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AN ELEMENTARY PROOF OF A CONGRUENCE
BY SKULA AND GRANVILLE

ROMEO MESTROVIC

ABSTRACT. Let p > 5 be a prime, and let g, (2) := (2P~! —1)/p be the Fermat
quotient of p to base 2. The following curious congruence was conjectured by
L. Skula and proved by A. Granville

p—1
2 2"
qp(2)° = — E =3 (mod p) .
k=1
In this note we establish the above congruence by entirely elementary number
theory arguments.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

The Fermat Little Theorem states that if p is a prime and a is an integer
not divisible by p, then a?~! =1 (mod p). This gives rise to the definition of the
Fermat quotient of p to base a

which is an integer. Fermat quotients played an important role in the study of
cyclotomic fields and Fermat Last Theorem. More precisely, divisibility of Fermat
quotient g,(a) by p has numerous applications which include the Fermat Last
Theorem and squarefreeness testing (see [I], [2], [3], [5] and [9]). Ribenboim [10]
and Granville [5], besides proving new results, provide a review of known facts and
open problems.

By a classical Glaisher’s result (see [4] or [7]) for a prime p > 3,

p—1

k
(1.1) qp(2) = —% % (mod p) .

Recently Skula conjectured that for any prime p > 5,

x>

p—1 Jk
(1.2) w27 =35 (modp).
k=1
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Applying certain polynomial congruences, Granville [7] proved the congruence (1.2)).
In this note, we give an elementary proof of this congruence which is based on
congruences for some harmonic type sums.

Remark 1.1. Recently, given a prime p and a positive integer r < p—1, R. Tauraso
[14, Theorem 2.3] established the congruence Z]Z: 2% /K" (mod p) in terms of an
alternating r-tiple harmonic sum. For example, combining this result when r = 2

with the congruence (1.2)) [I4, Corollary 2.4], it follows that

3 (‘il.)qup@fz—iié (mod p)

1<icj<p—1 W k=1

2. PROOF OF THE CONGRUENCE (|1.2))
The harmonic numbers H,, are defined by
1
H, = -, n=12,...,
where by convention Hy = 0.

Lemma 2.1. For any prime p > 5 we have

(2.1) 4 (2)? = kz::l (2’c + 2%) kifl (mod p) .

Proof. In the present proof we will always suppose that ¢ and j are positive
integers such that ¢ < p—1 and 5 < p— 1, and that all the summations including ¢

and j range over the set of such pairs (¢, ).
Using the congruence ((1.1)) and the fact that by Fermat Little Theorem, 2P~ =

1 (mod p), we get

o= (o) = (D) - 1S

k=1 k=1
S (S
AV E ok SNk
9.9 - 1 1 1 q
(22) =) gamt X g X aw wedp).
i+j<p i+j>p i+j=p

The last three sums will be called S, Se and S5, respectively. We will determine
them modulo p as follows.

1 £ 1
S1 = Z Z’j.giﬂ‘:z Z ij - 2k
i+j<p k=2 i+j=k
"\ 2Hy Hy,

L R |
23) - 27'%2(?%4): ) 2F :z_:(kJrl)Qk'
i=1 k=2 k=1




AN ELEMENTARY PROOF OF A CONGRUENCE BY SKULA AND GRANVILLE 115

Observe that the pair (i, j) satisfies i + j = k for some k € {p,p+1,...,2p — 2} if
and only if for such a k holds (p—4)+ (p—j) =l with | := 2p — k < p. Accordingly,
using the fact that by Fermat Little Theorem, 22 = 22 (mod p), we have

1 1
Sz = Z ij - 20t - Z N(p — ) - 2= +(p=3)

p—i)p

i+j>p (p—i)+(p—j)2p
1 20t 1 & 2ok
=) LTSS TTix X
i+i<p i+ji<p k=2 i+j=k
_1i2kk1(1+ 1 )_Z2k lHkl
4 k i k—i k
k=2 =1
p—1
28H,,
2.4 = d
(2.4 Siiy (meds)

By Wolstenholme’s theorem (see, e.g., [15], [6]; for its generalizations see [I1]
Theorems 1 and 2]) if p is a prime greater than 3, then the numerator of the
fraction Hp_; =1+ % + % + -+ p—il is divisible by p?. Hence, we find that

15
S = =
’ Z 2”‘%] o i(p
i+j=p i=1
1 =1 1 1
2.5 = (= )= H, 1 =0 (modp).

Finally, substituting . . ) and (| into , we immediately obtain
D
Proof of the following result easily follows from the congruence H,_; = 0

(mod p).

Lemma 2.2 ([I3, Lemma 2.1]). Let p be an odd prime. Then
(2.6) H, jp—1 = Hy; (mod p)

for everyk=1,2,...,p—2.

