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THE F-METHOD AND A BRANCHING PROBLEM FOR
GENERALIZED VERMA MODULES ASSOCIATED TO

(Lie G2, so(7))

Todor Milev and Petr Somberg

Abstract. The branching problem for a couple of non-compatible Lie algebras
and their parabolic subalgebras applied to generalized Verma modules was
recently discussed in [15]. In the present article, we employ the recently
developed F-method, [10], [11] to the couple of non-compatible Lie algebras

Lie G2
i
↪→ so(7), and generalized conformal so(7)-Verma modules of scalar

type. As a result, we classify the i(Lie G2) ∩ p-singular vectors for this class
of so(7)-modules.

1. Introduction and motivation

The subject of our article has its motivation in the Lie theory problem of
branching rules for finite dimensional simple Lie algebras and composition structure
of generalized Verma modules, and dually in the geometrical problem related to
the construction of invariant differential operators in parabolic invariant theories.

We assume that g, g′ are complex semisimple Lie algebras and i : g′ ↪→ g is
an injective homomorphism. Then i(g′) is (complex) reductive in g and we can
choose Borel subalgebras b′ ⊂ g′ and b ⊂ g such that i(b′) ⊂ b. Let p ⊃ b be a
parabolic subalgebra of g. Let Mg

p (Vλ) be the generalized Verma g-module induced
from the irreducible finite dimensional p-module Vλ with highest weight λ. We
define the branching problem for Mg

p (Vλ) over g′ to be the problem of finding all
b′-singular vectors in Mg

p (Vλ), that is, the set of all vectors annihilated by image of
the nilradical of b′ on which the image of the Cartan subalgebra of b′ has diagonal
action.

In the recent article [15], under certain technical assumptions, we proved that
Mg

p (Vλ) has (finite or infinite) Jordan-Hölder series over g′, and enumerated the
b′-highest weights µ appearing in the series. We also computed the dimension
m(µ, λ) of the vector space of b′-highest weights of weight µ as a function of µ and
λ. Further we gave a procedure for producing explicit formulas for some (but not
all) b′-highest weight vectors.
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As an example, we discussed Lie G2
i
↪→ so(7). Restricting our attention to the

parabolic subalgebra p ' p(1,0,0) and the 6 infinite families of highest weights xε1,
xε1 + ω2, xε1 + ω3, xε1 + 2ω2, xε1 + ω1 + ω2, xε1 + 2ω3 we computed in [15] all
b′-singular vectors with b′-dominant weights. From the theory of generalized Verma
modules we know that, depending on the integrality and dominance of the b-highest
weight, Mg

p (Vλ) has b-singular (and therefore b′-singular) vectors other than the
highest weight vector. Therefore these vectors give additional b′-singular vectors
whose weights are not b′-dominant (and are not computed in [15]).

Fix the pair Lie G2
i
↪→ so(7) and fix the parabolic subalgebra to be the parabolic

subalgebra p(1,0,0) ⊂ so(7) obtained by crossing out the first (long) root of so(7).
Let

p′(1,0) = i−1(Lie G2) .

In the present article, for the family of so(7)-highest weights of the form xε1, we
prove that if x ∈ {−3/2,−1/2, 1/2, . . .}, the module Mg

p(1,0,0)(Vxε1) has, besides its
highest weight vector, exactly one p′(1,0)-singular vector, and has no p′(1,0)-singular
vectors otherwise. Here we recall that, for an arbitrary parabolic subalgebra p′,
a p′-singular vector is defined as a vector that is annihilated by all elements of
the Levi part of p′, and therefore has weight that projects to zero onto the Levi
part of p′ (“weight of scalar type”). Our result has a somewhat unusually sounding
consequence: the p′(1,0)-singular vector in M

so(7)
p(1,0,0)(Vxε1) must automatically be

p(1,0,0)-singular. This fact must necessarily fail to generalize for sufficiently large
values of a, b and highest weights of the form λ = xω1 + aω2 + bω3. Indeed, the
number of p(1,0,0)-singular vectors in M so(7)

p(1,0,0)(Vλ) is uniformly bounded, while the
number m(xω1, xω1 + aω2 + bω3) grows as a linear function of a and b.

Finally, we note that the p′-singular vectors constructed here correspond to
non-standard homomorphisms of generalized Verma modules for both so(7) and
Lie G2. We would like to emphasize that our example goes beyond the compatible
couples of Lie algebras discussed in [10], [11].

A geometric motivation for the branching problem can be described as follows.
Let G,G′ be the connected and simply connected Lie groups with Lie algebras g, g′.
Let P be the parabolic subgroup of G with Lie algebra p, and let L ⊂ P be its
Levi factor. Then there is a well-known equivalence between invariant differential
operators acting on induced representations and homomorphisms of generalized
Verma modules, realized by the natural pairing

IndGP (Vλ(L)∗)×Mg
p (Vλ) −→ C ,(1)

where Vλ(L) denotes the finite-dimensional irreducible L-module, Vλ(L)∗ is its
dual, and IndGP denotes induction from P to G. As a consequence, the singular
vectors constructed in the article determine invariant differential operators acting
between induced representations of i(G′). It is quite interesting to construct these
invariant differential operators, in particular their curved extensions as lifts to
homomorphisms of semiholonomic generalized Verma modules.
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Our motivation for the particular example Lie G2
i
↪→ so(7) comes from a natural

problem in conformal geometry of dimension 5 (note that so(7) is the complexifica-
tion of the conformal Lie algebra in dimension 5), see [4] and references therein.
A geometrical characterization of the reduction of the structure group with Lie
algebra so(7) down to Lie G2 for a given inducing representation Vλ is then given by
invariant differential operators acting on sections of the associated vector bundles,
intertwined by actions of so(7) and Lie G2.

