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ON PROPERTY (B) OF HIGHER ORDER DELAY
DIFFERENTIAL EQUATIONS

Blanka Baculíková and Jozef Džurina

Abstract. In this paper we offer criteria for property (B) and additional
asymptotic behavior of solutions of the n-th order delay differential equations(

r(t)
[
x(n−1)(t)

]γ)′
= q(t)f

(
x(τ(t))

)
.

Obtained results essentially use new comparison theorems, that permit to
reduce the problem of the oscillation of the n-th order equation to the the
oscillation of a set of certain the first order equations. So that established
comparison principles essentially simplify the examination of studied equations.
Both cases

∫∞
r−1/γ(t) dt =∞ and

∫∞
r−1/γ(t) dt <∞ are discussed.

1. Introduction

In this paper, we consider the n-th order (n ≥ 3) delay differential equations of
the form

(E)
(
r(t)

[
x(n−1)(t)

]γ)′ = q(t)f
(
x(τ(t))

)
,

where we assume that a, q, τ, p, σ ∈ C([t0,∞)), f ∈ C((−∞,∞)), and
(H1) γ is the ratio of two positive odd integers,
(H2) r(t) > 0, q(t) > 0,
(H3) τ(t) ≤ t, lim

t→∞
τ(t) =∞, τ(t) nondecreasing,

(H4) xf(x) > 0, f ′(x) ≥ 0 for x 6= 0, −f(−xy) ≥ f(xy) ≥ f(x)f(y) for xy > 0.
By a solution of Eq. (E) we mean a function x(t) ∈ Cn−1((Tx,∞)), Tx ≥ t0,

which has the property r(t)(x(n−1)(t))γ ∈ C1((Tx,∞)) and satisfies Eq. (E) on
[Tx,∞). We consider only those solutions x(t) of (E) which satisfy sup{|x(t)| : t ≥
T} > 0 for all T ≥ Tx. We assume that (E) possesses such a solution. A solution
of (E) is called oscillatory if it has arbitrarily large zeros on [Tx,∞) and otherwise,
it is called to be nonoscillatory. Equation (E) is said to be oscillatory if all its
solutions are oscillatory.
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Recently, great attention has been devoted to the oscillation of (E) and the
corresponding equation(

r(t)
[
x(n−1)(t)

]γ)′ + q(t)f
(
x(τ(t))

)
= 0 .

The effort of the authors is aimed to obtain such criteria for studied properties that
involve the only one main condition. But this effort leads to the strong monotonicity
condition, namely,

(1.1) r′(t) ≥ 0

imposed on the coefficient r(t), see e.g. [5], [15], [21] and even r(t) ≡ 1 in [14]. The
main novelty of this paper consists in relaxing this nonotonicity condition. What
is more, in this paper equation (E) has been studied in both, canonical case, i.e.,
when the condition

(1.2)
∫ ∞
t0

r−1/γ(s) ds =∞

holds as well as the noncanonical case, namely, when

(1.3)
∫ ∞
t0

r−1/γ(s) ds <∞.

is satisfied.
Various techniques appeared for the investigation of the higher order differential

equations. Our method is based on the establishing new comparison theorems
for comparing the n − th order equation (E) with a just one or a couple of the
first order delay differential equations in the sense, that the oscillations of these
equations yield the oscillation of (E).

Remark 1. All functional inequalities considered in this paper are assumed to
hold eventually, that is they are satisfied for all t large enough.

Remark 2. The results of this paper hold true also for the differential equation(
r(t)Φγ

(
u(n−1)(t)

))′ = q(t)f
(
x(τ(t))

)
,

where Φγ(u) = |u|γ sgn u and in this case we can replace hypothesis (H1) by
γ ∈ R+.

2. Main results

It is convenient to prove our main results by means of a series of lemmas, as
follows. At first, we present basic properties of possible nonoscillatory solutions.

Lemma 1. If x(t) is a positive solution of (E), then r(t)
[
x(n−1)(t)

]γ is increasing,
all derivatives x(i)(t), 1 ≤ i ≤ n− 1 are of constant signs, and x(t) satisfies either

(C1) x(n−2)(t) > 0 , x(n−1)(t) < 0

or

(C2) x′(t) > 0, . . . , x(n−2)(t) > 0 , x(n−1)(t) > 0
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or, if (1.3) holds,
(C3) x(n−2)(t) < 0 , x(n−1)(t) > 0 .

