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ON HOLOMORPHICALLY PROJECTIVE MAPPINGS
OF e-KÄHLER MANIFOLDS

Irena Hinterleitner

Abstract. In this paper we study fundamental equations of holomorphically
projective mappings of e-Kähler spaces (i.e. classical, pseudo- and hyperbolic
Kähler spaces) with respect to the smoothness class of metrics. We show that
holomorphically projective mappings preserve the smoothness class of metrics.

1. Introduction

First we study the general dependence of holomorphically projective mappings of
classical, pseudo- and hyperbolic Kähler manifolds (shortly e-Kähler) in dependence
on the smoothness class of the metric. We present well known facts, which were
proved by Domashev, Kurbatova, Mikeš, Prvanović, Otsuki, Tashiro etc., see
[2, 3, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19]. In these results no details about the
smoothness class of the metric were stressed. They were formulated “for sufficiently
smooth” geometric objects.

2. Kähler manifolds

In the following definition we introduce generalizations of Kähler manifolds.

Definition 1. An n-dimensional (pseudo-)Riemannian manifold (M, g) is called
an e-Kähler manifold Kn, if beside the metric tensor g, a tensor field F ( 6= Id)
of type (1, 1) is given on the manifold Mn, called a structure F , such that the
following conditions hold:

(1) F 2 = e Id ; g(X,FX) = 0 ; ∇F = 0 ,

where e = ±1, X is an arbitrary vector of TMn, and ∇ denotes the covariant
derivative in Kn.

If e = −1, Kn is a (pseudo-)Kähler space (also elliptic Kähler space) and F is a
complex structure. As A-spaces, these spaces were first considered by P. A. Shirokov,
see [14]. Independently they were studied by E. Kähler [5].
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If e = +1, Kn is a hyperbolic Kähler space (also para Kähler space, see [1]) and
F is a product structure. The spaces K+

n were considered by P. K. Rashevskij [13].
The e-Kähler spaces introduced here are called shortly “Kähler” in the literature

[10, 16]. By our definition we want to give a unified notation for all clases.

3. Holomorphically projective mapping theory
for Kn → K̄n of class C1

Assume the e-Kähler manifolds Kn = (M, g, F ) and K̄n = (M̄, ḡ, F̄ ) with metrics
g and ḡ, structures F and F̄ , Levi-Civita connections ∇ and ∇̄, respectively. Here
Kn, K̄n ∈ C1, i.e. g, ḡ ∈ C1 which means that their components gij , ḡij ∈ C1.

Likewise, as in [11] we introduce the following notations.

Definition 2. A curve ` in Kn which is given by the equation ` = `(t), λ = d`/dt,
( 6= 0), t ∈ I, where t is a parameter is called analytically planar, if under the parallel
translation along the curve, the tangent vector λ belongs to the two-dimensional
distribution D = Span {λ, Fλ} generated by λ and its conjugate Fλ, that is, it
satisfies

∇tλ = a(t)λ+ b(t)Fλ ,

where a(t) and b(t) are some functions of the parameter t.
Particularly, in the case b(t) = 0, an analytically planar curve is a geodesic.

Definition 3. A diffeomorphism f : Kn → K̄n is called a holomorphically projective
mapping of Kn onto K̄n if f maps any analytically planar curve in Kn onto an
analytically planar curve in K̄n.

Assume a holomorphically projective mapping f : Kn → K̄n. Since f is a
diffeomorphism, we can suppose local coordinate charts on M or M̄ , respectively,
such that locally, f : Kn → K̄n maps points onto points with the same coordinates,
and M̄ = M .

A manifold Kn admits a holomorphically projective mapping onto K̄n if and
only if the following equations [10, 16]:

(2) ∇̄XY = ∇XY + ψ(X)Y + ψ(Y )X + eψ(FX)FY + eψ(FY )FX

hold for any tangent fields X, Y and where ψ is a differential form. If ψ ≡ 0 than
f is affine or trivially holomorphically projective. Beside these facts it was proved
[10, 16] that F̄ = ±F ; for this reason we can suppose that F̄ = F . In local form:

Γ̄hij = Γhij + ψiδ
h
j + ψjδ

h
i + eψīδ

h
j̄ + eψj̄δ

h
ī ,

where Γhij and Γ̄hij are the Christoffel symbols of Kn and K̄n, ψi, Fhi are components
of ψ, F and δhi is the Kronecker delta, ψī = ψαF

α
i , δh

ī
= Fhi .

Here and in the following we will use the conjugation operation of indices in the
way

A... ī ... = A... k ...F
k
i .
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Equations (2) are equivalent to the following equations

(3)
∇Z ḡ(X,Y ) = 2ψ(Z)ḡ(X,Y ) + ψ(X)ḡ(Y,Z) + ψ(Y )ḡ(X,Z)

− eψ(FX)ḡ(FY,Z)− eψ(FY )ḡ(FX,Z) .

In local form:

ḡij,k = 2ψkḡij + ψiḡjk + ψḡik − eψīḡj̄k − eψj̄ ḡīk ,

where “ , ” denotes the covariant derivative on Kn. It is known that

ψi = ∂iΨ, Ψ = 1
2(n+ 2) ln

∣∣∣∣det ḡ
det g

∣∣∣∣ , ∂i = ∂/∂xi .