The structure of the article is as follows. In Section 2 we recall basic conventions
on so(7),Lie G2, i(Lie G2) and the structure of their parabolic subalgebras relative
to the embedding i. In Section 3, we use (1) to transform the problem of finding
differential invariants for (so(7),Lie G2),Vλ into an algebraic question about ho-
momorphisms between generalized Verma modules, corresponding to solutions of
the branching problem. In Section 4 we fix the conformal parabolic subalgebra
to be p(1,0,0) ⊂ so(7). Therefore by Lemma 2.1 the subalgebra p′ is given by
i(p′) = i(g′)∩ p and therefore equals the subalgebra p′(1,0) obtained by crossing out
the first root of Lie G2. We note that p′(1,0) is not compatible (g, p). We further
fix the highest weight to be λε1 (here we use λ as a scalar). We then apply the
distribution Fourier transform (the “F-method”) developed in [10], [11] to obtain
our main result Theorem 4.2.

2. Branching problem and (non-compatible) parabolic subalgebras
for the pair LieG2

i
↪→ so (7)

In the present section we introduce the Lie theoretic conventions for the com-
plex Lie algebra so(7), exceptional Lie algebra Lie G2, and Levi resp. parabolic
subalgebras p of so(7) relative to parabolic subalgebras i(p′) of i(Lie G2). These
will be used in the subsequent Section 3, where we employ the F-method. For more
detailed review, cf. [15].

We start by fixing a Chevalley-Weyl basis of the Lie algebra so(2n+ 1). Let the
defining vector space V of so(2n+1) have a basis e1, . . . en, e0, e−1, . . . e−n, where the
defining symmetric bilinear form B of so(2n+ 1) is given by B(ei, ej) := 0, i 6= −j,
B(ei, e−i) := 1, B(ei, e0) := 0, B(e0, e0) := 1, or alternatively defined as an element
of S2(V ∗),

(2) B :=
n∑

i=−n
e∗i ⊗ e∗−i = (e∗0)2 + 2

n∑
i=1

e∗i e
∗
−i,

under the identification v∗w∗ := 1
2! (v∗ ⊗ w∗ + w∗ ⊗ v∗).

In the basis e1, . . . en, e0, e−1, . . . e−n, the matrices of the elements of so(2n+ 1)
are of the form
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A

v1
...
vn

C = −CT

w1 . . . wn 0 −v1 . . . −vn

D = −DT

−w1
...
−wn

−AT


,

i.e., all matrices C such that AtB + BA = 0. We fix e∗1, . . . e∗n, e∗0, e∗−1, . . . e
∗
−n to be

basis of V ∗ dual to e1, . . . en, e0, e−1, . . . e−n. We identify elements of End(V ) with
elements of V ⊗ V ∗. In turn, we identify elements of End(V ) with their matrices
in the basis e1, . . . , en, e0, e−1, . . . , e−n.

Fix the Cartan subalgebra h of so(2n + 1) to be the subalgebra of diagonal
matrices, i.e., the subalgebra spanned by the vectors ei⊗e∗i−e−i⊗e∗−i. Then the basis
vectors e1, . . . en, e0, e−1, . . . e−n are a basis for the h-weight vector decomposition
of V . Let the h-weight of ei, i > 0, be εi. Then the h-weight of e−i, i > 0 is −εi, and
an h-weight decomposition of so(2n+1) is given by the elements gεi−εj := ei⊗e∗j −
e−j ⊗ e∗−i, g±(εi+εj) := e±i⊗ e∗∓j − e±j ⊗ e∗∓i and g±εi :=

√
2
(
e±i ⊗ e∗0 − e0 ⊗ e∗∓i

)
,

where i, j > 0.
Define the symmetric bilinear form 〈•, •〉g on h∗ by 〈εi, εj〉g = 1 if i = j and

zero otherwise.
The root system of so(2n+1) with respect to h is given by ∆(g) := ∆+(g)∪∆−(g),

where we define

(3) ∆+(g) := {εi ± εj |1 ≤ i < j ≤ n} ∪ {εi|1 ≤ i ≤ n}

and ∆−(g) := −∆+(g). We fix the Borel subalgebra b of so(2n + 1) to be the
subalgebra spanned by h and the elements gα, α ∈ ∆+(g). The simple positive
roots corresponding to b are then given by

η1 := ε1 − ε2, . . . , ηn−1 := εn−1 − εn, ηn := εn .

For the remainder of this Section we fix the odd orthogonal Lie algebra to be
so(7). We order the 18 roots of so(7) in graded lexicographic order with respect
to their simple basis coordinates. We then label the negative roots by the indices
−9, . . . ,−1 and the positive roots by the indices 1, . . . , 9. Finally, we abbreviate the
Chevalley-Weyl generator gα ∈ so(7) by gi, where i is the label of the corresponding
root. For example, g±1 = g±(ε1−ε2), g±2 = g±(ε2−ε3), g±3 = g±(ε3) are the simple
positive and negative generators, the element g−9 = g−ε1−ε2 is the Chevalley-Weyl
generator corresponding to the lowest root, and so on. We furthermore set h1 :=
[g1, g−1], h2 := [g2, g−2], h3 := 1/2[g3, g−3].

Let now g′ = Lie G2. One way of defining the positive root system of Lie G2 is
by setting it to be the set of vectors

(4) ∆(g′) := {±(1, 0),±(0, 1),±(1, 1),±(1, 2),±(1, 3),±(2, 3)} .
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We set α1 := (1, 0) and α2 := (0, 1). We fix a bilinear form 〈•, •〉g′ on h′, proportional
to the one induced by Killing form by setting(

〈α1, α1〉g′ 〈α1, α2〉g′
〈α2, α1〉g′ 〈α2, α2〉g′

)
:=
(

2 −3
−3 6

)
.(5)

In an 〈•, •〉g′ -orthogonal basis the root system of Lie G2 is drawn in Figure 1.

