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POISSON–LIE SIGMA MODELS ON DRINFEL’D DOUBLE

Jan Vysoký and Ladislav Hlavatý

Abstract. Poisson sigma models represent an interesting use of Poisson
manifolds for the construction of a classical field theory. Their definition in
the language of fibre bundles is shown and the corresponding field equations
are derived using a coordinate independent variational principle.

The elegant form of equations of motion for so called Poisson-Lie groups is
derived.

Construction of the Poisson-Lie group corresponding to a given Lie bialge-
bra is widely known only for coboundary Lie bialgebras. Using the adjoint
representation of Lie group and Drinfel’d double we show that Poisson-Lie
group can be constructed for general Lie bialgebra.
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1. Introduction

A theory of Poisson manifolds gives us a possibility to construct an interesting
field theory (classical). It was first introduced by Peter Schaller and Thomas Strobl
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in 1994 in [11]. It turned out that this theory included limit cases of the well-known
models, such as two-dimensional Yang-Mills model or R2 gravity model. The basic
idea is to use a Poisson manifold as a target, instead of a Riemannian manifold.

We will in detail review the definition of Poisson sigma model fields, using
the formalism of fibre bundles. This is in great detail discussed in [1]. After the
necessary introduction of involved objects, we will proceed and give a definition of
a globally defined action integral of the model.

Usually (e.g. [11], [3] or [10]) the equations of motion are derived using the
Lagrange formalism of the classical field theory. In subsection 2.4 we will derive
the equations of motion starting once again from the variational principle, after
giving a geometric sense to the variation of the fields.

In subsection 2.5 we show one of the simplest non-trivial examples of a Poisson
manifold – linear Poisson structure. We work out (as was already done by many
others, see e.g. [3]) an intrinsic form of the equations of motion using the involved
Lie algebra structures. We intend this as an important but simple example, where
the “zero curvature” equation for the field of Poisson sigma model appears.

Poisson-Lie groups constitute a natural combination of Poisson structures with
the theory of Lie groups. The Poisson bivector of Poisson-Lie group is then a
multiplicative bivector field, allowing the computation of its intrinsic derivative.
This intrinsic derivative is in fact a Lie bialgebra structure, 1-cocycle of particular
Lie algebra cohomology.

More interestingly, for given Lie bialgebra there exists a unique Poisson bivector
on a corresponding Lie group, so that this Lie bialgebra is its intrinsic derivative
[8]. For coboundary Lie bialgebras there exists a well known explicit formula for
the Poisson bivector, called Sklyanin bracket (see e.g. [8]).

However, there exists a procedure for a general Lie bialgebra, not so widely
known at the moment. This is why we present it in the subsection 3.3, not going
into details. The key element is the equivalent description of Lie bialgebra – Manin
triple, Lie algebra with distinguished Lie subalgebras and a non-degenerate bilinear
ad-invariant symmetric form. Corresponding (connected) Lie group, called Drinfel’d
double, allows us to define (mutually dual) Poisson-Lie group structures on its Lie
subgroups.

In section 3 we will in detail discuss the case, where the target Poisson manifold of
the model is moreover a Poisson-Lie group. We call such models a Poisson-Lie sigma
models. With the help of globally valid equations of motion (with no restrictions
on the range of the fields at all) derived in subsection 2.4, we can use global frame
fields of Lie group, right-invariant vector fields, to derive a intrinsic (coordinate-free)
form of equations of motion for Poisson-Lie sigma model. Most interestingly, we
again get a “zero curvature” form of equation for the fields of the model.

This result can be reproduced using the language of Lie algebroid morphisms,
which was described in [1].

In the final subsection we give a simple example of non-linear 2-dimensional
Poisson-Lie sigma model with non-coboundary Lie bialgebra, using the construction
of Poisson-Lie group structure on Drinfel’d double.
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2. Poisson sigma models

2.1. Poisson manifolds. The aim of this section is to introduce the elements
and notation of the Poisson geometry. Its central point lies in the study of Pois-
son manifolds — differentiable manifolds equipped with a Poisson bracket. The
convenient way to describe such structures is the language of multivector fields,
completely skew-symmetric contravariant tensor fields on manifolds. This is why
we have included a brief introduction to multivector fields.

Definition 2.1. Let M be a differentiable manifold of dimension n. We denote
T k0 (M) the space of k-times contravariant tensor fields on M and Lk(M) its
subspace of completely skew-symmetric tensor fields. We define the multivector
field algebra as a direct sum

(1) L(M) :=
+∞⊕

k=−∞
Lk(M)

equipped with the exterior product ∧, where L0 ≡ C∞(M) and Lk = 0 for
k < 0 and k > n. Multivectors lying in the particular Lk(M) subspace are called
homogeneous. The grade of a homogeneous non-zero element X of some Lk(M)
is defined as k and denoted |X| = k.

The elements of Lk(M) in the form of X1 ∧ · · · ∧Xk, Xi ∈ L1(M) ≡ X(M), are
called simple.

Definition 2.2. Schouten-Nijenhuis bracket [·, ·] : L(M)× L(M)→ L(M) is
the R-bilinear mapping defined on homogeneous simple elements of L(M) as

(2) [X1 ∧ · · ∧Xn, Y1 ∧ · · ∧Ym] :=

n∑
i=1

m∑
j=1

(−1)i+j [Xi, Yj ] ∧X1 ∧ · · ∧X̂i ∧ · · ∧Xn ∧ Y1 ∧ · · ∧Ŷj ∧ · · ∧Ym,

where X̂i denotes the omission of the vector field in the product and [Xi, Xj ] is
an ordinary commutator of the vector fields. For f ∈ L0(M) and homogeneous
X ∈ L(M) the Schouten-Nijenhuis bracket is defined as

[f,X] := −idfX ,(3)

[X, f ] := (−1)(|X|+1)idfX ,(4)

where i is the common interior product operator (insertion operator).

It is obvious that the Schouten-Nijenhuis bracket of two multivector fields is
again a multivector field, it is just the sum of exterior products of vector fields
on M . During a study of the classical Hamiltonian mechanics there naturally
arises an interesting geometric structure, a Poisson bracket of two observable
quantities (functions on a phase space). We define Poisson bracket on an arbitrary
differentiable manifold M .
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Definition 2.3. Differentiable manifold M is called a Poisson manifold if it is
equipped by an additional structure {·, ·} called a Poisson bracket, which is a
bilinear map C∞(M)× C∞(M)→ C∞(M) having the following properties:

(∀f, g ∈ C∞(M)) ({f, g} = −{g, f}) .(5)
(∀f, g, h ∈ C∞(M)) ({f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = 0) .(6)

(∀f, g, h ∈ C∞(M)) ({fg, h} = f{g, h}+ {f, h}g) .(7)
In the other words, {·, ·} adds on C∞(M) the Lie algebra structure and for every
h ∈ C∞(M) the map {·, h} : C∞(M)→ C∞(M) lies in Der(C∞(M)).

The Poisson bracket on M can be easily encoded into the special bivector field
P on M , called (not surprisingly) a Poisson bivector on M .

The skew-symmetry of the Poisson bracket will lead onto a skew-symmetry of P
(this is why we talk about a bivector field). The Leibniz rule (7) will be satisfied
“for free” by every bivector field P . The only problem arises with the Jacobi identity
for the Poisson bracket. It turns out that it can be encoded into the words of
Schouten-Nijenhuis bracket, which we have canonically defined on every manifold
M .

