Z} = X
and Y, = Yy y1q(k), | € Z for all k and some q(k) € N which depends on k.

1. INTRODUCTION

The aim of this paper is to construct almost periodic sequences and functions
which attain values in a metric space. More precisely, our aim is to find almost
periodic sequences and functions whose ranges contain or consist of arbitrarily
given subsets of the metric space satisfying certain conditions. We are motivated
by the paper [3] where a similar problem is investigated for real-valued sequences.
In that paper, using an explicit construction, it is shown that, for any bounded
countable set of real numbers, there exists an almost periodic sequence whose range
is this set and which attains each value in this set periodically. We will extend this
result to sequences attaining values in any metric space.

Concerning almost periodic sequences with indices k& € N (or asymptotically
almost periodic sequences), we refer to [4] where it is proved that, for any precompact
sequence {zj}ren in a metric space X, there exists a permutation P of the set
of positive integers such that the sequence {xp()}ren is almost periodic. Let us
point out that the definition of the asymptotic almost periodicity in [4] is based
on the Bochner concept; i.e., a bounded sequence {zj}ren in X is called almost
periodic if the set of sequences {Zy4ptren, P € N, is precompact in the space of
all bounded sequences in X. It is known that, for sequences and functions with
values in complete metric spaces, the Bochner definition is equivalent with the
Bohr definition which is used in this paper. Moreover, these definitions remain
also equivalent in an arbitrary metric space if one replaces the convergence in the
Bochner definition by the Cauchy property (see [§], [9]). But, it is seen that the
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result of [4] for the almost periodicity on N cannot be true for the almost periodicity
on Z or R.

For almost periodic functions, we prove a theorem corresponding to the above
mentioned one for sequences. In addition, we need that the given set is the range
of a uniformly continuous function ¢ for which the set {p(k); k € Z} is finite. We
also use the result for sequences to construct an almost periodic function whose
range contains an arbitrarily given totally bounded sequence if one requires the
local connection by arcs of the space of values.

In a Banach space, an other important necessary and sufficient condition for
a function to be almost periodic is that it has the approximation property; i.e.,
a function is almost periodic if and only if there exists a sequence of trigonometric
polynomials which converges uniformly to the function on the whole real line in
the norm topology (see [2, Theorems 6.8, 6.15]). There exist generalizations of this
result. For example, it is proved in [I] that an almost periodic function with fuzzy
real numbers as values can be uniformly approximated by a sequence of generalized
trigonometric polynomials. We add that fuzzy real numbers form a complete metric
space. One shows that the approximation theorem remains generally unvalid if one
does not require the completeness of the space of values. Thus, we cannot use this
idea in our constructions for general metric spaces.

The paper is organized as follows. First of all, in Section 2, we define the notion of
the almost periodicity in metric spaces. The definition is similar to the classical one
of H. Bohr, only the modulus being replaced by the distance. Then, in Theorems [I]
and [2] we present a process which facilitates to construct almost periodic sequences
and functions having certain properties. In Sections 3 and 4, we prove the above
mentioned main theorems for sequences and functions, respectively.

2. ALMOST PERIODIC SEQUENCES AND FUNCTIONS IN METRIC SPACES

Let X be an arbitrary metric space with a metric o. For given € > 0 and x € X,
the e-neighbourhood of x in X will be denoted by O.(z) and, as usual, RSL will
denote the set of all nonnegative reals.

First we recall the definition of the Bohr almost periodicity in metric spaces

(see, e.g., [8], [9]).

Definition 1. A sequence {tr}rez C X is almost periodic if for every e > 0,
there exists a positive integer p(e) such that any set consisting of p(g) consecutive
integers contains at least one integer | for which

0 (WUryi,Yn) <e, kel.

The number 1 is called an e-translation number of {1y }.

Definition 2. A continuous function ¥: R — X is almost periodic if for every
e > 0, there exists a number p(e) > 0 with the property that any interval of length
p(e) of the real line contains at least one point s for which

o(v(t+5),v(t) <e, —oco<t<+00.