α2

α1

Fig. 1: The root system of Lie G2

Similarly to the so(7) case, we order the 12 roots of Lie G2 in the graded
lexicographic order with respect to their simple basis coordinates, and label the
roots with the indices −6, . . . ,−1, 1, . . . , 6. We fix a basis for the Lie algebra Lie G2
by giving a set of Chevalley-Weyl generators g′i, i ∈ {±1, · · · ± 6}, and by setting
h′1 := [g′1, g′−1], h′2 := 3[g′2, g′−2]. Just as in the so(7) case, we ask that the generator
g′±i correspond to the root space labelled by ±i.

All embeddings Lie G2
i
↪→ so(7) are conjugate over C. One such embedding is

given via
i(g′±2) := g±2, i(g′±1) := g±1 + g±3 .

As g′±1, g
′
±2 generate Lie G2, the preceding data determines the map i and one

can directly check it is a Lie algebra homomorphism. Alternatively, we can use
i(g′±1), i(g′±2) to generate a Lie subalgebra of so(7), verify that this subalgebra is
indeed 14-dimensional and simple, and finally use this 14-dimensional image to
compute the structure constants of Lie G2.

We denote by ω1 := ε1, ω2 := ε1 + ε2 and ω3 := 1
2 (ε1 + ε2 + ε3) the fundamental

weights of so(7) and by ψ1 := 2α1 + α2, ψ2 := 3α1 + 2α2 the fundamental weights
of Lie G2.

Let pr: h∗ → h′
∗ be the map naturally induced by i. Then

(6) pr(ε1 − ε2︸ ︷︷ ︸
η1

) = pr( ε3︸︷︷︸
η3

) = α1, pr(ε2 − ε3︸ ︷︷ ︸
η2

) = α2,

or equivalently
pr(ω1) = pr(ω3) = ψ1 , pr(ω2) = ψ2 .

Conversely, ι : h′
∗ → h∗ is the map

(7) ι(α2) = 3η2 = 3ε2 − 3ε3 , ι(α1) = η1 + 2η3 = ε1 − ε2 + 2ε3 .

According to the usual convention, to an arbitrary subset of the simple positive
roots of so(7) (“crossed-out” roots) we assign a parabolic subalgebra by requesting
that the crossed out root spaces lie outside of the Levi part of p. In turn, we
parametrize the subsets of the simple positive roots of so(7) by triples of 0’s and 1’s
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with 1 standing for “crossed-out” root. Finally, we index the parabolic subalgebra
by the corresponding triples of 0’s and 1’s. For example, by p(1,1,0) we denote
the parabolic subalgebra of so(7) whose Levi part has roots ±ε3. Define the four
parabolic subalgebra b′ ' p′(1,1), p

′
(1,0), p

′
(0,1), p

′
(0,0) ' Lie G2 of Lie G2 in analogous

fashion.
We recall from [15] that the pairwise inclusions between the parabolic subalgebras

of so(7) and the embeddings of the parabolic subalgebras of Lie G2 are given as
follows.

Lemma 2.1. For the pair G2
i
↪→ so(7), let h, b, p denote Cartan, Borel and parabolic

subalgebras of so(7) and h′, b′, p′ denote Cartan, Borel and parabolic subalgebras of
Lie G2 with the assumptions that i(h′) ⊂ h ⊂ b, i(b′) ⊂ b ⊂ p, b′ ⊂ p′. Then we
have the following inclusion diagram for the possible values of p, p′.

p(0,0,0) ' so(7)

p(1,0,0)

88qqqqqqqqqqq
p(0,1,0)

OO

p(0,0,1)

ffMMMMMMMMMMM
p′(0,0) ' Lie G2

kkVVVVVVVVVVVVVVVVVVV

p(1,1,0)

OO 88qqqqqqqqqqqq
p(1,0,1)

ffMMMMMMMMMMMM

88qqqqqqqqqqqq
p(0,1,1)

ffMMMMMMMMMMMM

OO

p′(0,1)

ffMMMMMMMMMM

llYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

p(1,1,1) ' b

OO 88qqqqqqqqqqqq

ffMMMMMMMMMMMM
p′(1,0)

kkVVVVVVVVVVVVVVVVVVVVVVVVVV

OO

p′(1,1) ' b′

OOkkVVVVVVVVVVVVVVVVVVVVVV

AA������������������

The arrows in the diagram indicate the inclusions between the corresponding para-
bolic subalgebras. In addition, if an arrow is drawn between the parabolic subalgebra
p′ of Lie G2 and a parabolic subalgebra p of so(7), then p′ = i−1(i(g′) ∩ p).

The structure of so(7) as a module over the Levi part of parabolic subalgebras
of Lie G2 is described in detail in [15, Lemma 5.2] (the lemma is too large to recall
here) and we will implicitly use it throughout Section 4.

Note that the conformal parabolic subalgebra p(1,0,0) ⊂ so(7) and the parabolic
subalgebra p′(1,0) ⊂ Lie G2 are not compatible.

3. Branching problem and the F-method
(algebraic distribution Fourier transformation)

In the present section we briefly review the F-method developed in [10], [11]. It is
based on the analytical tool of algebraic Fourier transformation on the commutative
nilradical n of p, which allows to find singular vectors in generalized Verma modules
exploiting the algebraic Fourier transform and classical invariant theory. The
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method converts a problem in the universal enveloping algebra of a Lie algebra into
a system of partial or ordinary special differential equations acting on a polynomial
ring. In examples known to us, the conversion to partial differential equations yields
a lot more tractable problem than the starting universal enveloping algebra one.