Proposition 2.4. Let M be a differentiable manifold. Every Poisson bracket {·, ·}
on M corresponds to the unique bivector field P ∈ L2(M), such that
(8) [P,P] = 0 .
Conversely, every bivector P ∈ L2(M) satisfying (8) can be used to define a Poisson
bracket on M . The bivector field P is called a Poisson bivector (field) on M .

2.2. Fibre bundles. For definition of dynamical variables of Poisson sigma models
we shall need the concept of the vector bundle map. For this reason we will bring in
a few definitions essential for the proper setting. We do not intend to go in details,
there exists a plenty of classical literature on this topic.

Let us denote differential fibre bundle as E π→M and the set of all its smooth
sections as Γ(M,E). The subset of global smooth sections is denoted as ΓG(M,E).

Definition 2.5. Let E π→M , E′ π
′

→ N be two fibre bundles. A pair (f, g) : E → E′

is called the bundle map, if:
(1) f : M → N is a smooth map of the base manifolds.
(2) g : E → E′ is a smooth map of the total spaces.
(3) Following diagram commutes:

E
g−→ E′

↓π ↓π′
M

f−→ N

If E and E′ are vector bundles, we call (f, g) the vector bundle map, if
(f, g) : E → E′ is a bundle map and g : E → E′ is linear “in the fibres”, i.e.:
(9) (∀p ∈M)(∀u, v ∈ π−1(p))(∀α ∈ R)

(
g(αu+ v) = αg(u) + g(v)

)
.
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Definition 2.6 (see e.g. [9]). Let N and M be differentiable manifolds and E π→M
be a fibre bundle with the typical fibre F . Let ϕ : N →M be a smooth map. Then
we can induce a fibre bundle structure above N , called the pullback bundle, as
follows:

Its total space ϕ∗(E) is defined as

ϕ∗(E) := {(p, u) ∈ N × E | ϕ(p) = π(u)} .

Its base manifold is N , projection is π′ : (p, u) ∈ ϕ∗(E) 7→ p ∈ N and typical fibre
F remains the same. It is clear that the fibre Fp at p ∈ N is just the same, as the
fibre Fϕ(p) of the original bundle.

2.3. Fields, action. Let us suppose we have a 2-dimensional differentiable orien-
table manifold Σ, called usually the worldsheet. Let us remark that in general
we do not demand a (pseudo-)metric structure on Σ. We usually take ∂Σ = ∅
(empty boundary) and we want Σ to be such manifold, where integration and the
Stokes’ theorem have a good sense. Otherwise we have to impose some (boundary)
conditions on the fields.

Next suppose an n-dimensional Poisson manifold (M,P). Again we do not
demand M to be a (pseudo-)Riemannian manifold. The manifold M is called a
target manifold.

Definition 2.7. Dynamical field of Poisson sigma model is a vector bundle
map (X,A) : TΣ→ T ∗M , where TΣ is the tangent bundle of Σ and T ∗M is the
cotangent bundle of M .
X : Σ→M is a smooth map of the base manifolds, whereas A : TΣ→ T ∗M is

a smooth map of the total spaces.

Remark 2.8. Let E π→M be a vector bundle. Its set of global smooth sections
ΓG(M,E) has a natural C∞(M)-linear structure:(
∀σ, τ ∈ ΓG(M,E)

)(
∀f ∈ C∞(M)

)(
∀p ∈M

) (
(fσ + τ)(p) := f(p)σ(p) + τ(p)

)
.

In particular, we will use this property for the pullback bundle X∗(T ∗M) and the
set ΓG(Σ, X∗(T ∗M)).

Definition 2.9. A 1-form α on Σ with values in the set of global smooth sections
ΓG(Σ, X∗(T ∗M)) is a smooth assignment p ∈ Σ 7→ α(p), where α(p) : Tp(Σ) →
π′−1(p) ≡ T ∗X(p)(M) is a linear map. π′ denotes the projection of the pullback
bundle X∗(T ∗M).

We define the action of α on a smooth vector field V ∈ X(Σ) as

(10) 〈α, V 〉(p) := 〈α(p), Vp〉 ∈ T ∗X(p)(M) ,

for every p ∈ Σ, where Vp denotes the value of V at p. 〈α, V 〉 can be thus interpreted
as the global section of the pullback bundle X∗(T ∗M).

The requirement of the smooth assignment can be then more precisely stated as
the smoothness of the section 〈α, V 〉.

Therefore α defines a C∞(Σ)-linear map from X(Σ) to ΓG(Σ, X∗(T ∗M)).
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In the same way we can define a k-form on Σ with values in ΓG(Σ, X∗(T ∗M))
and a k-form on Σ with values in ΓG(Σ, X∗(TM)), where X∗(TM) is the pullback
bundle of TM by X.

Remark 2.10. Previous definition can be equivalently stated as follows: 1-form
α on Σ with values in ΓG(Σ, X∗(T ∗M)) is a C∞(Σ)-linear map from X(Σ) to
ΓG(Σ, X∗(T ∗M)).

The reason and proof is similar to the same statement for ordinary 1-forms
Ω1(Σ).

Definition 2.11. The space of k-forms on Σ (k ∈ {0, 1, 2}) with values in
ΓG(Σ, X∗(T ∗M)) is denoted as Ωk(Σ, X∗(T ∗M)). In the same way, Ωk(Σ, X∗(TM))
denotes the space of k-forms on Σ with values in ΓG(Σ, X∗(TM)).

Lemma 2.12. Let (X,A) be a vector bundle map (X,A) : TΣ→ T ∗M .
The map A of the total spaces can be considered as the element of Ω1(Σ, X∗(T ∗M)).

Proof. Let A be the total space map from the vector bundle map (X,A). We can
define αA ∈ Ω1(Σ, X∗(T ∗M)) as

(11) 〈αA, V 〉(p) ≡ 〈αA(p), Vp〉 := A(Vp) ∈ T ∗X(p)(M) ≡ π′−1(p) ,

where V ∈ X(Σ) is a smooth vector field. αA(p) thus indeed maps linearly vectors
from Tp(Σ) to π′−1(p). From the smoothness of V and of the map A follows, that
the resulting section 〈αA, V 〉 is smooth. Hence αA ∈ Ω1(Σ, X∗(T ∗M)).

Conversely, let α ∈ Ω1(Σ, X∗(T ∗M)). Then for u ∈ TΣ we define the map Aα
as

(12) Aα(u) := 〈α(π(u)), u〉 ,

where π is the projection of the tangent bundle TΣ. The map Aα clearly satisfies
the condition

π̃ ◦Aα = X ◦ π ,

where π̃ denotes the projection of the cotangent bundle T ∗M and it is linear in the
fibres. The smoothness of Aα follows from the smoothness of α and the projection
π. Hence (X,Aα) is a vector bundle map. �

Remark 2.13. Since now we will not distinguish between A and αA, and we will
use the notation A(p) ≡ αA(p) for p ∈ Σ.

Remark 2.14. Let (y1, . . . , yn) be a set of local coordinates on M . A can be
locally expanded as

(13) A(p) = Ai(p) dyi
∣∣
X(p)

,

for p ∈ Σ. Ai ∈ Ω1(Σ) are uniquely determined 1-forms on Σ, called the component
1-forms of A. We will use the notation

(14) A = Aidy
i .
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Remark 2.15. In fact, one has to be very careful, because expansion (13) has
the good sense only for such p ∈ Σ, where X(p) stays in the area of M , where
coordinates (y1, . . . , yn) are defined. Hence Ai are, strictly speaking, not uniquely
determined in the “evil points” of Σ.