Sitmilarly as in Definition |1}, s is called an e-translation number.
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Remark 1. Tt follows directly from Definition [1| that the set {¢y; k € Z} is totally
bounded in X if {¢}rez C X is almost periodic. Analogously, the set of values
of an almost periodic function with values in X" is totally bounded in X'. One can
prove it by a trivial generalization of the proof of [2, Theorem 6.5]. This result
is well-known for Banach spaces, where the totally bounded (precompact) sets
coincide with the relatively compact sets.

Now we mention the method of constructions of almost periodic sequences and
functions in X which we will use later. Another methods of generating almost
periodic sequences and functions with prescribed properties are also presented in
[0, Section 4] and [5], respectively.

Theorem 1. Let 1y € X and {;}ien C R be arbitrarily given so that

(1) ié‘i < o0

holds. Then, every sequence {¢y}rez C X for which it is true

i € O, (Yr_20) , ke{l} ={2-1},

Vi € Ocy (Yryo1) ke{-2-1},

i € Oy (Yp_22) ke{2,...,24+2% -1},

U € O, (Vppos) ke{-22-2,...,-2-1},

Yr € O, (Vp_21) , Eef{2+2%...,2+22+21 -1},

Vg € Oy (Ppggzin) ke {221 —... 2% o 2273 ... 9% 9 1}
Vi € Onyyyy (Ppn2i) , k€ {2+ 274 42272 24274 4220724 2% 1}

is almost periodic.

Proof. The theorem follows from [0, Theorem 3.5] where one puts m =0, j = 1.
O

Theorem 2. Let M > 0 and xo € X be given and let ¢: [0, M] — X be such that
©(0) = p(M) = 0.
If {ei}ien C Ry satisfies (1)), then any continuous function ¥: R — X, ¥|jo.m) = ¢
for which
V() =z, te{2M,—2M}U{(2+22+ .. +2207D L 22901 e N}

2 _ )
® U{—(2+2% +--- 42271 1 2%t € N}
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and, at the same time, for which it is valid

P(t) € Oc, (P(t — M)) , € (M,2M),

Y(t) € O, (P(t +2M)) , € (—2M,0),

P(t) € Oy (P(t —2°M)) € (2M, (2 +2*)M),

Y(t) € O, (Y(t+2°M)) , € (—(2°+2)M,—2M),

U(t) € Oy (v(t —2'M)) , € ((24+2°)M, (2 + 2%+ 2 M),

P(t) € Oy, (P(t+227TM)), t € (=2 4+ +2)M, - (2% + - + 2) M),
’(/}(t) € 052i+1 (’(/J(t - 22iM)) ) te ((2 + 22+ i 227;_2)M7 (2 + 22+ R 22i)M)a

is almost periodic.

Proof. See [8, Theorem 3.2] for j = 1. O

3. ALMOST PERIODIC SEQUENCES WITH GIVEN VALUES

In this section, we prove that, for a countable subset of X', there exists an almost
periodic sequence whose range is exactly this set. Since the range of any almost
periodic sequence is totally bounded (see Remark , this requirement on the set is
necessary. Now we prove that the condition is sufficient as well.

Theorem 3. Let any countable and totally bounded set X C X be given. There
exists an almost periodic sequence {\y}rez satisfying

(3) {Yp; keZ} =X
with the property that, for any l € Z, there exists q(1) € N such that
(4) Y =Yivjquy, JEL.

Proof. Let us put
X = {pr; k € N}.

Without loss of the generality we can assume that the set {¢g; k € N} is infi-
nite because, for only finitely many different ¢y, we can define {1} as periodic.
Since {pk; k € N} is totally bounded, for any € > 0, it can be imbedded into
a finite number of spheres of radius ¢. Let us denote by z¢, ... ,xin( 0 the centres of
the spheres of radius 27% which cover the set for all i € N. Evidently, we can also
assume that

(5) m’i,...,xin(i)e{cpk;keN},iEN,
and that
(6) $§=§0i, 7€ N.
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We will construct {¢;} applying Theorem [I} We choose arbitrary n(1) € N for
which 221 > m(1). We put

Yo =, Yri=a3, -y Pr(1)—1 = L1 s
Y =i, ke {221 ... _93_9o 1}
U{m(1),...,2+2% 4. 422V _1}
and
(7) ep:=L, ke{l,....2n(1)+ 1},
where

L= max m%,xl» +1.
ije{l,...,m(1)} ol )

In the second step, we choose n(2) > n(1) +m(2) (n(2) € N). We define
Wk 1= Ppyormmr , k€ {2293 o o193 9 1},
Vg = Uy _gznyrz k€ {24+ 22 4 4220 94924 49221y

Pk o= Ppyorm@ -1,k € {2271 .93 o _oMm@)=8_..._93_ o 1}
and we put
(8) er=0, ke{2n(1)+2,....2n(2)}, eanz)t1:=2"".