Proof. Since x(t) is a positive solution of (E), then it follows from (E) that(
r(t)

[
x(n−1)(t)

]γ)′ = q(t)f
(
x(τ(t))

)
> 0.

Thus, r(t)
[
x(n−1)(t)

]γ is increasing, which implies that either x(n−1)(t) > 0 or
x(n−1)(t) < 0 and moreover all lower derivatives are of fixed signs.

At first, we assume that x(n−1)(t) < 0, then we are led to x(n−2)(t) > 0, because
the opposite condition x(n−2)(t) < 0 yields that all lower derivatives are negative,
which contradicts the positivity of x(t). Therefore, we conclude that x(t) satisfies
the case (C1).

Now, we suppose that x(n−1)(t) > 0. Then either x(n−2)(t) < 0 or x(n−2)(t) > 0.
Since r(t)

[
x(n−1)(t)

]γ is increasing and positive, then there exists a constant c > 0
such that

r(t)
[
x(n−1)(t)

]γ ≥ c .
An integration from t1 to t, yields

x(n−2)(t) ≥ x(n−2)(t1) + c1/γ
∫ t

t1

r−1/γ(s) ds .

If (1.2) holds, then the last inequality implies x(n−2)(t) > 0, which guarantees that
all lower derivatives are positive, i.e., x(t) satisfies the case (C2). On the other
hand, if (1.3), then the event x(n−2)(t) < 0 is not eliminated, so that x(t) may
satisfy the case (C3). The proof is complete. �

Remark 3. The cases (C1) and (C3) involve various partial cases for lower deri-
vatives, but these details are not important since our comparison method allow to
eliminate these subcases en masse.

Definition 1. A nonoscillatory solution x(t) is said to be strongly increasing if
x(t) is positive and it satisfies (C2) or x(t) is negative and −x(t) satisfies (C2).

Following Kusano and Naito [12], Dzurina [7], we recall the following definition.

Definition 2. Assume that (1.2) holds. We say that (E) enjoys property (B) if
every its nonoscillatory solution x(t)

(i) for n odd, is strongly increasing;
(ii) for n even, is strongly increasing or satisfies lim

t→∞
x(t) = 0.

It is easy to verify that if x(t) is strongly increasing, then the following rate of
divergence

(2.1) |x(t)| ≥ c
∫ t

t0

r−1/γ(s)(t− s)n−2 ds , c > 0

holds.
Our results essential use the following estimate which is due to Philos and

Staikos see [18] and [19].
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Lemma 2. Let z ∈ Ck([t0,∞)). Assume that z(k) is of fixed sign and not identically
zero on a subray of [t0,∞). If, moreover, z(t) > 0, z(k−1)(t)z(k)(t) ≤ 0, and
lim
t→∞

z(t) 6= 0, then for every δ ∈ (0, 1) there exists tδ ≥ t0 such that

(2.2) z(t) ≥ δ

(k − 1)! t
k−1|z(k−1)(t)|

holds on [tδ,∞).

Our task is to provide criteria for elimination the cases (C1) and (C3) to get
desired properties of (E).

Theorem 1. Assume that ξ(t) ∈ C([t0,∞)) is such that
(2.3) ξ(t) nondecreasing, ξ(t) > t , and τ(ξ(t)) < t .

Further assume that x(t) is a positive solution of (E), such that lim
t→∞

x(t) 6= 0. If
for some δ ∈ (0, 1), the first order delay equation

(E1) y′(t) + r−1/γ(t)
[ ∫ ξ(t)

t

q(s)f
(δ(τ(s))n−2

(n− 2)!

)
ds
]1/γ

f1/γ(y(τ(ξ(t)
))

= 0

is oscillatory, then x(t) does not satisfy (C1).

Proof. Assume the contrary, that is, we admit that x(t) satisfies (C1). Thus, it
follows from Lemma 2 that for every δ ∈ (0, 1)

(2.4) x(t) ≥ δ

(n− 2)! t
n−2x(n−2)(t) .

Setting (2.4) into (E), we get

(2.5)
(
r(t)

[
x(n−1)(t)

]γ)′ ≥ q(t)f(δ(τ(t))n−2

(n− 2)!

)
f
(
x(n−2)(τ(t))

)
.

An integration from t to ξ(t), yields

−r(t)
[
x(n−1)(t)

]γ ≥ ∫ ξ(t)

t

q(s)f
(δ(τ(s))n−2

(n− 2)!