However, taking Poisson-Lie groups as target manifolds, we have global frame
fields on M - left-(right-)invariant vector fields. This solves our problem in such
cases.

Alternatively, we can impose on the map X to not “come out” of the chosen
coordinate patch.

Let us examine for a moment the map X∗ tangent to the map X : Σ → M .
Constructed at given point p ∈ Σ, it maps linearly Tp(Σ)→ TX(p)(M). Therefore
we can define a 1-form dX on Σ with values in ΓG

(
Σ, X∗(TM)

)
, as:

〈dX, Y 〉(p) := X∗(Yp) ∈ TX(p)(M) ,

for Y ∈ X(Σ). If we write it in the local coordinates (y1, . . . , yn) on M and local
coordinates (σ1, σ2) on Σ, we get

〈dX, Y 〉(p) := Y µ(p)X∗
( ∂

∂σµ

∣∣∣∣
p

)
= Y µ(p) ∂X

i

∂σµ

∣∣∣∣
p

∂

∂yi

∣∣∣∣
X(p)

.

Hence

dX(p) = dXi(p) ∂

∂yi

∣∣∣∣
X(p)

,

where dXi := X∗(dyi). Let us remark that dX can be viewed as a total space map
of the bundle map (X, dX) : TΣ→ TM .

Canonical pairing on M allows us to define the induced pairing of k-forms on
Σ with values in the global sections of pullback bundles X∗(TM) and X∗(T ∗M)
respectively.

Definition 2.16. Let A ∈ Ωk(Σ, X∗(T ∗M)), B ∈ Ωl(Σ, X∗(TM)). A = Aidy
i,

B = Bj ∂
∂yj . Then we define a pairing of A with B as

(15) 〈A,B〉(p) := Ai(p) ∧Bj(p)
〈
dyi|X(p),

∂

∂yj

∣∣∣
X(p)

〉
= Ai(p) ∧Bi(p) ,

for all p ∈ Σ. Hence 〈A,B〉 ∈ Ωk+l(Σ). This definition does not depend on the
particular choice of coordinates in M .

Let p ∈ Σ and P be a Poisson bivector on M , Let A ∈ Ω1(Σ, X∗(T ∗M)). We
define

iA(P)(X(p)) := Ai(p)P(X(p))(dyi|X(p), ·) = Ai(p)Pij(X(p)) ∂

∂yj

∣∣∣∣
X(p)

.

This is an expansion of some V ∈ Ω1(Σ, X∗(TM)). We set iA(P)(X) := V .

Definition 2.17. Let Σ be a 2-dimensional orientable differentiable manifold, let
(M,P) be an n-dimensional Poisson manifold. A Poisson sigma model is a field
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model defined by the action integral

(16) S[X,A] :=
∫

Σ
〈A, dX〉 − 1

2 〈A, iA(P)(X)〉 .

Suppose we have the local coordinates (y1, . . . , yn) in some neighbourhood U ⊂M ,
Pij ≡ P(dyi, dyj). If X(Σ) ⊂ U , we can write the action as

(17) S[X,A] :=
∫

Σ
Ai ∧ dXi + 1

2P
jk(X)Aj ∧Ak ,

where A = Aidy
i and dXi = X∗(dyi).

Remark 2.18. Poisson sigma models are in many articles ([10], [11]) defined by
the action (17), with the map X not restricted to U . Strictly speaking, this is not
correct, because there exist points of Σ, where the integrand has no sense at all.
However, we can always locally write the Lagrangian:

(18) L[X,A](p) = Ai(p) ∧ dXi(p) + 1
2P

jk(X(p))Aj(p) ∧Ak(p),

for such p ∈ Σ, where X(p) ∈ U .

2.4. Variational principle, equations of motion. In this section we will in
detail derive the equations of motion of the Poisson sigma model, using the action
(16) and a variational principle.

It is quite simple to get the equations of motion from (17), putting X̃i =
Xi + εY i, Ãi = Ai + ε̃Bi and using the ordinary per partes trick in the calculation
of S[X̃, Ã] − S[X,A]. However, this approach is heavily coordinate-dependent,
especially in the case, where the form of action 17 has no real sense. This led us to
the following idea.

We will parametrize each variation of the fields (X,A) by infinitesimal constants
ε, ε̃ ∈ R, |ε|, |ε̃| � 1, 1-form B ∈ Ω1(Σ, X∗(T ∗M)) and by a smooth vector field
Y ∈ X(M) on M , such that its local flow φYε (X(p)) is defined for all p ∈ Σ. If
∂Σ 6= ∅, we have to impose (∀q ∈ ∂Σ) (Y (X(q)) = 0).

Σ Mp X(p) X̃(p)

φYε

Vp

X

A

A(Vp)

A+ ε̃B φY ∗−ε
Ã(Vp)

TΣ T ∗M

Fig. 1: Variation of fields (X,A)
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Shifted fields X̃ and Ã are then set as

(19) X̃(p) := φYε
(
X(p)

)
,

(20) Ã(Vp) := φY ∗−ε
(
(A+ ε̃B)(Vp)

)
,

for all p ∈ Σ and Vp ∈ Tp(Σ). For illustration, see the figure 1. It is obvious that
(X̃, Ã) is again a vector bundle map TΣ→ T ∗M .

Let (y1, . . . , yn) be a set of local coordinates on U ⊂M . Vector field Y can be
for x ∈ U expanded as

(21) Y (x) = Y i(x) ∂

∂yi

∣∣∣∣
x

.

Ã can be locally expanded as

(22) Ã(p) = (Ai + ε̃Bi)(p) φY ∗−ε (dyi
∣∣
X(p)

) .

For dX̃, p ∈ Σ and Vp ∈ Tp(Σ) we have

〈dX̃(p), Vp〉 ≡ X̃∗(Vp) = φYε∗(X∗(Vp)) ,

and thus locally

(23) dX̃(p) = dXi(p) φYε∗
( ∂

∂yi

∣∣∣∣
X(p)

)
.

We are now ready to proceed with the computation of the first order (in ε and
ε̃) term in the difference of the Lagrangians L[X̃, Ã]− L[X,A], where

(24) L[X,A] := 〈A, dX〉 − 1
2 〈A, iA(P)(X)〉 .

From the definition of pairing (15) and the local expansions (22) and (23) of Ã
and dX̃ respectively it is clear, that

(25) 〈Ã, dX̃〉 = 〈A, dX〉+ ε̃〈B, dX〉 .

To deal with the second term of L[X̃, Ã], we should remind that φYε is a
diffeomorphism of M . Therefore for x ∈ U we can use φYε∗( ∂

∂yi

∣∣∣
x

) as the basis of
the tangent space TφYε (x)(M).