Lemma 2.3. For any prime p > 5 we have

(2.7) W27 =3 e oS (mod p).
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Proof. Since by Wolstenholme’s theorem H,_1/p = 0 (mod p), using this and
the congruences 2P~! =1 (mod p) and (2.6]) of Lemma., we immediately obtain

“okp, RZXokH, K2ovk-lg, o

k:1k+1 polie p—k
p—2 p—1
_ Hy  _
(2.8) :_;kak = e zk (mod p) .
Further, using Wolstenholme’s theorem, we have
—1 —2
pz Hy  _ 21)2: Hi1 — 57 n Hp
(k+1)2k (k+1)2k+1  p.2r-1
k=1
pfl
-2 Ay
];1 -2k Z k2 - 2k p-2r—1
p—1 p—l
Hy, 1
k=1 k=1

Moreover, from 2P = 2 (mod p) we have

p—1 1

p—1 1
Z 2.9k Z — 132 . 9p—k
Pt k2.2 = (p—k)2-2r

p 1 p—1 ok
(2.10) = Z ook 322 (mod p).
k=1 k=1
The congruences (2.8)), (2.9) and (2.10) immediately yield
-1 ~1 ~1
ST I
k1 =kt (k + 1)2*
k=1 k=1
p—1 ok
(2.11) Z = 2k 2 (mod p).
Finally, comparing (2.1)) of Lemmavmth , we obtain the desired congruence
(2.7)- O

Notice that the congruence Y ¥_ i kI—IQkk = 0(mod p) with a prime p > 5 is

recently established by Z.W. Sun [I3, Theorem 1.1 (1.1)] and it is based on the
identity from [I3] Lemma 2.4]. Here we give another simple proof of this congruence

(Lemma [2.6)).

Lemma 2.4. For any prime p > 5 we have

(2.12) > kH > 21 nod p).

-2 = 1]
=1 1<i<j<p-1

N |
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Proof. From the identity

Iyt 1 =
(ZE)<Zk-2k>: Z T Z ij-2ﬁ+zk2.2k’
k=1 k=1 1<i<j<p—1 1<j<i<p—1 k=1
and the congruence H, 1 =1+ 3+ 3+ + zﬁ = 0(mod p) it follows that
1 1=
1<i<j<p—-1 1<j<i<p—1 k=1
Since 2P = 2 (mod p), we have
1 1 2r=J 1 27
Z — = Z _— = — (mod p),
1<isitp DY G, 2O m) 2 S

which substituting into ([2.13)) gives

CIVINED D S e e D DT
. . —_— = —= — (m .
27 Tk T 2 i b

=
1<i<j<p-1 1<i<j<p—1

Further, if we observe that

e SiH 4l 5 1 +’§ 1
k-2~ -2k L ij - 27 k2 .2k’
k=1 k=1 1<i<j<p—1 k=1

then substituting (2.14) into the previous identity, we obtain

Z % (mod p).

-1

(2.15) > kH;k =_

=1 1<i<j<p—1

hS]

=~
DN | =

Since
p—1 p—1 ok . .
1 2 27 27
=ENED- T B T % o
k=1 k=1 1<5<i<p—1 1<i<j<p—1
comparing this with (2.15]), we immediately obtain
p—1 .
Hy, 1 2°
2.16 dp).
(2.16) > % (mody)

k- 2k 2 £
k=1 1<i<j<p-1

From a well known fact that (see e.g., [9] p. 353])

7
A

1

(2.17) e

=0 (mod p)

we find that

R

i
1<i<j<p—1 " k=1 k=1

117
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Finally, the above congruence and ([2.16)) immediately yield the desired congruence
(12.12)). O

Lemma 2.5. For any positive integer n we have

(2.18) > Qii; L_ Zn: % (Z) .

1<i<j<n k=1

Proof. Using the well known identities Zi:k (,:11) = (i) and %({C) =

k < j, and the fact that (,’C) =0 when ¢ < k, we have

201 (1+1)f -1 I 1fi
M AP 230

% (i71) with

1<i<j<n 1<i<j<n 1<i<j<n ¥ k=1
B 1z”:1<i—1>_§”:1 1(i—1)
1§z§j§njk:1k k-1 k:1k19§jgnj k-1
"1 1/i—1 LN IR AN |
T L Lo j(k—l)zk2j2<k—l>
k=1 k<i<j<n k=1 j=k i=k
_ilil(j)_ SN 1(;—1)
k:lkj:kj k k:lkg:kk k—1
s> (1) =X
=> w2 ) =2=l)
k:1k = k—1 k:lk k
as desired. O

Lemma 2.6 ([I3, Theorem 1.1 (1.1)]). For any prime p > 5 we have

(2.19)

- =0 (mod p).

Proof. Using the congruence (2.12)) from Lemma and the identity (2.18) with
n=p—1in Lemma[2.5] we find that

p—1 p—1
H, 1221 /p-1
2.2 = - — .
It is well known (see e.g., [8]) that for k =1,2,...,p—1,

(2.21) (p . 1) = (-1)* (mod p).
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Then from and ( we get

' m 12 LA 1 2
zk ;ﬁ %J Y F-Xn)
k=1 =1 1<zp At
2|5
1(1? 1)/2 1 17 1 1 1(p—l)/2 1
=1 2 B3 X @ (medp)
= =1 k=1

119

Finally, the above congruence together with the fact that from (2.17) (see e.g., [I2

Corollary 5.2 (a) with k = 2])

(p—1)/2 1 (pfl)/2 (p—1)/2 p—1 1
2 Z == -+ Z = ﬁEO (mod p)
k=1 k=1 k=1
yields
p—1
H,
ok =0 (mod p)
k=1

This concludes the proof.

O

Proof of the congruence ED The congruence . immediately follows from

(2.7) of Lemma- 2.3l and (2.19) of Lemma

O
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