Since n(2) > n(1) + m(2), from the above definition of 1)y, it follows that, for
each j € {1,...,m(1)}, there exist at least 2m(2) + 2 integers

le{=22n@-1 ... _93_9  92@=24 . .. 19249 1}

such that ¢; = z}. Thus, we can define

Ui € Ocypiny (V_gonm) 5 k€ {24274 422072 94924 492l 1}

with the property that

{r; kef{2+22 4. 42272 94924 ... 4 o724 9202 _q})

={xi,... ,xin(l),xf, . ,xfn@)} .

In addition, we can put

9) Pg2n(2) 1= Yo = T]

and we can assume that

Y = a1 forsome k€ {24 - 42232 94 ... o® 1)\ {2202},



6 M. VESELY

In the third step, we choose n(3) > n(2) + m(3) (n(3) € N) and we proceed
analogously. We construct {¢y} for

ke {—2m@+t ... _93 _9 9@l _ ... _95_9_1},

ke {-2%®~-1t _..._95_9 —2oB)=3_..._93_9_1}

as in the 2(n(2)+1)-th, ..., 2n(3)-th steps of the process (mentioned in Theorem [1)
for

(10) er:=0, ke{2n(2)+2,...,2n(3)}.
Especially, we have
1) Yp=x1, keJg,

J3i={j27® jezyn{—22"®)t ... 2 24... 427072 _q},

As in the second step, for all j(1) € {1,2} and j(2) € {1,...,m(j(1))}, there
exist at least 2m(3) + 2 integers

le{—22n®~t .93 9 24922 4. 4272 11\ {22, j e 7}
such that ¢; = xigg It is seen that, to get
Uk € Ocyrigyar (V_oon@) k€ {24274 422072 94924, 4 92n() 1}
where
(12) Eon(3)+1 1= 272,
satisfying

(P ke{2422 4. 122032 9492 4. 4 920(3)-2 4 920(3) _ 11}

:{x%,...,x:n(l),...,xi’,...,mil(g)},

we need less than (or equal to) m(3) + 1 such integers I. Thus, we can define
these 1, so that

( ) ¢k = I%, ke Ig)v
13
]S’ — {j22”(2);jeZ}m{2+..._|_22n(3)—27”',2_~_...+22"(3) -1},
(14) 1/122"(3>+1 - 77[11 = Z%, w22n(3)_1 = 1/1_1 = I% s

Y =11 forsome k€ {24 422372 9. 422G 1\ {220G) 11}
Y =11 forsome ke {24 +22372 o4 422G 1)1\ {220() 1},
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We proceed further in the same way. In the i-th step, we have n(i) > n(i—1)4+m(%)
(n(i) € N) and

Py = wk+22n(i71)+1 , ke {_22n(i—1)+1 — =2, —o2n(i=D)=1 _ .. _9_ 1} ,

Yk 1= Ppyorni—1, ke {=22O-1 ..o oMm®=3_..._9 1}

and we denote

(15) er=0, ke{2n(i—1)+2,....2n0)}, eopuyq1:=2""".