Poisson bivector P can be thus expanded at X̃(p) ≡ φYε (X(p)) expanded as

P(X̃(p)) = Pij∗ (X̃(p)) φYε∗
( ∂

∂yi

∣∣∣∣
X(p)

)
⊗ φYε∗

( ∂

∂yj

∣∣∣∣
X(p)

)
,(26)

where

Pij∗ (X̃(p) = P(X̃(p))
(
φY ∗−ε (dyi

∣∣
X(p)

), φY ∗−ε (dyj
∣∣
X(p)

)
)

≡ φY−ε∗
(
P(X̃(p))

)(
dyi
∣∣
X(p)

, dyj
∣∣
X(p)

)
.(27)
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In the following we will omit the explicit writing of (p) in every term, but we
still mean everything written at the particular point p ∈ Σ. For infinitesimal ε we
can rewrite Pij∗ (X̃) as

P∗(X̃)ij = φY−ε∗
(
P(X̃)

)(
dyi
∣∣
X
, dyj

∣∣
X

)
=
(
P(X) + ε[LY (P)](X)

)(
dyi
∣∣
X
, dyj

∣∣
X

)
= Pij(X) + ε[LY (P)]ij(X) .

Then we can write

i
Ã

(P)(X̃) = P(X̃)(Ã, ·) = (Ai + ε̃Bi) P(X̃)
(
φY ∗−ε (dyi

∣∣
X

), ·
)

= (Ai + ε̃Bi)Pij∗ (X̃) φYε∗
( ∂

∂yj

∣∣∣∣
X

)
.

Hence

−1
2 〈Ã, iÃ(P)(X̃)〉 = −1

2(Ak + ε̃Bk) ∧ (Ai + ε̃Bi)Pik∗ (X̃)

= −1
2Ak ∧AiP

ik(X)− ε̃Bk ∧AiPik − ε
1
2Ak ∧Ai[LY (P)]ik ,

where we omitted the second order terms in the infinitesimal parameters ε and ε̃.
Therefore finally

−1
2 〈Ã, iÃ(P)(X̃)〉 =− 1

2 〈A, iA(P)(X)〉

− ε̃〈B, iA(P)(X)〉 − ε1
2 〈A, iA[LY (P)](X)〉 .(28)

Putting together (25) and (28) we get

(29) L[X̃, Ã]− L[X,A] = ε̃〈B, dX − iA(P)(X)〉 − ε1
2 〈A, iA[LY (P)](X)〉 .

We will state and prove a following lemma to proceed:

Lemma 2.19. Let Ỹ ∈ Ω0(Σ, X∗(TM)) is defined for p ∈ Σ as

(30) Ỹ (p) := Y (X(p)) .

Its local expansion is Ỹ (p) = Y i(X(p)) ∂
∂yi

∣∣∣
X(p)
≡ Ỹ i(p) ∂

∂yi

∣∣∣
X(p)

, where we denote

Ỹ i(p) := Y i(X(p)). It satisfies (in the first order in ε)

(31) dỸ i = Y i,m(X)dXm .

Proof. Expansion of X̃ = φYε (X) in local coordinates on M reads

X̃i = Xi + εY i(X) = Xi + εỸ i .

Hence

(32) dX̃i = dXi + εdỸ i .
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On the other side, as we know, dX̃i constitute the component 1-forms of dX̃ ∈
Ω1(Σ, X̃∗(TM)). We can proceed from (23):

dX̃ = dXi φYε∗

( ∂

∂yi

∣∣∣∣
X

)
= dXi

( ∂

∂yi

∣∣∣∣
X̃

− ε
[
LY
( ∂

∂yi

)]
(X̃)

)
= dXi ∂

∂yi

∣∣∣∣
X̃

+ εdXi Y m,i(X̃) ∂

∂ym

∣∣∣∣
X̃

= dXi ∂

∂yi

∣∣∣∣
X̃

+ εdXi Y m,i(X) ∂

∂ym

∣∣∣∣
X̃

= (dXi + εY i,m(X)dXm) ∂

∂yi

∣∣∣∣
X̃

.

Comparison with (32) gives us (31). �

We can now step to the derivation of the equations of motion. We impose the
condition of extremality for (X,A), that is

(33) S[X̃, Ã]− S[X,A] = 0 .

From (29) this is equivalent to∫
Σ
ε̃〈B, dX − iA(P)(X)〉 − ε1

2 〈A, iA[LY (P)](X)〉 = 0 .

By putting ε = 0 (variation of the 1-form A only), we get the first equation of the
motion in the form

(34) dX = iA(P)(X) ,

or in the local coordinates as

(35) dXi + Pij(X)Aj = 0 .

For the analysis of the second term we can (and have to) use the equation (35):

−1
2 〈A, iA(LY (P ))(X)〉 = 1

2Ai ∧Ak [LY (P)]ik(X)

= 1
2Ai ∧Ak

(
Y (Pik)(X)− Y i,m(X)Pmk(X)− Y k,m(X)Pim(X)

)
= 1

2Ai ∧AkY (Pik)(X) + Pmi(X)Ai ∧AkY k,m(X)

(35)= 1
2Ai ∧AkỸ

mPik,m(X)− dXmY k,m(X) ∧Ak
(31)= 1

2Ai ∧AkỸ
mPik,m(X)− dỸ k ∧Ak

= Ỹ m
(
dAm + 1

2P
ik
,m(X)Ai ∧Ak

)
− d(Ỹ kAk) .

The boundary term is clearly coordinate invariant and it vanishes under integration.
The first term is not coordinate dependent for (X,A) satisfying (35), which is
enough for the derivation of the extremal equation. Both terms can be thus with no
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problems integrated. Hence we get the second equation (we can choose the vector
field Y (almost) arbitrarily):

(36) dAk + 1
2P

ij
,k(X)Ai ∧Aj = 0 .

This equation cannot be written globally in general, but it transforms itself well
for (X,A) solving the first equation. We will again find various possibilities for
linear Poisson sigma models or Poisson-Lie sigma models, where we can use more
global structures. We can sum up the preceding text in the following proposition
[11]:

Proposition 2.20. The extremal fields (X,A) of the Poisson sigma model given
by the action (16) have to satisfy the equations written locally as

dXi + Pij(X)Aj = 0 ,(37)

dAk + 1
2P

ij
,k(X)Ai ∧Aj = 0 .(38)

Remark 2.21. Using a Poisson bivector P, one can define a vector bundle map
(#, IdM ), where # : T ∗M → TM is given as

(39) #(α) := P(m)(α, ·) ,

for α ∈ T ∗m(M), m ∈M . # is usually called a Poisson anchor.
Equation (37) can be then equivalently stated as

(40) # ◦A = dX,

where dX : TΣ→ TM is a vector bundle map over X, as is # ◦A.

2.5. Linear Poisson sigma model. In this section we will introduce a notation
and the form of equations (37) and (38) for a linear Poisson sigma model.

Let g be a finite-dimensional real Lie algebra with a Lie bracket [·, ·]. We can
consider its dual space g∗ as a differentiable manifold.

We can use an arbitrary (but fixed) basis (Ti)ni=1 of g as the (global) coordinates
on g∗. The tangent space Tξ(g∗) at any point ξ ∈ g∗ can be identified with g∗ itself,
there exists the linear isomorphism Aξ : g∗ → Tξ(g∗), such that Aξ(T i) = ∂

∂Ti

∣∣∣
ξ

,

where (T i) is a basis of g∗ dual to (Ti).
We get the same map Aξ for every basis of g, that is if (Yi)ni=1 is also a basis of

g, then Aξ(Y i) = ∂
∂Yi

∣∣∣
ξ
. We can then define a Poisson bracket of f, g ∈ C∞(g∗) as

(41) {f, g}(ξ) := 〈ξ, [A∗ξ((df)ξ),A∗ξ((dg)ξ)]〉 ,

for all ξ ∈ g∗. A∗ξ : T ∗ξ (g∗)→ g is the linear map dual to Aξ.
One should easily check, that for arbitrary smooth functions f, g on g∗ and

ξ ∈ g∗

(42) {f, g}(ξ) = Pij(ξ)
∂f

∂Ti

∣∣∣∣
ξ

∂g

∂Tj

∣∣∣∣
ξ

,
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where
(43) Pij(ξ) = cij

k〈ξ, Tk〉 ≡ cijkξk
and ckij are the structure coefficients of g with respect to (Ti)ni=1, i.e.

