GLOBAL BEHAVIOR OF THE DIFFERENCE EQUATION

$$
x_{n+1}=\frac{a x_{n-3}}{b+c x_{n-1} x_{n-3}}
$$

Raafat Abo-Zeid

Abstract.
In this paper, we introduce an explicit formula and discuss the global behavior of solutions of the difference equation

$$
x_{n+1}=\frac{a x_{n-3}}{b+c x_{n-1} x_{n-3}}, \quad n=0,1, \ldots
$$

where a, b, c are positive real numbers and the initial conditions x_{-3}, x_{-2}, x_{-1}, x_{0} are real numbers.

1. Introduction

Difference equations have played an important role in analysis of mathematical models of biology, physics and engineering. Recently, there has been a great interest in studying properties of nonlinear and rational difference equations. One can see [3, 5, 8, 9, 11, 12, 13, 14, 15, 19, 18, and the references therein.
In [4], the authors discussed the global behavior of the difference equation

$$
x_{n+1}=\frac{A x_{n-2 r-1}}{B+C x_{n-2 l} x_{n-2 k}}, \quad n=0,1, \ldots
$$

where A, B, C are nonnegative real numbers and r, l, k are nonnegative integers such that $l \leq k$ and $r \leq k$.

In [2] we have discussed global asymptotic stability of the difference equation

$$
x_{n+1}=\frac{A+B x_{n-1}}{C+D x_{n}^{2}}, \quad n=0,1, \ldots
$$

where A, B are nonnegative real numbers and $C, D>0$.
We have also discussed in [1] the global behavior of the solutions of the difference equation

$$
x_{n+1}=\frac{B x_{n-2 k-1}}{C+D \prod_{i=l}^{k} x_{n-2 i}}, \quad n=0,1, \ldots
$$

In [17], D. Simsek et al. introduced the solution of the difference equation

$$
x_{n+1}=\frac{x_{n-3}}{1+x_{n-1}}, \quad n=0,1, \ldots
$$

where $x_{-3}, x_{-2}, x_{-1}, x_{0} \in(0, \infty)$.
Also in [16], D. Simsek et al. introduced the solution of the difference equation

$$
x_{n+1}=\frac{x_{n-5}}{1+x_{n-1} x_{n-3}}, \quad n=0,1, \ldots
$$

with positive initial conditions.
R. Karatas et al. [10] discussed the positive solutions and the attractivity of the difference equation

$$
x_{n+1}=\frac{x_{n-5}}{1+x_{n-2} x_{n-5}}, \quad n=0,1, \ldots
$$

where the initial conditions are nonnegative real numbers.
In [6], E.M. Elsayed discussed the solutions of the difference equation

$$
x_{n+1}=\frac{x_{n-5}}{-1+x_{n-2} x_{n-5}}, \quad n=0,1, \ldots
$$

where the initial conditions are nonzero real numbers with $x_{-5} x_{-2} \neq 1, x_{-4} x_{-1} \neq 1$ and $x_{-3} x_{0} \neq 1$. Also in [7], E.M. Elsayed determined the solutions to some difference equations. He obtained the solution to the difference equation

$$
x_{n+1}=\frac{x_{n-3}}{1+x_{n-1} x_{n-3}}, \quad n=0,1, \ldots
$$

where the initial conditions are nonzero positive real numbers.
In this paper, we introduce an explicit formula and discuss the global behavior of solutions of the difference equation

$$
\begin{equation*}
x_{n+1}=\frac{a x_{n-3}}{b+c x_{n-1} x_{n-3}}, \quad n=0,1, \ldots \tag{1.1}
\end{equation*}
$$

where a, b, c are positive real numbers and the initial conditions $x_{-3}, x_{-2}, x_{-1}, x_{0}$ are real numbers.

2. Solution of equation (1.1)

In this section, we establish the solutions of equation (1.1).
From equation (1.1), we can write

$$
\begin{align*}
& x_{2 n+1}=\frac{a x_{2 n-3}}{b+c x_{2 n-1} x_{2 n-3}}, \quad n=0,1, \ldots \tag{2.1}\\
& x_{2 n+2}=\frac{a x_{2 n-2}}{b+c x_{2 n} x_{2 n-2}}, \quad n=0,1, \ldots \tag{2.2}
\end{align*}
$$