)
f
(
x(n−2)(τ(s))

)
ds

≥ f
(
x(n−2)(τ(ξ(t)))

) ∫ ξ(t)

t

q(s)f
(δ(τ(s))n−2

(n− 2)!

)
ds ,

(2.6)

where we have used the monotonicity of f(x(n−2)(τ(t))). Consequently, y(t) =
x(n−2)(t) is a positive solution of the delay differential inequality

y′(t) + r−1/γ(t)
[ ∫ ξ(t)

t

q(s)f
(δ(τ(s))n−2

(n− 2)!

)
ds
]1/γ

f1/γ(y(τ(ξ(t)
))
≤ 0 .

It follows from Theorem 1 in [17], that the corresponding equation (E1) has also a
positive solution. A contradiction and we conclude that x(t) cannot satisfy (C1). �

Theorem 2. Let (1.2) hold. If for some constant δ ∈ (0, 1), the first order diffe-
rential equation (E1) is oscillatory then (E) has property (B).
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Proof. Assume that x(t) is a nonoscillatory solution of (E). We may assume that
x(t) > 0. It follows from Lemma 1 that x(t) satisfies either (C1) or (C2).

First assume that n is odd. We shall show that x(t) is strongly increasing, i.e.
it satisfies (C2). Assume the contrary, let x(t) satisfies (C1). Then it follows from
Lemma 1 and (C1) that x′(t) > 0. Therefore, evidently lim

t→∞
x(t) 6= 0. Thus, By

Theorem 1, oscillation of (E1) eliminate the case (C1) and we conclude that (C2)
holds.

Now, we assume that n is even. We claim that x(t) is strongly increasing or
lim
t→∞

x(t) = 0. If we admit lim
t→∞

x(t) 6= 0, then, by Theorem 1 oscillation of (E1)
yields that x(t) is strongly increasing. �

Applying criteria for oscillation of (E1), we immediately obtain sufficient condi-
tions for property (B) of (E).
Corollary 1. Let (1.2) hold and ξ(t) satisfy (2.3). If
(2.7) f(u1/γ)/u ≥ 1 , 0 < |u| ≤ 1
and for some δ ∈ (0, 1)

(2.8) lim inf
t→∞

∫ t

τ(ξ(t))
r−1/γ(u)

[ ∫ ξ(u)

u

q(s)f
(δ τn−2(s)

(n− 2)!

)
ds
]1/γ

du > 1
e ,

then (E) has property (B).
Proof. Since condition (2.8) guarantees oscillation of (E1) the assertion follows
from Theorem 2. �

For partial case of (E), we have another result.
Corollary 2. Let (1.2) hold, ξ(t) satisfy (2.3), β be the ratio of two positive odd
integers, and β < γ. If

(2.9) lim sup
t→∞

∫ t

τ(ξ(t))
r−1/γ(u)

[ ∫ ξ(u)

u

q(s)
(
τn−2(s)

)β ds
]1/γ

du > 0 ,

then the differential equation
(Eβ)

(
r(t)

[
x(n−1)(t)

]γ)′ + q(t)xβ
(
τ(t)

)
= 0

has property (B).
We support our results with couple of illustrative examples. In the first example

the condition (1.1) is relaxed, i.e. the opposite condition r′(t) ≤ 0 holds.
Example 1. Consider the n-th order nonlinear differential equation

(2.10)
(1
t

(
x(n−1)(t)

)3
)′

= b

t3n−1x
3(λt)

where b > 0, 0 < λ < 1. We set ξ(t) = ωt with ω = 1+λ
2λ . Condition (2.8) now

reduces to

(2.11) b1/3λn−2
(

1−
( 2λ

1 + λ

)4)1/3
ln 2

1 + λ
>

41/3(n− 2)!
e ,
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which, by Corollary 1, guarantees that (2.10) enjoys property (B). What is more,
by (2.1), every strongly increasing solution satisfies |x(t)| ≥ ctn+1/3, c > 0.

It is not difficult to verify that no matter, whether or not, n is even or odd, one
strongly increasing solution of (2.10) is x(t) = tα, α > n− 2/3 such that
[α(α− 1) . . . (α+ 2− n)]3 (3α− 3n+ 2) = bλ3α.

Moreover, if n is even, one solution satisfying lim
t→∞

x(t) = 0 is x(t) = t−β , such

that [β(β + 1) . . . (β + n− 2)]3 (3β + 3n− 2) = bλ−3β .