(44) [Ti, Tj ] = cij
kTk .

A skew-symmetry and a derivation property of the Poisson bracket can be seen
from the definition. Coordinate expression of the Jacobi identities reads
(45) (cjkrcris + cki

rcrj
s + cij

rcrk
s)〈ξ, Ts〉 = 0 ,

which is true because of the Jacobi identities for the Lie bracket on g. The dual space
g∗ with the Poisson bracket (42) is then a Poisson manifold. For obvious reasons it
is called linear Poisson structure (components of P are linear functions on g∗).

Definition 2.22. A coadjoint representation ad∗ of g on g∗ is defined by
(46) 〈ad∗Y (ξ), Z〉 := −〈ξ, adY (Z)〉 ,
for all Y,Z ∈ g and ξ ∈ g∗, where 〈·, ·〉 denotes the canonical pairing on g.

Let us remind a useful property of the Killing form K of semisimple Lie algebras.

Lemma 2.23. Let g be a finite-dimensional semisimple Lie algebra. Then the
inverse of the Killing form K−1 is ad∗-invariant, that is
(47) K−1(ad∗X(ξ), η) +K−1(ξ, ad∗X(η)) = 0 ,
∀ξ, η ∈ g∗ and ∀X ∈ g.

Let (T1, . . . , Tn) be an arbitrary chosen basis of g. We will use it as global
coordinates on g∗. Let A = AidTi, A ∈ Ω1(Σ, X∗(T ∗g∗)). We will see that equations
of motion can be in this case written in a simple, coordinate-free way.

We define a 1-form Ã on Σ with values in Lie algebra g:
(48) Ã := AiTi .

It is clear that Ã does not depend on the choice of the basis (Ti)ni=1.
We can consider X as the 0-form on Σ with values in g∗, that is

(49) X(p) = Ti(X(p))T i ≡ Xi(p)T i ,
for all p ∈ Σ.

To avoid confusion: dX in the following proposition stays for 1-form with values
in g∗, obtained as the exterior derivative of 0-form X defined by (49).

This point of view allows us to state the following proposition:

Proposition 2.24. Suppose we have a linear Poisson sigma model and notation
described above. The equations of motion (37) and (38) can be then written in the
form
(50) dX + ad∗

Ã
(X) = 0 ,

(51) dÃ+ 1
2[Ã ∧ Ã]g = 0 .
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Moreover, if g is a semisimple Lie algebra, we can rewrite (50) as

(52) dX̃ + [Ã, X̃]g = 0 ,

where X̃ := K−1(X, ·) is a 0-form on Σ with values in g and K−1 is the inverse of
the Killing form.
Proof. For the linear Poisson structure, we have Pij(ξ) = cij

kξk and ∂Pij
∂Tk

∣∣∣
ξ

= cij
k,

where [Ti, Tj ] = cij
kTk. Therefore the equations (37) take the form

(53) dXi +Xkcij
kAj = 0.

Now we will compute 〈Ti, dX + ad∗
Ã

(X)〉, where 〈·, ·〉 is the canonical pairing on g:

0 = 〈Ti, dX + ad∗
Ã

(X)〉 = dXi + 〈Ti, ad∗
Ã

(X)〉 = dXi − 〈adÃ(Ti), X〉

= dXi −AjXk〈adTj (Ti), T k〉 = dXi +AjXkcij
k .

Thus the equation (50) is equal to the set of equations (37). Let us proceed to the
second set of equations. If we again use the properties of P of the linear Poisson
structure, we obtain (38) in the form

(54) dAi + 1
2cjk

iAj ∧Ak = 0 .

But cjkiAj ∧Ak = 〈T i, (Aj ∧Ak) [Tj , Tk]g〉 ≡ 〈T i, [Ã ∧ Ã]g〉.
To obtain the last part of the statement, we take arbitrary ξ ∈ g∗ and using the

equation (50) we write
0 = K−1(dX + ad∗

Ã
(X), ξ) = K−1(dX, ξ) +K−1(ad∗

Ã
(X), ξ) .

For the first term we have straight from the definition K−1(dX, ξ) ≡ 〈ξ, dX̃〉. We
apply Lemma 47 to rewrite the second term:

K−1(ad∗
Ã

(X), ξ) = −K−1(X, ad∗
Ã

(ξ)) ≡ −〈ad∗
Ã

(ξ), X̃〉

= 〈ξ, ad
Ã

(X̃)〉 = 〈ξ, [Ã, X̃]g〉 .

Hence 〈ξ, dX̃ + [Ã, X̃]g〉 = 0 for all ξ ∈ g∗, and we get dX̃ + [Ã, X̃]g = 0. �

Remark 2.25. In fact, we can rewrite the action (16) using the 1-form Ã as

(55) S[X, Ã] =
∫

Σ
〈X, (dÃ+ 1

2[Ã ∧ Ã])〉g .

Equation (51) then follows immediately.

An interesting fact to observe is that equation (51) does not involve the field X
at all.

3. Poisson-Lie sigma models

We would be most interested in Poisson sigma models, where target Poisson
manifold is moreover a Poisson-Lie group. We shall call such models Poisson-Lie
sigma models. In next subsections there are given the basics of the theory of
Poisson-Lie groups and notation which we will extensively use in the following.
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3.1. Poisson-Lie groups, Lie bialgebras.

Definition 3.1. A Lie group G, which is also a Poisson manifold, is called a
Poisson-Lie group, if the group multiplication map µ : G×G→ G is a Poisson
map, considering G×G endowed with the product Poisson structure.

This property is equivalent to the multiplicativity of the corresponding Poisson
bivector P, that means that

(56) P(gh) = Lg∗(P(h)) +Rh∗(P(g)) ,

for all g, h ∈ G.
Note that P(e) = 0, that is non-trivial Poisson-Lie group is never symplectic,

not even of constant rank. The simplest example of Poisson-Lie group is a linear
Poisson structure, considered as Abelian group under addition.

Poisson structure P on G induces an additional algebraic structure on its Lie
algebra g. It turns out that it is a 1-cocycle of Chevalley-Eilenberg Lie algebra
cohomology with respect to the adjoint representation of g on g⊗ g, which induces
the second Lie algebra structure on the dual vector space g∗.

Definition 3.2. Lie bialgebra (g, δ) is a Lie algebra g equipped with an additional
structure, a linear map δ : g→ g⊗ g, such that

(1) δ∗ : g∗ ⊗ g∗ → g∗ is a Lie bracket on g∗,
(2) δ is a 1-cocycle of g with values in g⊗ g, i.e. for every X,Y ∈ g

(57) ∆(δ)(X,Y ) ≡ ad(2)
X δ(Y )− ad(2)

Y δ(X)− δ([X,Y ]) = 0 ,

where ad(2)
X (Y ⊗ Z) := adX(Y )⊗ Z + Y ⊗ adX(Z), for all X,Y, Z ∈ g.