Let G̃ be a connected real reductive Lie group with the Lie algebra g̃, P̃ ⊂ G̃
a parabolic subgroup and p̃ its Lie algebra, p̃ = l̃ ⊕ ñ the Levi decomposition of
p̃ and ñ− its opposite nilradical, g̃ = ñ− ⊕ p̃. The corresponding Lie groups are
denoted Ñ−, L̃, Ñ . Let p denote the fibration p : G̃→ G̃/P̃ and let M̃ := p(Ñ− · P̃ )
denote the big Schubert cell of G̃/P̃ . Then the exponential map

ñ− → M̃ , X 7→ exp(X) · o ∈ G̃/P̃ , o := e · P̃ ∈ G̃/P̃ , e ∈ G̃

gives the canonical identification of the vector space n− with M̃ .
Given a complex finite dimensional P̃ -module V (in the present section we do

not indicate explicitly its highest weight), let IndG̃P̃ (V) denote the space of smooth
sections of the homogeneous vector bundle G̃×P̃ V→ G̃/P̃ , i.e.,

IndG̃P̃ (V) = C∞(G̃,V)P̃ := {f ∈ C∞(G̃,V) | f(g · p) = p−1 · f(g), g ∈ G̃, p ∈ P̃} .

Let π̃ denote the induced representation of G̃ on IndG̃P̃ (V).
Let U(g̃C) denote the universal enveloping algebra of the complexified Lie algebra

g̃C. Let V∨ be the dual (contragredient) representation to V. The generalized Verma
module M g̃

p̃ (V∨) is defined by

M g̃
p̃ (V∨) := U(g̃)⊗U(p̃) V∨ ,

and there is a (g̃, P̃ )-invariant natural pairing between IndG̃P̃ (V) and M g̃
p̃ (V∨),

described as follows. Let D′(G̃/P̃ )⊗ V∨ be the space of all distributions on G̃/P̃
with values in V∨. The evaluation defines a canonical equivariant pairing between
IndG̃P̃ (V) and D′(G̃/P̃ )⊗ V∨, and this restricts to the pairing

(8) IndG̃P̃ (V)×D′[o](G̃/P̃ )⊗ V∨ → C ,

where D′(G̃/P̃ )[o] ⊗ V∨ denotes the space of distributions supported at the base
point o ∈ G̃/P̃ . As shown in [1], the space D′[o](G̃/P̃ )⊗ V∨ can be identified, as
an U(g̃)-module, with the generalized Verma module M g̃

p̃ (V∨).
Moreover, given two inducing representations V and V′ of P̃ , the space of

G̃-equivariant differential operators from IndG̃P̃ (V) to IndG̃P̃ (V′) is isomorphic to the
space of (g̃, P̃ )-homomorphisms between M g̃

p̃ (V′ ∨) and M g̃
p̃ (V∨). The homomor-

phisms of generalized Verma modules are determined by their singular vectors, and
the F-method translates the problem of finding singular vectors to the study of
distributions on G̃/P̃ supported at the origin, and consequently to the problem of
finding the solution space for a system of partial differential equations acting on
polynomials Pol(ñ) on ñ.

The representation π̃ of G̃ on IndG̃P̃ (V) has the infinitesimal representation dπ̃
of g̃C. In the non-compact case, π̃ acts on functions on the big Schubert cell
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ñ− ' M̃ ⊂ G̃/P̃ with values in V. The latter representation space can be identified
via the exponential map with C∞(ñ−,V). The action dπ̃(Z) of elements Z ∈ ñ on
C∞(ñ−, V ) is realized by vector fields on ñ− with coefficients in Pol(ñ−)⊗ End V,
see [12].

By the Poincaré-Birkhoff-Witt theorem, the generalized Verma module M g̃
p̃ (V∨)

is isomorphic to U(ñ−) ⊗ V∨ ' DiffÑ−(ñ−) ⊗ V∨ as an l̃-module. In the special
case when ñ− is commutative, DiffÑ−(ñ−) is the space of holomorphic differential
operators on ñ− with constant coefficients regarded as a subspace of the Weyl
algebra Diff(ñ−) of algebraic differential operators on ñ−. Moreover, the operators
dπ̃ ∨(X), X ∈ g̃, are realized as differential operators on ñ− with coefficients in
End(V∨). The application of Fourier transform on ñ− gives the identification of
the generalized Verma module DiffÑ−(ñ−)⊗ V∨ with the space Pol(ñ)⊗ V∨, and
the action dπ̃ ∨ of g̃ on DiffÑ−(ñ−)⊗ V∨ translates to the action (dπ̃ ∨)F of g̃ on
Pol(ñ)⊗V∨ and is realized again by differential operators with values in End(V∨).
The explicit form of (dπ̃ ∨)F (X) is easy to compute by Fourier transform from the
explicit form of dπ̃ ∨.

The previous framework can be applied to any pair of couples P̃ ⊂ G̃ and P̃ ′ ⊂ G̃′
of Lie groups for which G̃′ ⊂ G̃ is a reductive subgroup of G̃ and P̃ ′ = P̃ ∩ G̃′ is a
parabolic subgroup of G̃′. The Lie algebras of G̃′, P̃ ′ are denoted by g̃′, p̃′. In this
case, ñ′ := ñ ∩ g̃′ is the nilradical of p̃′, and L̃′ = L̃ ∩ G̃′ is the Levi subgroup of
P̃ ′. We are interested in the branching problem for generalized Verma modules
M g̃

p̃ (V∨) over, g̃, i.e., in the structure of the restriction of M g̃
p̃ (V∨) to g̃′.