We have also

(16) w_k = Vo, ke, _ _
Jo={j22"®. jezyn {20~ ... 9  24... 492072 _q}

V=11, keJi,
(17) Ji={1452"®; ez}
N{=22n-1 ... 93 9 24922 4... 42202 _q}

¢k=¢—17 ke']ilv
(18) Jiy:={-14j2"®;jez}
N{=22r-1 ... 93 9 9249224... 42202 _q}

Yk = i3, k€Jl_g,
Jig={i—3+5207Y; j ez}
N{=22O-1 ... 9% 9 9249224 4220072 1}
Vi =Y iys, ke Jl s,
Tl = {—i+ 345200 j ez}
N{=22®O-1 ... 93 9 94924 4220072 _ 11

if i —3 <227 If 227(2) < — 3 < 227+ we have

'(/)k = ’(/}72277,(2)4’,1 s ke Ji22n(2)+1 ,
Ji — _22n(2) 1 .22n(22n(2)+1). . 7
Loz = { +1+7 1 JEL}
N{—22@-1_... 93 9 2422 4...4 2202 1}
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wk = w22n(2)+1 5 k E J§2"(2)+1 5
i o {22n(2) 14 92 (22" 12). 5 o
n) 41 = J s J €L}
N{=22n@-1 _..._93 _9 24922 4...4220=2_1}

If 22n(2)+1 < j — 3 then we omit the values V)o@, Y1402, Yo1qjom@), -
For simplicity, let i — 2 < 227(2),

Considering the construction, for all (1) € {1,...,i—1},7(2) € {1,...,m(j(1))},
there exist at least 2m(i) + 2 integers

le {221 .93 9 24224 4222 13\ (JEU---UJL,,,)
such that ¢; = xjgg Evidently (similarly as in the third step), we can obtain
Uk € Ocypiiyiy (Uh_gzn) s kK E{24- 4220072 94y 02n@ 1)
for which

(s ke {24 422072 94 ... 4 92(0=2 L 92n0) 11

(19) i i
= {m%,,,,,x:n(l),...,xl,...,xm(i)%

and, in addition, we have

¢k:¢0’ ke]éa

20 , , ‘
20) I={j2®; jezyn{2+ - 42202 2449201}
(21) Ve =11, keI,
Ii={1+;52"0 jezyn{2+ 422072 2442201}
Yp=1v_1, kel'y,
(22) '

It = {-14j22"C) j ez} n {24 422072 2442200 1}

¢k = ’l/)i—3 ) ke Iz?-—?) )
Il = {i—-34522"01; j ez} n {24 4220072 o4 .492@_1}

Uk =v_iy3, keI, g,
I g = {—i+34+5 220 e zyn {2+ 42202 2y 2201}
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and

br=1ia, k=20 4i-2, =t s, k=20 —it2,

Y =iz
for some k € {24---+ 22002 94,4920 _ 1)\ {2270) 49}

Ve =Y—it2
for some k € {2+4---422702 944220 1)\ {220) 4 4 2}
Using this construction, we get the sequence {¢}rez C X with the property
that (see @D, , , , )
vk =10, ke{j2®;jez}
and that (see , , , , )
Ye=v1, ke{l+j2™0); ez},
=91, ke{-1+;5220; ey,
and so on; i.e., for any [ € Z, there exists i(l) € N satisfying
(23) Ve =11, kef{l+52200); ez}

Now it suffices to show that the sequence {1} is almost periodic. Indeed,

follows from the process, (5)), (6), and (19); follows from for g(1) = 22n0(),
Since we construct {t,} using Theorem |1} {vx} is almost periodic if (1) is satisfied.

Immediately, see @, , , , , we have
(24) Y ei=L(2n(1)+1)+1
i=1
which completes the proof. O

4. ALMOST PERIODIC FUNCTIONS WITH GIVEN VALUES

Concerning a continuous counterpart of Theorem [3] the given set of values has
to be the totally bounded graph of a continuous function (see Definition [2| and
Remark . In addition, any almost periodic function is uniformly continuous (see,
e.g., [8 Lemma 2.2]). Considering these facts, we formulate the continuous version
of Theorem [3l

Theorem 4. Let p: R — X be any uniformly continuous function such that the
set {p(k); k € Z} is finite and the set {p(t); t € R} is totally bounded. There exists
an almost periodic function v with the property that

(25)  {v(k); ke Z} ={p(k); ke Z}, {v(t);t€R} ={p(t);t €R}

and that, for any l € Z, there exists q(1) € N for which

(26) Y(l+s)=v(l+s+jgl)), j€Z, se€0,1).
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Proof. We will construct ¢: R — X using Theorem [2] similarly as {¢} applying
Theorem [1| in the proof of Theorem [3] Considering that the set {p(k); k € Z} is
finite, let sufficiently large M, N € Z have the property that (M) = p(N) and
that, for any [ € Z, there exists j(I) € {N,N +1,..., M — 1} for which
(27) ) =¢(0), el+1)=¢()+1).
Without loss of the generality, we can assume that N = 0 because, if N < 0, then
we can redefine finitely many the below given ¢; and put ¥ = ¢ on a sufficiently
large interval.