The linear map δ is usually called a cocommutator on g. δ∗ denotes the transpo-
sition with respect to the canonical pairing. Let us denote the Lie bracket on g∗ as
[·, ·]g∗ .

In the following we will extensively use an equivalent description of Lie bialgebra
structure, called Manin triple. The 1-cocycle condition is translated into the
Jacobi identities for Lie bracket. It is known that Lie bialgebras are in one to one
correspondence with Manin triples.

Definition 3.3. A Manin triple (d, g, g̃), is a triple of Lie algebras d, g, g̃, such
that d = g⊕ g̃ as vector spaces, g, g̃ are Lie subalgebras of d and as vector subspaces
they are isotropic with respect to a non-degenerate, symmetric, ad-invariant bilinear
form 〈·, ·〉d on d.

We should now introduce a notation of a convenient basis, which we would use
in the following. From the properties of Manin triple it can be easily shown that
dim(g) = dim(g̃). We denote n = dim(g). Moreover, for given basis (Ti)ni=1 of g we
can uniquely choose the basis (T̃ j)nj=1 of g̃, such that (Ti, T̃ j)n,ni,j=1 is a basis of d
and

(58) 〈Ti, T̃ j〉d = δi
j .
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Other combinations vanish due to the isotropy of subalgebras g and g̃. In the
following we will always use a basis of d of such form.

If we denote [Ti, Tj ] = cij
kTk and [T̃ i, T̃ j ] = f ijkT̃

k the structure constants of g
and g̃, one could obtain from isotropy and ad-invariance of 〈·, ·〉d that

(59) [Ti, T̃ j ] = f jkiTk − cikj T̃ k .

The structure constants f ijk of g̃ are same as the structure constants of Lie algebra
g∗ of the corresponding Lie bialgebra, written in the basis (T j)nj=1 dual to (Ti)ni=1.

The Jacobi identities of d are equivalent to that of g, g∗ and the 1-cocycle
condition (57).

If there exists r ∈ g⊗g, such that Lie biagebra cocommutator δ can be written as
δ = ad(2)(r) ≡ ∆(r), the resulting Lie bialgebra is called coboundary and r is called
an r-matrix. Our approach to the Poisson bivector construction can be used for
general Lie bialgebra (g, δ) and we thus do not need to discuss the coboundary-ness
furthermore.

Definition 3.4. Let P be a multiplicative Poisson bivector. Its intrinsic derivative
DP : g→ g⊗ g is defined as

DP(X) := [LX̄(P)](e) ,

for all X ∈ g, where X̄ denotes arbitrary vector field extension of X.

Proposition 3.5. Let (G,P) be a Poisson-Lie group. Then the intrinsic derivative
DP of P defines a Lie bialgebra structure on g. Lie bialgebra (g, DP) is called a
tangent Lie bialgebra to (G,P).

For proof of this classical proposition see [8]. We would expand the 1-form A
not as A = Aαdy

α (let us denote the coordinate indices in Greek letters for now),
but rather as A = AkRTk , where RTk are the right-invariant 1-forms on G dual to
RTm frame fields. We denote T iX(p) := X∗

(
RT i(X(p))

)
∈ T ∗p (Σ).

3.2. Equations of motion. In the following we rewrite the equations of motion
in components with respect to the right-invariant frame fields. Then we will use the
properties of multiplicative bivector fields to calculate the action of right-invariant
vector fields on the Poisson bivector components. Using this we will then derive an
intrinsic form of the equations of motion.

Lemma 3.6. The equations of motion rewritten in the components with respect to
the right-invariant frame fields take the form

(60) T iX + Πij(X)Aj = 0 ,

(61) dAk + 1
2RTk(Πij)(X)Ai ∧Aj + ckj

iAi ∧ T jX = 0,

where P = 1
2ΠijRTi ∧RTj and [Ti, Tj ] = cij

kTk.
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Proof. We start from (37) and (38) written in the local coordinates (y1, . . . , yn).
We denote the coordinate indices with Greek letters and right-invariant basis indices
with Latin letters.

dXα + Pβγ(X)Aγ = 0 ,(62)

dAα + 1
2P

βγ
,α(X)Aβ ∧Aγ = 0 .(63)

We define the n× n matrix e of functions on Σ as

(64) ∂

∂yα

∣∣∣∣
X(p)

= ekα(p) RX(p)∗(Tk)

and f(p) := e−1(p), for every p ∈ Σ.
If Ak denotes the component 1-forms from expansion A = AkRTk , we get

Aα = ekαAk ,

and for other involved objects

dXα = fαkT
k
X , Pβγ(X) = fβmf

γ
nΠmn(X) .

Equation (62) can be thus written in the form

T iX + Πij(X)Aj = 0.

We can now deal with the second equation. First we rewrite the term dAα:

dAα = d
(
ekαAk

)
= dekα ∧Ak + ekαdAk

= ∂(ekα)
∂yβ

dXβ ∧Ak + ekαdAk ,(65)

where by ∂
∂yβ

we always mean ∂
∂yβ

∣∣∣
X

. The second term in (63) reads

1
2P

βγ
,α(X)Aβ ∧Aγ = 1

2
∂

∂yα
(
fβmf

γ
nΠmn(X)

)
eaβe

b
γAa ∧Ab

= 1
2e

k
αRTk

(
fβmf

γ
nΠmn(X)

)
eaβe

b
γAa ∧Ab

= 1
2e

k
αf

β
mf

γ
nRTk(Πmn)(X)eaβebγAa ∧Ab

+ ekαRTk(fβm)(X)fγnΠmn(X)eaβebγAa ∧Ab

= 1
2e

k
αRTk(Πmn)(X)Am ∧An + ekαe

a
βRTk(fβm)(X)ΠmbAa ∧Ab = ⊗ .

Using the equation (60), we can write

(66) ⊗ = 1
2e

k
αRTk(Πmn)(X)Am ∧An − ekαeaβRTk(fβm)(X)Aa ∧ TmX .

To continue, we have to use the following trick

RTk(fβm)(X) = RTk(RTm(yβ))(X) = RTm(RTk(yβ))(X) + [RTk , RTm ](yβ)(X)
= RTm(RTk(yβ))(X)− clkmRTl(yβ)(X) = RTm(fβk)(X)− ckmlfβl .
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Using this, we can rewrite the second term in (66) as
− ekαeaβRTk(fβm)(X)Aa ∧ TmX

= − ekαeaβRTm(fβk)(X)Aa ∧ TmX + ekαe
a
βckm

lfβlAa ∧ TmX
= − ekαeaβRTm(fβk)(X)Aa ∧ TmX + ekαckm

aAa ∧ TmX = � .

We can write
eaβRTm(fβk)(X) = −RTm(eaβ)(X)fβk .

Hence
� = ekαRTm(eaβ)(X)fβkAa ∧ TmX + ekαckm

aAa ∧ TmX
= RTm(eaα)(X)Aa ∧ TmX + ekαckm

aAa ∧ TmX

= fβm
∂(eaα)
∂yβ

Aa ∧ TmX + ekαckm
aAa ∧ TmX

= −∂(ekα)
∂yβ

dXβ ∧Ak + ekαckm
aAa ∧ TmX .

Putting this back into (66), we obtain

1
2P

βγ
,α(X)Aβ ∧Aγ =

= ekα

(1
2RTk(Πmn)(X)Am ∧An + ckm

aAa ∧ TmX
)
− ∂(ekα)

∂yβ
dXβ ∧Ak .