Definition 3.1. Let V be an irreducible P̃ -module. Define the L̃′-module
M g̃

p̃ (V∨)ñ′ := {v ∈M g̃
p̃ (V∨)| dπ ∨(Z)v = 0 for all Z ∈ ñ′}.(9)

The set M g̃
p̃ (V∨)ñ′ is a completely reducible l̃′-module. Note that for G̃ = G̃′,

M g̃
p̃ (V∨)ñ′ is necessarily finite-dimensional. However for G̃ 6= G̃′, the set M g̃

p̃ (V ∨)n′

will in general (but not necessarily, as illustrated in the next section) be infinite
dimensional. An irreducible L̃′-submodule W∨ of M g̃

p̃ (V∨)ñ′ gives an injective
U(g̃′)-homomorphism from M g̃′

p̃′ (W
∨) to M g̃

p̃ (V∨). Dually, we get an equivariant
differential operator acting from IndG̃P̃ (V) to IndG̃

′

P̃ ′(W).
Using the F-method, the space of L̃′-singular vectors M g̃

p̃ (V∨)ñ′ is realized in
the ring of polynomials on ñ valued in V∨ and equipped with the action of the Lie
algebra via (dπ̃ ∨)F .
Definition 3.2. We define

Sol(g̃, g̃′,V∨) := {f ∈ Pol(ñ)⊗ V∨| (dπ̃ ∨)F (Z)f = 0 for all Z ∈ ñ′} .(10)

Then the inverse Fourier transform gives an L̃′-isomorphism
(11) Sol(g̃, g̃′; V∨) ∼→M g̃

p̃ (V∨)ñ′ .

An explicit form of the action (dπ̃ ∨)F (Z) leads to a system of differential equation
for elements in Sol. The transition from M g̃

p̃ (V∨)ñ′ to Sol transforms the problem
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of computation of singular vectors in generalized Verma modules into a system of
partial differential equations.

In the dual language of differential operators acting on principal series represen-
tation, the set of G̃′-intertwining differential operators from IndG̃P̃ (V) to IndG̃

′

P̃ ′(V
′)

is in bijective correspondence with the space of all (g̃′, P̃ ′)-homomorphisms from
M g̃′

p̃′ (V
′ ∨) to M g̃

p̃ (V∨).

4. Lie G2 ∩ p′-singular vectors in the so (7)-generalized Verma modules
of scalar type for the conformal parabolic subalgebra

In this subsection we determine the i(Lie G2) ∩ p-singular vectors in the family
of g̃ = so(7) generalized Verma modules M so(7)

p(1,0,0)(Cλ) induced from character
χλ : p̃→ C of the weight λε1 (ε1 is the first fundamental weight of so(7)). In this
way, the results computed in the present section are analytic counterpart realized
by F-method of the algebraic results developed in [15].

Denote by vλ the highest weight vector of the generalized Verma so(7)-module
M

so(7)
p(1,0,0)(Vλ). Note that as i(h′2) = 3h2 = 3hε2−ε3 , i(h′1) = h1 +2h2 = hε1−ε2 +2hε3 ,
〈µ, α1〉 = 0 and 〈µ, α2〉 = λ, we have that the h′-weight of vλ is µ = λ(α1 + 2α2).

Let n− denote the nilradical opposite to the nilradical of the parabolic subalgebra
p. Then n− is commutative,

U(n−)⊗ V∨ ' Pol
( ∂

∂x1
, . . . ,

∂

∂x5

)
⊗ Cλ

and the variables ∂
∂x1

, . . . , ∂
∂x5

denote the following so(7)-root space generators:

∂
∂x1

:= g−ε1+ε2 = g−1 ,
∂
∂x2

:= g−ε1−ε3 = g−8 ,
∂
∂x3

:= g−ε1 = g−6 ,
∂
∂x5

:= g−ε1+ε3 = g−4,
∂
∂x4

:= g−ε1−ε2 = g−9 .

Here, we recall that [xi, ∂
∂xj

] = −[ ∂
∂xj

, xi] =
{

0 if i 6= j
−1 if i = j

is the adjoint action

of the differential operator xi on the differential operator ∂
∂xj

.
By Lemma 2.1, the simple part of the Levi factor of i(p′) is isomorphic to

sl(2) and its action on n− can be extended to action on U(n−) ' S?(n−). The
elements h := h2, e := g2, f := g−2 give the standard h, e, f -basis of sl(2), i.e.,
[e, f ] = h, [h, e] = 2e, [h, f ] = −2f . Then the action of h on n− is the adjoint
action of x5

∂
∂x5

+ x4
∂
∂x4
− x2

∂
∂x2
− x1

∂
∂x1

, the action of e is the adjoint action of
x4

∂
∂x2
− x5

∂
∂x1

and the action of f is the adjoint action of −x1
∂
∂x5

+ x2
∂
∂x4

.
We now proceed to generate all l′-invariant singular vectors in M so(7)

p(1,0,0)(Cλ), i.e.,
the singular vectors that induce i(Lie G2)-generalized Verma modules induced from
character (scalar generalized Verma modules). To do that we need the following
lemma from classical invariant theory of reductive Lie algebras.
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Lemma 4.1. Then the sl(2)-invariants of S?(n−) are an associative algebra gene-
rated by the elements

(12)
u1 := ∂

∂x1

∂

∂x4
+ ∂

∂x2

∂

∂x5
= g−1g−9 + g−8g−4

u2 := ∂

∂x3
= g−6 .

Proof. Direct computation shows that u1, u2 are invariants. Alternatively, as
the direct sum of two two-dimensional sl(2)-modules gives a natural embedding
sl(2) ↪→ sl(2) × sl(2), we can view u1 as the invariant element induced by the
defining symmetric bilinear form of so(4) ' sl(2) × sl(2). Let the positive root
of sl(2) be1 η , and the multiplicity of the sl(2)-module with highest weight tη2
in Sl(n−) be b(l, t). Denoting by x, z a couple of formal variables, we have that∑
l∈Z≥0,t∈Z≥0

b(l, t)(zlxt + zlx−1−t) is the power series expansion of the rational
function

(1− x−2) 1
(1− zx)2

1
(1− zx−1)2

1
(1− z) .