Since ¢ is uniformly continuous with totally bounded range (see also (27)), for

arbitrarily small € > 0, there exist I1(¢), ..., ln()(€) € Z such that, for any [ € Z,
we have

o(e(l+s), (i +5)) <e, se[0,1]
for at least one integer I; € {l1(), ..., L) (€)}. We put g, :=27", i € N, i.e,,
B=027), . e = lme-n(27%), i€eN.

In addition, we will assume that

(28) {;ie{l,...,m@)},ieN} =7
First we define
(29) W(t) = olt), te oM.
We choose arbitrary n(1) € N for which 22"(M A > m(1). There exist (see (27))
Jtsdase s dmay € {0,100, M — 1}
such that
p(h) =v(1), el +1) =¥ +1),

We define
b(s+M+ji) = (s +11), sel0,1],
Y(t) =1t — M), te (M, 2M]\ [M + ji, M + j; +1],
V(s +2M +43) = (s +13), s€0,1],
O(t) :== Yt — 2M), t e (2M,3M]\ [2M +ji, 2M + i +1],
(s +m)M + 3 0y) = @(s + 1ay) €[0,1],

y
Y(t) ==t —m(1)M), te (m(1)M, (m(1)+1)M]
\ [m(1) M+ 1y (D) M+, 1y +1]
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and we define v as periodic with period M on

[(22nW=1 o 123 L )M, (2422 4 - 4 220 M\ (M, (m(1) + 1) M).
It is easily to see that we construct ¢ as in Theorem [2] for
(30) g, =L, 1€{l,...,2n(1)+ 1}

if L > 0 is sufficiently large.
In the second step, we choose n(2) > n(1) +m(2) (n(2) € N) and we put

111(75) = w(t+22n(1>+1M) ) te [_(22n(1H1+' ' +2>Mv v 7_(22”‘(1)71“_' ' +2)M) )
(t) =t —22"WRM) |t e (24 -+ 22 D)M, L (24 -+ 22M D) )

Y(t) == (227N e 2 ML 22 o) M)
and
(31) gi:=0, i€ {2n(1)+2,...,2n(2)}, eanz)p1 :=2""

From n(2) > n(1) + m(2) and the above construction, we see that, for each
integer j, 1 < j < m(1), there exist at least 2m(2) 4+ 2 intervals of the form

[a,a+1] C [-(22DL oM. (2772 4 L 2 M)
such that a € Z and
Y|(a,a41] = ¢p|[l}71;+1], ie, Y(s+a)=p(s+ ljl-)7 s €[0,1].
It implies that we can define continuous
P(t) € Ocypia)y, (W(E=22"BIM)), t € (24427 M, (244273 M]

for which

w‘[22"(2>M,22"<2)M+1] = Yljo,1) 5
Ylie,k1) = Y)jo,1)  for some k,
Ee {2+ +27OM, ... 24 - +27)M —1}\ {22 M}
and
Yl = el o+, Le{@+---+ 2N (24 22N — 1}
some j(I) € {0,..., M = 1L,1y, ... Ly s oy
{o(t); t iy, h+1]U---U [lyln(1):l71n(1)+ﬂ U, I+ U--- U [17271(2)7 l3n(2)+1]}
C{y(t); t e [(24- -+22D"2)M, ..., (24 -+22) M)}

In the third step, we choose n(3) > n(2) + m(3) (n(3) € N) and we construct ¢
for

(32) g:=0, i€{2n(2)+2,...,2n(3)}, ean@)t1:=2""
‘We have continuous
U(t) € Ocypigy iy (V(E—22"ODM)), t € (244222 M, . (24422 M|