Together with (65), we get

dAα + 1
2P

βγ
,α(X)Aβ ∧Aγ =

= ekα

(
dAk + 1

2RTk(Πmn)(X)Am ∧An + ckm
aAa ∧ TmX

)
.

Therefore from (63), finally:

dAk + 1
2RTk(Πmn)(X)Am ∧An + ckm

aAa ∧ TmX = 0 ,

which was to be proved. �

Up to now, this rewriting does not seem to be that much useful. Moreover,
instead of an ordinary partial derivative, we have the action of the right-invariant
field in (61). Fortunately, as we we will show in the following lemma, this is no
obstacle at all. We shall prove the following lemma for slightly more general case,
using just the properties of multiplicative tensor fields.

Lemma 3.7. Let P be a multiplicative bivector field (not necessarily Poisson) on
Lie group G, i.e. it satisfies (56). Let (Ti)ni=1 be an arbitrary basis of Lie algebra
g corresponding to G. Let Πij denote the components of P with respect to the
right-invariant frame, that is P = ΠijRTi ⊗RTj .

Denote [Ti, Tj ] = cij
kTk and DP(Tk) = f ijkTi ⊗ Tj. Then

(67) RTk(Πij) = ckl
iΠlj − ckljΠli + f ijk .
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Proof. First note (see e.g. [8]) that Lie derivative of every multiplicative tensor
field along any right-invariant vector field is always a right-invariant tensor field.
Then

LRTk (P) = LRTk (Πij RTi ⊗RTj ) = RTk(Πij) RTi ⊗RTj
+ Πij [RTk , RTi ]⊗RTj + Πij RTi ⊗ [RTk , RTj ]

= (RTk(Πij)− ckliΠlj + ckl
jΠli) RTi ⊗RTj .

Therefore
DP(Tk) = Rg−1∗([LRTk (P)](g)) = (RTk(Πij)− ckliΠlj + ckl

jΠli)(g)Ti ⊗ Tj .

Since 〈Ti ⊗ Tj , DP(Tk)〉 = f ijk, we finally get
RTk(Πij)(g) = ckl

iΠlj(g)− ckljΠli(g) + f ijk .

�

Remark 3.8. Note that the preceding lemma holds for arbitrary multiplicative
tensor field P , no matter whether G is connected or not. For P a Poisson-Lie group
bivector, the numbers f ijk constitute the structure constants of Lie algebra dual
to g, that is [T i, T j ]g∗ = f ijkT

k.

Let us observe that if A = AkRTk , we may consider Ak as the component
1-forms of 1-form Ã on Σ with values in Lie algebra g∗. That is
(68) Ã(p) := Ak(p)T k .
One can easily verify that this definition does not depend on the choice of the basis
(Ti)ni=1 in g.

Right-invariant Maurer-Cartan 1-form ΘR can be expanded as
(69) ΘR(g) = RTk(g)Tk ,
for all g ∈ G. We define ΘX

R as its pullback by X to Σ:
(70) ΘX

R := X∗(ΘR) ≡ T kXTk .
Poisson bivector P induces for each g ∈ G a linear map Π(g) : g? → g, defined

as
(71) 〈η,Π(g)(ξ)〉 := 〈P(g), Rξ(g)⊗Rη(g)〉 ,
for all ξ, η ∈ g∗, where Rξ(g) = R∗g−1(ξ).

Using this definitions, we can rewrite the equations of motion in a very elegant
way:

Proposition 3.9. Equations of motion of a Poisson-Lie sigma model can be
written in the coordinate-free form
(72) ΘX

R = Π(X)(Ã) ,

(73) dÃ+ 1
2[Ã ∧ Ã]g∗ = 0 ,

where Π(X) stands for the map Π(g) : g∗ → g, defined by (71), taking g = X(p).
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Proof. From (60) and (71), we have

〈T i,ΘX
R 〉 = AjΠji(X) = Aj〈T i,Π(X)(T j)〉 = 〈T i,Π(X)(Ã)〉 .

To derive the second equation, we just put (67) into (61) and use (60):

0 = dAk + 1
2RTk(Πij)(X)Ai ∧Aj + ckj

iAi ∧ T jX

= dAk + 1
2
(
ckl

iΠlj(X)− ckljΠli(X)
)
Ai ∧Aj

+ 1
2f

ij
kAi ∧Aj + ckj

iAi ∧ T jX

= dAk + 1
2f

ij
kAi ∧Aj + ckj

iAi ∧Πlj(X)Aj + ckj
iAi ∧ T jX

(60)= dAk + 1
2f

ij
kAi ∧Aj − ckliAi ∧ T lX + ckj

iAi ∧ T jX

= dAk + 1
2f

ij
kAi ∧Aj .

�

We have just found a very interesting result. For general Poisson-Lie sigma model,
the second equation of motion (38) takes the form of “zero curvature” equation
for g∗-valued 1-form Ã. The most important fact is that the field X is not anyhow
present in the equation (73). It is the equation for 2-forms on Σ only.

This generalizes the result brought in [3], where g is supposed to be semisimple
with coboundary Lie bialgebra (g, δ = ∆(r)). We can quickly derive the form of
equations presented there, as is done in the following corollary of the proposition
3.9:

Definition 3.10. Let p ∈ V ⊗ V be a bilinear form on vector space V . We denote
p : V → V ∗ the induced linear map defined as

(74) 〈w,P (v)〉 := P (v, w) ,

for all v, w ∈ V , where 〈·, ·〉 denotes the canonical pairing on V .

Corollary 3.11. Let G be a Poisson-Lie group with semisimple coboundary tangent
Lie bialgebra (g, δ = ∆(r)).

We set R := a ◦ K, where K is the Killing form on g and a ∈
∧2

g is the
skew-symmetric part of r.

Moreover, we define a 1-form B on Σ with values in g as

B := K−1(Ã) ≡ K−1(Ã, ·) ,

where K−1 is the inverse of the Killing form K. Equations (72) and (73) can be
then written in the form

(75) ΘX
R +

(
R−AdXRAd−1

X

)
(B) = 0 ,

(76) dB + 1
2[B ∧B]R = 0 ,
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where a Lie bracket [·, ·]R on g is defined as [X,Y ]R := [R(X), R(Y )]g, for all
X,Y ∈ g.

Proof. If we expand K and a as K = KijT
i ⊗ T j and a = aijTi ⊗ Tj respectively,

we get the matrix of R:
(RX )ij = Kjla

li .

For 1-form B we can write from definition

B ≡ BiTi = KijAjTi ,

where Kij are the components of K−1 in the basis Ti ⊗ Tj . Poisson bivector P on
G with coboundary tangent Lie bialgebra can be written using Sklyanin bracket
(see e.g. [8]) as

P(g) = Lg∗(a)−Rg∗(a) = Rg∗
(
Adg(a)− a

)
=
(
Adg(a)ij − aij

)
RTi(g)⊗RTj (g) .

Thus for the components Πij in right-invariant basis

Πij(g) = Adg(a)ij − aij .

If we denote Pi
j := 〈T i, AdX(Tj)〉, we get

Πij(X) = Pi
kPj

la
kl − aij .

Equation (60) then reads

0 = T iX + Πij(X)Aj = T iX +
(
Pi

kPj
la
kl − aij

)
Aj

= T iX +
(
Pi

kPj
la
kl − aij

)
KjmB

m

= T iX + (RX )imB
m +KjmPj

lPi
ka
klBm = ⊗ .