Direct computation shows that b(l, t) equals −1/2t2 + 1 + 1/2tl + 1/2l + 1/2t
whenever l + t is even and −1/2t2 + 1/2 + 1/2tl + 1/2l whenever l + t is odd,
and l, t satisfy the inequalities l ≥ t ≥ 0. Finally, substituting with t = 0, we get
b(l, 0) = 1 + l/2 for even l and b(l, 0) = 1/2 + l/2. For a fixed l, this is exactly the
dimension of the vector space generated by the linearly independent invariants
uq1u

r
2 ∈ Sl(n−) with r + 2q = l, which completes the proof of our Lemma. �

From the definition of embedding map i it follows that

ad
(
i(g′2)

)
= −x2

∂

∂x4
+ x1

∂

∂x5
,

ad(i(g′−2)) = −x4
∂

∂x2
+ x5

∂

∂x1
,

1
3ad(i(h′2)) = ad(h2) = [ad(i(g′2)), ad(i(g′−2))]

= x5
∂

∂x5
+ x4

∂

∂x4
− x2

∂

∂x2
− x1

∂

∂x1
,

ad(i(h′1)) = −x5
∂

∂x5
+ x3

∂

∂x3
+ 3x2

∂

∂x2
+ 2x1

∂

∂x1
,

and therefore

(13) ad
(
i(2h′1 + h′2)

)
= x5

∂

∂x5
+ 3x4

∂

∂x4
+ 2x3

∂

∂x3
+ 3x2

∂

∂x2
+ x1

∂

∂x1

1η is of course the projection of long Lie G2-root α2 = pr(ε2 − ε3) from the dual of the
two-dimensional Cartan subalgebra of Lie G2 to the dual of the one-dimensional Cartan subalgebra
of a long-root sl(2)-subalgebra of Lie G2
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represents the central element of the Levi factor i(l′). Its action therefore naturally
induces a grading gr on the Weyl algebra of n− in the variables{

x1, x2, x3, x4, x5,
∂

∂x1
,
∂

∂x2
,
∂

∂x3
,
∂

∂x4
,
∂

∂x5

}
,

via

(14)

−gr (x1) = gr
(

∂

∂x1

)
= −1 , −gr (x2) = gr

(
∂

∂x2

)
= −3,

−gr(x3) = gr
(

∂

∂x3

)
= −2 , −gr(x4) = gr

(
∂

∂x4

)
= −3,

−gr (x5) = gr
(

∂

∂x5

)
= −1 .

In particular, we get that the invariants u1 = ∂
∂x1

∂
∂x4

+ ∂
∂x2

∂
∂x5

and u2 =
(
∂
∂x3

)2

are homogeneous with respect to the gr-grading.
Let ξ1, . . . ξ5 be formal variables, Fourier-dual with respect to x1, . . . , xn. Let

∂1 := ∂

∂ξ1
, . . . , ∂5 := ∂

∂ξ5
,

denote the derivatives in the ξi-variables. We recall that the distributive Fourier
transform F maps the Weyl algebra generated by x1, . . . , xn,

∂
∂x1

, . . . , ∂
∂x5

to the
Weyl algebra generated by ∂1, . . . , ∂5, ξ1, . . . , ξ5 via

F (xi) := ∂i F

(
∂

∂xi

)
:= ξi .

As the Fourier transform is a Lie algebra homomorphism, by Lemma 4.1 the
subalgebra of l′s = sl(2)-invariants with respect to the Fourier dual representation
is the polynomial ring Pol[ξ1ξ4 + ξ2ξ5, ξ3].

Theorem 4.2. Let vλ be the highest weight vector of the so(7)-generalized Verma
module M so(7)

p(1,0,0)(Cλ) induced from character χλ, λ ∈ C. Let N ∈ N be a positive
integer and Ai ∈ C, i ∈ N a collection of complex numbers such that at least one
of them is non-zero. Let

(15) u · vλ :=
N∑
k=0

Aku
k
1u

N−k
2 · vλ ,

where u1, u2 are given by (12).
1. A vector u · vλ is i(Lie G2) ∩ p-singular (“singular vector of scalar type”)

of homogeneity 2N if and only if λ = N − 5/2 and u = (2u1 + u2)N =
(2u1 + u2)λ+5/2.

2. M so(7)
p(1,0,0)(Cλ) has no i(Lie G2) ∩ p-singular vector of homogeneity 2N + 1.

3. A vector v ∈M so(7)
p(1,0,0)(Cλ), not proportional to vλ, is so(7) ∩ p-singular if

and only if λ = N − 5/2 and v = u · vλ is the vector given in 1.
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Proof. 1. By Lemma 4.1 and Section 2 a p′-singular vector must be polynomial
in u1 and u2 and therefore a homogeneous p′-singular vector of homogeneity 2N
must be of the form (15).

First we determine the action of the second simple positive root g2 in the Fourier
dual representation dπ̃(ad(i(g′1))), acting on Pol[ξ1, . . . , ξ5].

Let ni be non-negative integers. Then

i(g′1)·(ξn1
1 ξn2

2 ξn3
3 ξn4

4 ξn5
5 · vλ) =

(
(−n2

1 + n1)ξn1−1
1 ξn2

2 ξn3
3 ξn4

4 ξn5
5

− n2ξ
n1
1 ξn2−1

2 ξn3+1
3 ξn4

4 ξn5
5

+ n1λξ
n1−1
1 ξn2

2 ξn3
3 ξn4

4 ξn5
5 + (n2

3 − n3)ξn1
1 ξn2

2 ξn3−2
3 ξn4+1

4 ξn5
5

+ 2n3ξ
n1
1 ξn2

2 ξn3−1
3 ξn4

4 ξn5+1
5 − n1n5ξ

n1−1
1 ξn2

2 ξn3
3 ξn4

4 ξn5
5

+ n2n5ξ
n1
1 ξn2−1

2 ξn3
3 ξn4+1

4 ξn5−1
5 − n1n2ξ

n1−1
1 ξn2

2 ξn3
3 ξn4

4 ξn5
5

− n1n3ξ
n1−1
1 ξn2

2 ξn3
3 ξn4

4 ξn5
5
)
· vλ

= (−ξ1∂
2
1 − ξ3∂2 + λ∂1 + ξ4∂

2
3 + 2ξ5∂3 − ξ5∂1∂5 + ξ4∂2∂5

− ξ2∂1∂2 − ξ3∂1∂3) · (ξn1
1 ξn2

2 ξn3
3 ξn4

4 ξn5
5 ) · vλ .(16)