12 M. VESELY

satisfying
Yl = el o+, Le{@+---+ 22BN (24 22BN — 1}
at least one j(I) € {0,..., M —1,1,13, .. .,lfn(3)},
{e(); te i, + 1 Ully Iy + 1 U U5, s + 1}
C{@);tel[2+ - +2OM (24 + 27 MY.
In addition, we have
Pl = Yloy, 1€ {i2PM; j ez}
N{=@2O~ L M, (24 + 22O M — 1},

1/’|[22n(3>M+1,22n<3>M+2] =Yl w|[22”(3)M71,22"<3)M} = Yl-10

Yliek1)] = Ylp,z)  for some k|
ke {24 - +22O="2) 0 (24 + 22O — 13\ {22G) g 1),

Uik k1) = Y|[—1,0) for some k,
Ee {24 +27CM . 2+ +22O) M — 13\ 227G — 1}

Continuing in the same manner, in the i-th step, we choose n(i) > n(i—1)+m(z)
(n(i) € N) and we construct 1 for

(33) er:=0, ke{2n(i—-1)+2,...,2n(1)}, eon@i)41:= 2L
For simplicity, let i — 2 < 22"(2) M (see also the proof of Theorem [3| for j22™(2)
replaced by [j 227 M, j 22" M 4-1], 145 223 by [14522"G) M, 145 222G M 4-1],
and so on). Again, for each j(1) € {1,...,i — 1}, 7(2) € {1,...,m(j(1))}, there
exist at least 2m(') + 2 integers
le{—@"O p LM, 2+ +22O )M — 1}

\ ({522 2>M; JEZYU{L+22"ONM; j e ZYU{-1+22"OM; j € Z}

U-U{i—3+5220"DM; je 2y U {3 —i+ 220~V j e Z))
such that

Vi1 = ¢ (1050 41]
Thus, we can define continuous
U(t) € Ocyp iy (V(E— 22", t € (24 +2O72)M, (24 +22 ) M
satisfying
w|[l,l+1] = ‘p|[j(l),j(l)+1] , le {(2 4+ 22n(i)*2)M, . (2 4+ 22n(z))M _ 1}’
at least one j(I) € {0,...,M —1,11,13, ... ,lfn(i)},

{pt); te i, H+ 10Ul +1]U---U [lin(i)vlin(i) + 1]}

(34 Clystel@+ - +22O2)M, . 2+ + 22D M]}
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In addition, we can define 1 so that
Y1) = Yl 1€4{J 22\, j € 7}
N{—@2O- Lo DM, (24 + 22O — 1},

Plugsy = ¥lpz, L€ {1+522"CM; j e 7}
N{—22"O= .M, ..., (24 -+ 22D — 1},

Ylpiry = Yl—10, 1€ {1 +522"®NM; j e Z)
N{=@2O- L DM, (24 + 22O\ -1},

liir1) = Yljisiog), L€ {i—3+722"0"VM; j e Z}
N{=22O= .M, ..., (24 -+ 22D — 1},

Pluasy = Vliai, L€ {3—i+22"0"VM; jeZ}
N{=@2O- L DM, (24 + 22O\ — 1},

w' [22"‘(i)M+i—2,22"(i)M—&-i—l} = '(/)| [i—2,i—1] » ’(/)| [22"‘(i)M+2—'L',22"(i)M+3—'L'] = '(/)| [2—4,3—1] »

z/J|[k,lc+1] = 1/}|[i72,i71] for some £,
ke {2+ - +22O M . 2+ -+ 22O\ M —1}\ {22°D i — 2},
¢|[k,k+1] = 1/1|[2—i,3—z‘] for some £,
ke {24 +22OH0M, . (24 -+ 22O — 1)\ {22 M 2— ).
For {¢(k)}rez which is not constant, it is valid

min i),0(j)) > 27K
Jpin, o(p(i), 0(4))

for some K € N. If we begin the construction by
=007, k) = e (275,
then we have to obtain
Yk)=yk+M), keZ.