Using the Ad-invariance of K, we have KjmPj
l = Klj(P−1)jm. Hence

⊗ = T iX + (RX )imB
m +Klja

kl(P−1)jmPi
kB

m

= T iX + (RX )imB
m −Pi

k(RX )kj(P
−1)jmB

m

= 〈T i,ΘX
R +

(
R−AdXRAd−1

X

)
(B)〉 .

This finishes the proof of (75). Note that

(77) [X,Y ]R = K−1[K(X),K(Y )]g∗ ,

for all X,Y ∈ g, where [·, ·]g∗ is a Lie bracket on g∗ induced by Lie bialgebra
structure. Second equation (76) follows from (73) and (77). Indeed, if we apply
K−1 on both sides of (73), we get

0 = K−1(dÃ+ 1
2[Ã ∧ Ã]̃

g

)
= dB + 1

2K
−1[Ã ∧ Ã]̃

g

(77)= dB + 1
2[B ∧B]R .

�
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3.3. Construction of Poisson-Lie group structure on Drinfel’d double. In
this subsection we give out an explicit method how to construct a Poisson-Lie group
structure P on Lie group G, such that the given Lie bialgebra (g, δ) is tangent to
(G,P).

This particular method can be found (without proofs) in [4], [7] and in [5]. We
give out the sketch of the process. All needed properties can be checked directly
(multiplicativity) or using the properties of multiplicative tensor fields (see [8]),
like vanishing of the Schouten-Nijenhuis bracket.

Definition 3.12. A Drinfel’d double D is a connected Lie group corresponding
to Lie algebra d of given Manin triple (d, g, g̃). Let use denote G and G̃ the connected
Lie subgroups corresponding to the subalgebras g and g̃ respectively.

Remark 3.13. Usually Drinfel’d double is assumed to be connected and simply
connected. However, only connectedness is required for the construction of Poisson
bivector. For each d there may be therefore several possibilities for D.

Remark 3.14. Note that we do not claim that there is a unique Manin triple for
each Drinfel’d double D.

Let (d, g, g̃) be the given Manin triple, corresponding to Lie bialgebra (g, δ). Let
D be a corresponding Drinfel’d double with Lie subgroups G and G̃. For each
g ∈ G we define a map Π(g) : g̃→ g as

(78) Π(g) = PAdgP̃Adg−1 P̃ ,

where P and P̃ denote the projectors from d to g and g̃ respectively and Adg is
the adjoint representation of D on d.

Note that
(79) 〈X,Π(g)(Y )〉d = −〈Π(g)(X), Y 〉d ,
for all g ∈ G and X,Y ∈ g̃.

Definition 3.15. Let us take the basis (Ti, T̃ j)ni,j=1 of d, satisfying the condition
(58). We denote the matrix of the map Π(g) in the basis (Ti)ni=1 of g and (T̃ j)nj=1
of g̃ as (Π(g))X . Note that

(80)
(
Π(g)

)ij
X ≡ 〈T

i,Π(g)(T̃ i)〉 = 〈T̃ i,Π(g)(T̃ j)〉d .
(Let us emphasize the difference between canonical pairing 〈·, ·〉 on g and bilinear
form 〈·, ·〉d on d.)

Remark 3.16. For g ∈ G we can write the matrix of the adjoint representation
Adg−1 in the basis (58) as

(81) (Adg−1)X =
(
a(g)T b(g)T

0 d(g)T
)
,

where a(g), b(g), d(g) are G-dependent n × n matrices. The matrix of the map
Π(g) then has the form
(82)

(
Π(g)

)
X = b(g)a(g)−1 .
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Proposition 3.17. Let Π(g) be the map (78) and (Π(g))X its matrix (80). We
define a bivector field P on G as

(83) P(g) := −(Π(g))ijXRTi ⊗RTj ,

for all g ∈ G, where RTi(g) = Rg∗(Ti) denote the right-invariant vector fields
generated by Ti ∈ g. Then P is the unique Poisson-Lie group structure on G, such
that Lie bialgebra (g, δ) is tangent to (G,P).

(84) P = ΠijRTi ⊗RTj ≡
1
2ΠijRTi ∧RTj .

One can repeat this procedure taking G̃ instead of G and interchanging the role
of g and g̃ to get the unique Poisson-Lie group structure on G̃. Its tangent Lie
bialgebra is dual to (g, δ), that is corresponding to Manin triple (d, g̃, g).

3.4. Example. We will show the most simple non-linear Poisson-Lie sigma model,
such that its tangent Lie bialgebra is not coboundary. We will use the method
introduced above to construct a Poisson bivector.

Lie algebra g is set in the basis (T1, T2) as

[T1, T2] = T2 .

We equip g with a Lie bialgebra cocommutator δ in the form

δ(T2) := β(T1 ⊗ T2 − T2 ⊗ T1) ,

where β ∈ R − {0} and δ(T1) = 0. Such Lie bialgebra is not coboundary and
corresponding Lie bracket on g̃ has the form

[T̃ 1, T̃ 2]g∗ = βT̃ 2.

Other commutation relations in d can be easily computed using (59). In a sufficiently
small neighbourhood of the unit of the corresponding Lie group G, we can use the
parametrization g = eα1T1eα2T2 and define the local coordinates (y1, y2) as

yk(eαT1eαT2) := αk .

The matrices of adjoint representation of Drinfel’d double D can be then calculated
using the adjoint representation of Lie algebra d and the relation

(85) (Adeα1T1eα2T2 )X =
2∏
k=1

eαk(adTk )X .

Then by (82) and (83) one gets the matrix Πij of the components of P with respect
to the right-invariant basis as

Πij =
(

0 βey
1
y2

−βey1
y2 0

)
.
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We denote Xi(p) := yi(X(p)). Then T iX(p) = (e)ik(p)dXk(p), where e is the
matrix of functions on Σ defined by (64). For our example

e(p) =
(

1 0
0 eX

1(p)

)
.

The equations of motion (72) and (73) then take the form

dX1 = −βeX
1
X2A2 ,

dX2 = βeX
1
X2A1 ,

dA1 = 0 ,
dA2 + βA1 ∧A2 = 0 .

4. Conclusion

The proper coordinate independent framework for formulation of sigma models
on Poisson manifolds (M,P) is a vector bundle map (X,A) : TΣ → T ∗M . The
map A of the total spaces can be also considered as 1-form on Σ with values in the
set of global smooth sections of the pullback bundle X∗(T ∗M).

Variation of the fields (X,A) can be defined as

X̃(p) := φYε (X(p)) ,

Ã(Vp) := φY ∗−ε
(
(A+ ε̃B)(Vp)

)
,

for all p ∈ Σ and Vp ∈ Tp(Σ) where ε, ε̃ are real parameters, φYε is the local flow
of a smooth vector field Y on M and B is a one form on Σ with values in global
sections of the pullback bundle X∗(T ∗M). Variational principle with the variations
given above then leads to the well known equations of sigma models on Poisson
manifolds [11, 3].

Poisson sigma models can be constructed on Poisson-Lie groups irrespectively
if the corresponding bialgebra is coboundary or not. The Poisson bivector is
defined by virtue of the adjoint representation of the group on the bialagebra and
right-invariant vector fields on the group. The equations of motion then can be
written in the coordinate independent form (72), (73).
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