Let P (λ) denote the differential operator on C[ξ1, ξ2, ξ3, ξ4, ξ5] obtained in the
following computation:

(−ξ1∂
2
1− ξ3∂2 + λ∂1 + ξ4∂

2
3 + 2ξ5∂3 − ξ5∂1∂5 + ξ4∂2∂5 − ξ2∂1∂2 − ξ3∂1∂3)

= (−ξ3∂2 + ξ4∂
2
3 + 2ξ5∂3 + (−ξ5∂1 + ξ4∂2)∂5

− (ξ1∂1 + ξ2∂2 + ξ3∂3 − λ)∂1)

= (−ξ3∂2 + ξ4∂
2
3 + 2ξ5∂3 + ∂5(−ξ5∂1 + ξ4∂2)

− (ξ1∂1 + ξ2∂2 + ξ3∂3 − λ− 1)∂1) .(17)

We compute

∂1 · (ub1
1 u

b2
2 ) = b1ξ4u

b1−1
1 ub2

2 ,

∂2 · (ub1
1 u

b2
2 ) = b1ξ5u

b1−1
1 ub2

2 ,

(ξ1∂1 + ξ2∂2) · (ub1
1 u

b2
2 ) = b1u

b1
1 u

b2
2 ,

∂3 · (ub1
1 u

b2
2 ) = 2b2ξ3u

b1
1 u

b2−1
2 ,

∂2
3 · (u

b1
1 u

b2
2 ) = 2b2(2b2 − 1)ub1

1 u
b2−1
2 ,
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and so

(−ξ3∂2+ ξ4∂
2
3 +2ξ5∂3+∂5(−ξ5∂1+ξ4∂2)− (ξ1∂1+ξ2∂2+ξ3∂3−λ−1)∂1) · (ub1

1 u
b2
2 )

= (−ξ3∂2 + ξ4∂
2
3 + 2ξ5∂3 − (ξ1∂1 + ξ2∂2 + ξ3∂3 − λ− 1)∂1) · (ub1

1 u
b2
2 )

= −b1ξ3ξ5u
b1−1
1 ub2

2 + 2b2(2b2 − 1)ξ4u
b1
1 u

b2−1
2 + 4b2ξ5ξ3u

b1
1 u

b2−1
2

− (ξ1∂1 + ξ2∂2 + ξ3∂3 − λ− 1) · (b1ξ4u
b1−1
1 ub2

2 )

− b1ξ3ξ5u
b1−1
1 ub2

2 + 2b2(2b2 − 1)ξ4u
b1
1 u

b2−1
2 + 4b2ξ5ξ3u

b1
1 u

b2−1
2

+ (−b1+1+λ+1−2b2)b1ξ4u
b1−1
1 ub2

2 = 2b2((2b2 − 1)ξ4 + 2ξ5ξ3)ub1
1 u

b2−1
2

+ b1
(
(−b1−2b2+λ+2)ξ4 − ξ3ξ5)ub1−1

1 ub2
2 .(18)

The operator P (λ) is homogeneous with respect to the grading in (14), and its
application to a homogeneous polynomial in u1 = u1(ξ1, . . . , ξ5), u2 = u2(ξ1, . . . , ξ5)
yields

P (λ)(
N∑
k=0

Aku
k
1u

N−k
2 ) =

N∑
k=0

Ak(2(N − k)((2(N − k)− 1)ξ4 + 2ξ5ξ3)uk1uN−k−1
2

+ k((−k − 2(N − k) + λ+ 2)ξ4 − ξ3ξ5)uk−1
1 uN−k2 )

=
N+1∑
s=1

2As−1(N − (s− 1))((2(N − (s− 1))− 1)ξ4

+ 2ξ5ξ3)u(s−1)
1 u

N−(s−1)−1
2

+
N∑
k=0

kAk((−k − 2(N − k) + λ+ 2)ξ4 − ξ3ξ5)uk−1
1 uN−k2

=
N∑
s=1

(2As−1(N − s+ 1)((2N − 2s+ 1)ξ4 + 2ξ5ξ3)

+ sAs((s− 2N + λ+ 2)ξ4 − ξ3ξ5))us−1
1 uN−s2 ).

The 2N summands of the form ξ4u
s−1
1 uN−s2 and ξ3ξ5u

s−1
1 uN−s2 are linearly inde-

pendent and therefore the above sum is zero if and only if

(19) 2As−1(N − s+ 1)
(
(2N −2s+ 1)ξ4 + 2ξ5ξ3

)
+ sAs

(
(s−2N +λ+ 2)ξ4− ξ3ξ5

)
equals zero for all values of s. When s = N , the above sum becomes

2AN−1(ξ4 + 2ξ3ξ5) +NAN ((−N + λ+ 2)ξ4 − ξ3ξ5) .

It is a straightforward check that if AN vanishes, then AN−1, AN−2, . . . must also
vanish; therefore we may assume AN 6= 0. The vanishing of the coefficient in front
of ξ4 implies AN−1 = − 1

2NAN (−N + λ+ 2) and in turn, the vanishing of the
coefficient in front of ξ3ξ5 implies −5 + 2N − 2λ = 0. Therefore

λ = N − 5/2 .
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Substituting λ back into (19), we get
2As−1(N − s+ 1)((2N − 2s+ 1)ξ4 + 2ξ5ξ3)
+sAs((−N + s− 1/2)ξ4 − ξ3ξ5) = 0.