Theorem 3. Let x(t) be a positive solution of (E), such that lim
t→∞

x(t) 6= 0. If for
some δ ∈ (0, 1), the first order delay equation

(E2) y′(t) + r−1/γ(t)
[ ∫ t

t1

q(s)f
(δ τn−2(s)

(n− 2)!

)
ds
]1/γ

f1/γ(y(τ(t)
))

= 0

is oscillatory, then x(t) does not satisfy (C3).

Proof. Assume the contrary and suppose that x(t) satisfies (C3). By Lemma 2,
we see that for every δ ∈ (0, 1)

(2.12) x(t) ≥ − δ

(n− 2)! t
n−2x(n−2)(t) .

Combining (2.12) together with(E), we obtain

(2.13)
(
r(t)

[
x(n−1)(t)

]γ)′ ≥ q(t)f(δ τn−2(t)
(n− 2)!

)
f
(
− x(n−2)(τ(t))

)
.

Integrating from t1 to t, we have

r(t)
[
x(n−1)(t)

]γ ≥ ∫ t

t1

q(s)f
(δ τn−2(s)

(n− 2)!

)
f
(
− x(n−2)(τ(s))

)
ds

≥ f
(
− x(n−2)(τ(t))

) ∫ t

t1

q(s)f
(δ τn−2(s)

(n− 2)!

)
ds .

(2.14)

Then y(t) = −x(n−2)(t) is a positive solution of the delay differential inequality

y′(t) + r−1/γ(t)
[ ∫ t

t1

q(s)f
(δ τn−2(s)

(n− 2)!

)
ds
]1/γ

f1/γ(y(τ(t)
)
≤ 0 .

By Theorem 1 in [17], the corresponding equation (E2) has also a positive solution.
A contradiction and we conclude that x(t) cannot satisfy (C3). �

Now, we turn our attention to the case when (1.3) holds.

Theorem 4. Let (1.3) hold. If for some constant δ ∈ (0, 1), both the first order
delay differential equations (E1) and (E2) are oscillatory, then every nonoscillatory
solution x(t) of (E) is strongly increasing or satisfies lim

t→∞
x(t) = 0.

Proof. Assume that x(t) is a nonoscillatory solution of (E). We may assume that
x(t) > 0. It follows from Lemma 1 that x(t) satisfies either (C1) or (C2) or (C3).
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Assume that lim
t→∞

x(t) 6= 0. Then by Theorems 1 and 3, oscillations of (E1) and
(E2) exclude the cases (C1) and (C3), respectively. Therefore, we conclude that
x(t) has to satisfy (C1), i.e. x(t) is strongly increasing. �

Employing oscillation criteria for (C1) and (C3), we immediately obtain.

Corollary 3. Let (1.3) and (2.7) hold and ξ(t) satisfy (2.3). If for some δ ∈ (0, 1)
(2.8) is satisfied and

(2.15) lim inf
t→∞

∫ t

τ(t)
r−1/γ(u)

[ ∫ u

t1

q(s)f
(δ τn−2(s)

(n− 2)!

)
ds
]1/γ

du > 1
e ,

then every nonoscillatory solution x(t) of (E) is strongly increasing or satisfies
lim
t→∞

x(t) = 0.

We employ another illustrative example. While Example 1 has been intended to
show that our result holds for the case when (1.1) is violated, the next example
show that our technique is applicable also when (1.1) holds.

Example 2. Consider the n-th order nonlinear differential equation

(2.16)
(
t6
(
x(n−1)(t)

)3)′ = b

t3n−8x
3(λt)

with b > 0, 0 < λ < 1. We set ξ(t) = ωt with ω = 1+λ
2λ . Conditions (2.8) and (2.15)

reduce to

(2.17) b1/3λn−2
((1 + λ

2λ

)3
− 1
)1/3

ln 2
1 + λ

>
31/3(n− 2)!

e ,

(2.18) b1/3λn−2 ln 1
λ
>

31/3(n− 2)!
e ,

respectively. Corollary 3 guarantees that every nonoscillatory solution of (2.16) tis
strongly increasing or satisfies lim

t→∞
x(t) = 0, provided that both conditions (2.17)

and (2.18) hold.

3. Summary

In this paper, we have presented new comparison theorems for deducing the
asymptotic behavior and oscillation of third order delay equation from the oscillation
of a set of the suitable first order delay differential equation. Consequently, our
method essentially simplifies the examination of the higher order equations and
what is more, it supports backward the research on the first order delay differential
equations. Our results here extend and complement latest ones mentioned below.
The suitable illustrative examples are also provided.
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