Hence, we can construct the above ¥ in order that the sequence {1 (k)}iez is
periodic with period M which gives and the continuity of ¢». We construct ¢
using the process from Theorem [2] for all i € N and we obtain an almost periodic
function ¢ : R — X. Indeed, we have and, summarizing , , , ce
133), - ., we get . For periodic {t(k)}rez, the first identity in (25)) follows from
(27) and and the second one from the construction, (28)), and (34). As in the
proof of Theorem [3| we see that, for any | € Z, there exists i(l) € N satisfying

Vlrr1) = Vlpasn, k€ {1+522" 0O j ez}
It gives for q(1) = 22"CW) M. The theorem is proved. O
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As an example which illustrates the previous theorem, we mention the following
statement:

Corollary 1. For any continuous function F: [0,1] — X, there exists an almost
periodic function ¥ with the property that

{¥(®); t e R} ={F(t); t € (0,1)}.
Proof. It suffices to show that there exists a uniformly continuous function ¢: R —
X for which {@(k); k € Z} = {F(1/2)} and {p(t); t € R} = {F(t); t € (0,1)}, and
to apply Theorem [d] For example, one can put

<p(k+s)::F<%+s), keN,se:O,%),

ki + 5) =F<%+2kk+l), keN,se:zkil,l—%il),
ok + s) :FG—H—S), keN,se:l—%,l);
wrmr(o). rem sy

ok + 5) :FG—%k_l), keZ\N,se:%k_l,l—%k_l),
@(k+s)::F<%+s—1>, keZ\N,se}—%J).

O
In Theorem [ we have constructed an almost periodic function v for which the
set {¢(k); k € Z} has to be finite. Now we use Theorem [3| to obtain an almost
periodic function with infinitely many given values on Z. In Banach spaces, for any
almost periodic sequence {¢ }rez, there exists an almost periodic function v for
which (k) = ¢k, k € Z (consider a natural generalization of [2, Theorem 1.27]).
Since this statement does not need to be true in a metric space, we have to require
a condition about the local connection by arcs of given values.

Theorem 5. Let any countable and totally bounded set X C X be given. If all
z,y € X can be connected in X by continuous curves which depend uniformly
continuously on x and y, then there exists an almost periodic function ¢ : R — X
such that

(35) {W(k); ke Z) = X
and that, for any l € Z, there exists q(1) € N for which
Y(l+s)=v(l+s+jql), jeEZ se(0,1).

Proof. Using Theorem [3] we get an almost periodic sequence {vy}rez satis-
fying (3. Let continuous functions fy : [0,1] — X, k € Z for which f(0) = vy,
fix(1) = Yp41 be from the statement of the theorem. Obviously, the function

v(k+s):=fu(s), ke€Z, s€l0,1)



ALMOST PERIODIC SEQUENCES AND FUNCTIONS WITH GIVEN VALUES 15

defined on R is continuous and is satisfied. From the proof of Theorem
it follows (see (23)) that, for any | € Z, there exist r(l,1),7({,2) € N with the
property that

Y1 =Yipjoran, Yy = Up4joran, JEL.
Thus, for any [ € Z, there exists r(I) € N such that

P(l) =9 +52'0), Yl+1)=y(l+1+5270), jeZ
which implies
V(i+s)=v(l+s+52°0), jeZ sel0,1].

It remains to show that v is almost periodic. Let € > 0 be arbitrary and let § > 0
be the number corresponding to € from the definition of the uniform continuity
of the connections of the values ¢;, i € N. Let | € Z be a J-translation number of

{’(/)k}, i.e., let
(36) Q(wk+lawk) < 5) kelZ.
By the definition of the function ¢, we have

o((t+1),%(t) <e, teR.

Indeed, it suffices to consider for k and k+ 1. Since any §-translation number of
{%} is an e-translation number of ¥(t), t € R and since the set of all §-translation
numbers of almost periodic {1} is relative dense in Z, function ¢ is almost periodic
as well. 0

We remark that the first interesting generalization of the approximation theorem
(mentioned in Introduction) for a complete metric space is due to H. Tornehave
and it can be found in [7]. It is required there that, for every compact subset S,
there exists a positive number d such that any points x, y € S with distance less
than d can be connected by a continuous curve which depends continuously on
x and y and which reduces to = for x = y. This requirement motivates the main
condition of the above given Theorem
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