This implies As = 4(N−s+1)
s As−1 = · · · = 4s

(
N
s

)
A0, which completes the proof of

1).
2. A homogeneous i(Lie G2)∩p-singular vector is, in particular, sl(2) ' i([l′, l′])-sin-

gular and by Lemma 4.1 must be of the form u = ξ3
∑N
k=0 Aku

k
1u

N−k
2 . The applica-

tion of 2ξ5∂3 converts AN (ξ1ξ4 + ξ2ξ5)Nξ3 into 2AN (ξ1ξ4 + ξ2ξ5)Nξ5. Furthermore
2AN (ξ1ξ4 + ξ2ξ5)Nξ5 contains in its binomial expansion 2AN (ξ1ξ4)Nξ5. Direct
check shows that the action of P (λ) on (ξ1ξ4 + ξ2ξ5)N−iξ1+2i

3 for i > 0 does not
contain the monomial (ξ1ξ4)Nξ5. This implies that AN = 0 and by induction,
the polynomial is trivial. Consequently, there is no nontrivial odd homogeneity
polynomial solving the differential equation P (λ).

As an illustration, for N = 0 we have P (λ)(A0ξ3) = 2A0ξ5. This vanishes
provided A0 = 0, which implies the polynomial is trivial.

3. An so(7) ∩ p-singular vector must be i(Lie G2) ∩ p-singular. As the grading
element from (13) maps i(Lie G2) ∩ p-singular to i(Lie G2) ∩ p-singular vectors,
it quickly follows that an i(Lie G2) ∩ p-singular vector is a linear combination
of gr-homogeneous elements (see (14)). From the explicit form of u1 and u2 it
immediately follows that a homogeneous i(Lie G2) ∩ p-singular vector is of the
form (15).

From 1) we know that, other than vλ, there is at most one more homogeneous
i(Lie G2) ∩ p-singular vector, and thus the vector (15) is the only candidate for a
so(7) ∩ p-singular vector. The simple part of l is isomorphic to so(5) and induces
the quadratic form with matrix in the coordinates ξ1, . . . , ξ5

Q =


0 0 0 2 0
0 0 0 0 2
0 0 1 0 0
2 0 0 0 0
0 2 0 0 0

 ,

i.e., the metric of the form
g(ξ1, ξ2, ξ3, ξ4, ξ5) = (dξ3)2 + 2(dξ1 ⊗ dξ4 + dξ4 ⊗ dξ1) + 2(dξ2 ⊗ dξ5 + dξ5 ⊗ dξ2) .
The Fourier transform of the so(5)-invariant Laplace operator associated to Q is

F(4ξ) = Q(ξ1, ξ2, ξ3, ξ4, ξ5) = 4(ξ1ξ4 + ξ2ξ5) + ξ2
3 .

Relying on 4ξ and the binomial formula for (4(ξ1ξ4 + ξ2ξ5) + ξ2
3)s, we see that the

Lie G2 ∩ p-singular vector constructed 1) is indeed so(7) ∩ p-singular. The proof is
complete. �

Remark. As noted in the proof of 3) every i(Lie G2) ∩ p-singular is a linear com-
bination of homogeneous i(Lie G2)∩ p-singular vectors, and therefore Theorem 4.2,
1) and 2) give all i(Lie G2)∩ p-singular vectors (namely, the linear combinations of
vλ and the vector given by (15)).
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We note that an alternative proof of Theorem 4.2, 3) can be given as follows.
From a well known example (see e.g., [3], [10], [11]) of singular vectors in conformal
geometry of dimension 5 describing conformally invariant powers of the Laplace
operator, we know that for λ ∈ {−3/2,−1/2, 1/2, . . .} there exists one so(7) ∩
p-singular vector in M so(7)

p(1,0,0)(Cλ). On the other hand points 1) and 2) of Theorem
4.2 present us with only one such candidate, so that candidate must be the
so(7) ∩ p-singular vector in question.

For λ ∈ {−3/2, −1/2, 1/2, . . .}, the h-weight of the so(7) ∩ p-singular vector in
M

so(7)
p(1,0,0)(Cλ) given by Theorem 4.2 equals (λ−2N)ε1 = (λ−2(λ+5/2))ε1 = (−λ−

5)ε1. Therefore the vector from Theorem 4.2 corresponds to the homomoprhism of
generalized Verma modules

(20) M
so(7)
p(1,0,0)(Cλ) ↪→M

so(7)
p(1,0,0)(C−λ−5) .

In an analogous fashion we conclude that Theorem 4.2 gives a homomorphism of
generalized Verma modules
(21) MLie G2

p′(1,0)
(Vλψ1)→MLie G2

p′(1,0)
(C(−λ−5)ψ1) .

We conclude this paper with the following observation from [14], a proof of which
we include for completeness.

Proposition 4.3. Suppose λ ∈ {−3/2, −1/2, 1/2, . . .}. Then both (20) and (21)
are non-standard homomorphisms.

Proof. 1. Let ρl be the half-sum of the positive roots of l, i.e., ρl := 3/2ε2 + 1/2ε3,
and let sη3 denote the reflection with respect to the simple root η3 = ε3. Then
(22) sη3(λε1 + ρl)− ((−λ− 5)ε1 + ρl) = (2λ+ 5)ε1 − ε3 .

As λ ∈ {−3/2, −1/2, 1/2, . . .}, the expression (22) is a sum of positive roots of
so(7). Therefore by [2, Chapter 7] the non-generalized Verma module with highest
weight (−λ − 5)ε1 + ρl lies in the non-generalized Verma module with highest
weight sη3(λε1 + ρl). Therefore by [13, Proposition 3.3] the homomorphism (20) is
non-standard.

2. Let ρl′ = 1/2α2. Let sα2 denote the reflection with respect to the simple root
α2 (in h′∗). Then

sα1(λψ1 + ρl′)− ((−5− λ)ψ1 + ρl′) = (2λ+ 6)α2 + (4λ+ 16)α1

is clearly a positive integral combination of positive roots of Lie G2 and the
statement follows again by [2, Chapter 7] and [13, Proposition 3.3]. �
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