Domashev, Kurbatova and Mikeš [3, 6, 16] proved that equations (2) and (3)
are equivalent to

(4)
∇Za(X,Y ) = λ(X)g(Y,Z) + λ(Y )g(X,Z)

− eλ(FX)g(FY,Z)− eλ(FY )g(FX,Z) .

In local form:
aij,k = λigjk + λjgik − eλīgj̄k − eλj̄gīk ,

where

(5) (a) aij = e 2Ψḡαβgαigβj ; (b) λi = − e 2Ψḡαβgβiψα .

From (4) follows λi = ∂iλ = ∂i( 1
4 aαβg

αβ). On the other hand [10]:

(6) ḡij = e 2Ψg̃ij , Ψ = 1
2 ln
∣∣∣∣det g̃
det g

∣∣∣∣ , ‖g̃ij‖ = ‖giαgjβaαβ‖−1 .

The above formulas are the criterion for holomorphically projective mappings
Kn → K̄n, globally as well as locally.

4. Holomorphically projective mapping theory
for Kn → K̄n of class C2

Let Kn and K̄n ∈ C2 be e-Kähler manifolds, then for holomorphically projective
mappings Kn → K̄n the Riemann and the Ricci tensors transform in this way

(7)
(a) R̄hijk = Rhijk + δhkψij − δhj ψik − eδhk̄ψij̄ + eδh

j̄
ψik̄ + 2eδh

ī
ψjk̄ ;

(b) R̄ij = Rij − (n+ 2)ψij ,

where ψij = ψi,j − ψiψj + ψīψj̄ (ψij = ψji = −eψīj̄).
The tensor of holomorphically projective curvature, which is defined in the

following form

(8) Phijk = Rhijk + 1
n+ 2

(
δhkRij − δhjRik − eδhk̄Rij̄ + eδhj̄Rik̄ + 2eδhī Rjk̄

)
,

is invariant with respect to holomorphically projective mappings, i.e. P̄hijk = Phijk.
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The integrability conditions of equations (4) have the following form

(9)
aiαR

α
jkl + ajαR

α
ikl = gikλj,l + gjkλi,l − gilλj,k − gjlλi,k

− egīkλj̄,l − egj̄kλī,l + egīlλj̄,k + egj̄lλī,k .

We make the remark that the formulas introduced above, (7), (8) and (9), are
not valid when Kn 6∈ C2 or K̄n 6∈ C2.

After contraction with gjk we get:
aiαR

α
k + aαβR

α
ik
β = eλī,k̄ − (n− 1)λi,k,

where Rαilβ = gβkRαilk; Rαl = gαjRjl and µ = λα,βg
αβ .

We contract this formula with F ii′F
k
k′ and from the properties of the Riemann

and the Ricci tensors of Kn we obtain
(10) λī,k̄ = −eλi,k ,
and ([3, 9, 10, 15])

(11) nλi,k = µgik + aiαR
α
k + aαβR

α
ik
β .

Because λi is a gradient-like covector, from equation (11) follows aiαRαj = ajαR
α
i .

From (10) follows that the vector field λī (≡ λαFαi ) is a Killing vector field, i.e.
λī,j + λj̄,i = 0.

5. Holomorphically projective mappings
between Kn ∈ Cr (r > 2) and K̄n ∈ C2

We proof the following theorem

Theorem 1. If Kn ∈ Cr (r > 2) admits holomorphically projective mappings onto
K̄n ∈ C2, then K̄n ∈ Cr.

The proof of this theorem follows from the following lemmas.

Lemma 1 (see [4]). Let λh ∈ C1 be a vector field and % a function. If
(12) ∂iλ

h − % δhi ∈ C1

then λh ∈ C2 and % ∈ C1.

In a similar way we can prove the following: if λh ∈ Cr (r ≥ 1) and ∂iλh−%δhi ∈
Cr then λh ∈ Cr+1 and % ∈ Cr.

Lemma 2. If Kn∈C3 admits a holomorphically projective mapping onto K̄n∈C2,
then K̄n∈C3.

Proof. In this case equations (4) and (11) hold. According to the assumptions
gij ∈ C3 and ḡij ∈ C2. By a simple check-up we find Ψ ∈ C2, ψi ∈ C1, aij ∈ C2,
λi ∈ C1 and Rhijk, R

h
ij
k, Rij , R

h
i ∈ C1.

From the above-mentioned conditions we easily convince ourselves that we can
write equation (11) in the form (12), where

λh = ghαλα ∈ C1, % = µ/n and fhi = 1
n (−λαΓhαi−ghγaαγRαi +ghγaαβRαiγβ) ∈ C1 .
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From Lemma 1 follows that λh ∈ C2, % ∈ C1, and evidently λi ∈ C2. Differen-
tiating (4) twice we convince ourselves that aij ∈ C3. From this and formula (6)
follows that also Ψ ∈ C3 and ḡij ∈ C3. �

Further we notice that for holomorphically projective mappings between e-Kähler
manifolds Kn and K̄n of class C3 holds the following third set of equations [6, 8, 9,
15, 10, 16]:
(13) µ,k = 2λαRαk .

If Kn ∈ Cr and K̄n ∈ C2, then by Lemma 2, K̄n ∈ C3 and (13) holds. Because
the system (4), (11) and (13) is closed, we can differentiate equations (4) (r − 1)
times. So we convince ourselves that aij ∈ Cr, and also ḡij ∈ Cr (≡ K̄n ∈ Cr).

Remark. Moreover, in this case from equation (13) follows that the function
µ ∈ Cr−1.
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