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COUNTABLY Z-COMPACT SPACES

A.T. Al-Ani

Abstract. In this work we study countably z-compact spaces and z-Lindelof
spaces. Several new properties of them are given. It is proved that every
countably z-compact space is pseuodocompact (a space on which every real
valued continuous function is bounded). Spaces which are countably z-compact
but not countably compact are given. It is proved that a space is countably
z-compact iff every countable z-closed set is compact. Characterizations of
countably z-compact and z-Lindelof spaces by multifunctions are given.

1. Introduction

Countably z-compact spaces are introduced by Frolik [1]. As far as the author
knows, no further study has been done about these spaces except one result
(Theorem 4.6) appeared in [4]. In this paper we study some properties of countably
z-compact spaces and z-Lindelof spaces. We relate countably z-compact spaces
to pseudocompact spaces (Theorem 3.2). Then we give some characterizations of
countably z-compact spaces. The collection of real valued continuous functions
on a topological space X forms a ring denoted by C(X) [2]. Characterizations
of countably z-compact spaces in terms of z-filterbases and z-ideals are given,
similar to countably compact case, where complete regularity is assumed. Here,
no separation property is assumed unless otherwise is stated. For definitions and
notations not stated here see [2].

2. Preliminaries

2.1. Definitions.
Recall that a cozero set in a space X = (X, τ) is an f−1[R \ {0}] with a continuous
function f : X → R. Cozero sets constitute a base of a topology zτ on X. (X, τ) is
said to be z-compact, (countably z-compact resp. z-Lindelof) if zX = (X, zτ) is
compact (countably compact, resp. Lindelof).

Filters and z-ideals here are modifications of their respective definitions [2] by
taking z-closed set (closed in zX) instead of zero-set.
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Definition 2.1. A multifunction α of a space X into a space Y is a set valued
function on X into Y such that α(x) 6= Φ for every x ∈ X. The class of all
multifunctions on X into Y is denoted by m(X,Y ).

Definition 2.2. A multifunction α on X into Y is called closed graph iff its graph
G(α) = (x, y) ∈ X × Y : y ∈ α(x) is closed in X × Y .

3. Some properties of countably z-compact spaces

The proof of the following theorem is straightforward.

Theorem 3.1. The following statements about a space X are equivalent.
(a) X is countably z-compact.
(b) Every countable family of subsets of X each is an intersection of zero sets,

with the finite intersection property has non empty intersection.
(c) Every countable z-filter on X is fixed.
(d) Every countable z-ideal in C(X) is fixed.
(e) zX is countably compact.

Theorem 3.2. Every countably z-compact is pseudocompact.

Proof. Let X be countably z-compact, f be a real valued function on X. The
collection of all sets An = {x : | f(x) |< n}, n is a positive integer, is a countable
open cover of zX, consequently it has a finite subcover {Ai : i = 1, 2, . . . ,m}. Then
X = Am, and |f(x)| < m for each x ∈ X. Thus f is bounded. �

Example 3.3 ([3], [5]). Let N be the set of positive integers. Topologize N by
taking a subbase the collection β = {Up(b) : b+ np ∈ N, p prime, b is not divisible
by p}.
This space is a T2 countably z-compact Lindelof space which is not countably
compact.

Theorem 3.4. A space X is countably z-compact iff every countable closed set in
zX is compact (z-compact).

Proof. By Theorem 3.1(e), X is countably z-compact iff zX is countably compact,
and zX is countably compact iff every countable closed set in zX is compact
(z-compact) ([2], p.79). �

3.1. The space Ψ. The following well-known example Ψ [2] has many nice topo-
logical properties. Although it is not z-compact. It is Hausdorff, completely regular,
first axiom pseudocompact and every subset of it is a Gδ (an intersection of a
countable number of open sets). We describe this space for the sake of completeness.
Let E be a maximal family of infinite subset of sets of natural numbers N such that
the intersection of any two is finite. Let Ψ = {wi : i ∈ E} be a new set of distinct
points. The topology on Ψ is defined as follows: Every point of N is isolated and
the neighborhoods of wi are sets containing wi and all but finite numbers of E.
This space is completely regular pseudocompact not countably z-compact.
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4. A characterization of countable z-compactness in terms of
multifunctions

We give here a characterization of countably z-compact space X in terms of
multifunctions. Equivalently a characterization of countable compactness of zX.
It is to be noted that a space is countably compact iff every countable family of
closed sets with the finite intersection property has a non-empty intersection. We
shall use this fact in the proof of the second part of the following theorem.

Theorem 4.1. A space X is countably z-compact iff for every first countable space
Y and closed graph multifunction α ∈ m(zX, Y ), the image of every closed set in
zX is closed in Y .

Proof. Let zX be countably compact, Y be first countable space, α ∈ m(zX, Y )
with closed graph.
Let K be closed in zX and y ∈ Y \α(K).
Let {Bi : i = 1, 2, · · · } be a countable local base at y.
For each x ∈ K, there exist an open set Vx in zX and Bi in Y such that

(x, y) ∈ Vx ×Bi
and (Vx × Bi) ∩G(α) = Φ. For each i = 1, 2, . . . , let Wi = ∪{Vx : x ∈ K, (x, y) ∈
Vx × Bi}. Then {Wi : i = 1, 2, . . .} is a countable open cover of K. So, it has a
finite subcover {Wi : i = 1, 2, . . . , n}. Now, let W =

⋂n
i=1 Bi. Then W is open in Y

with y ∈W and W ∩ α(K) = Φ. So, α(K) is closed in Y . To prove the converse,
let {Ki : i = 1, 2, · · · } be a countable family of closed sets in zX, with the finite
intersection property, let y0 /∈ zX. Topologize zX ∪ {y0} by taking open sets all
subsets of zX and sets containing y0 ∪ α(Ki) for some i = 1, 2, . . . .

Obviously, zX ∪ {y0} is first countable. Let β be the closure of the identity
function of zX. β has a closed graph and so, by hypothesis, it maps closed sets in
zX onto closed subsets in Y . So, β(Ki) is closed in zX∪{y0}, for every i = 1, 2, . . . .
So, yo ∈ β(Ki) for every i = 1, 2, . . . . Hence {Ki, i = 1, 2, . . .} has a non-empty
intersection. Therefore, zX is countably compact. �

5. z-Lindelof space

Hewitt’s example [4] is z-Lindelof but not Lindelof.

Definition 5.1. A space X is a P-space [2] iff every Gσ set in X is open.
The following result about z-Lindelof space can be proved by the same technique
of Theorems 4.1.

Theorem 5.2. A space X is z-Lindelof iff for every P-space Y and z-closed graph
multifunction α ∈ m(X,Y ) the image of every z-closed set in X is closed in Y .
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