Using the substitution $y_{2 n-1}=\frac{1}{x_{2 n-1} x_{2 n-3}}$, equation (2.1) is reduced to the linear nonhomogeneous difference equation

$$
\begin{equation*}
y_{2 n+1}=\frac{b}{a} y_{2 n-1}+\frac{c}{a}, \quad y_{-1}=\frac{1}{x_{-1} x_{-3}}, \quad n=0,1, \ldots \tag{2.3}
\end{equation*}
$$

Note that for the backward orbits, the product reciprocals $v_{2 k-1}=\frac{1}{x_{2 k-1} x_{2 k-3}}$ satisfy the equation

$$
v_{2 k+1}=\frac{a}{b} v_{2 k-1}-\frac{c}{b}, \quad v_{-1}=\frac{1}{x_{-1} x_{-3}}=-\frac{c}{b}, \quad k=0,1, \ldots
$$

Therefore,

$$
x_{2 n-1} x_{2 n-3}=-\frac{b}{c \sum_{r=0}^{n}\left(\frac{a}{b}\right)^{r}} .
$$

By induction on n we can show that for any $n \in \mathbb{N}$, if $x_{2 n-1} x_{2 n-3}=-\frac{b}{c \sum_{r=0}^{n}\left(\frac{a}{b}\right)^{r}}$, then $x_{-1} x_{-3}=-\frac{b}{c}$.
The same argument can be done for equation 2.2 and will be omitted.
Now we are ready to give the following lemma.
Lemma 2.1. The forbidden set F of equation (1.1) is
$F=\bigcup_{n=0}^{\infty}\left\{\left(u_{0}, u_{-1}, u_{-2}, u_{-3}\right): u_{-3}=-\left(\frac{b}{c \sum_{l=0}^{n}\left(\frac{a}{b}\right)^{i}}\right) \frac{1}{u_{-1}}\right\} \cup \bigcup_{m=0}^{\infty}\left\{\left(u_{0}, u_{-1}\right.\right.$, $\left.\left.u_{-2}, u_{-3}\right): u_{-2}=-\left(\frac{b}{c \sum_{l=0}^{m}\left(\frac{a}{b}\right)^{i}}\right) \frac{1}{u_{0}}\right\}$.

Clear that the forbidden set F is a sequence of hyperbolas contained entirely in the interiors of the $2^{\text {nd }}$ and the $4^{\text {th }}$ quadrant of the planes $u_{0} u_{-2}$ and $u_{-1} u_{-3}$ of the four dimensional Euclidean space

$$
\mathbb{R}^{4}=\left\{\left(u_{0}, u_{-1}, u_{-2}, u_{-3}\right), u_{-i} \in \mathbb{R}, i=0,1,2,3\right\}
$$

That is the forbidden set is a sequence of hyperbolas contained entirely in the set

$$
\left\{\left(u_{0}, u_{-1}, u_{-2}, u_{-3}\right), u_{-1} u_{-3}<0\right\} \cup\left\{\left(u_{0}, u_{-1}, u_{-2}, u_{-3}\right), u_{0} u_{-2}<0\right\}
$$

We define $\alpha_{i}=x_{-2+i} x_{-4+i}, i=1,2$.
Theorem 2.2. Let x_{-3}, x_{-2}, x_{-1} and x_{0} be real numbers such that $\left(x_{0}, x_{-1}, x_{-2}\right.$, $\left.x_{-3}\right) \notin F$. If $a \neq b$, then the solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ of equation (1.1) is

$$
x_{n}=\left\{\begin{array}{ll}
x_{-3} \prod_{j=0}^{\frac{n-1}{4}} \frac{\left(\frac{b}{a}\right)^{2 j} \theta_{1}+c}{\left(\frac{b}{a}\right)^{2 j+1} \theta_{1}+c}, & n=1,5,9, \ldots \tag{2.4}\\
x_{-2} \prod_{j=0}^{\frac{n-2}{4}} \frac{\left(\frac{b}{a}\right)^{2 j} \theta_{2}+c}{\left(\frac{b}{a}\right)^{2 j+1} \theta_{2}+c} & n=2,6,10, \ldots \\
x_{-1} \prod_{j=0}^{\frac{n-3}{4}} \frac{\left(\frac{b}{a}\right)^{2 j+1} \theta_{1}+c}{(a)^{2 j+2} \theta_{1}+c}
\end{array}, \quad n=3,7,11, \ldots .\right.
$$

where $\theta_{i}=\frac{a-b-c \alpha_{i}}{\alpha_{i}}, \alpha_{i}=x_{-2+i} x_{-4+i}$, and $i=1,2$.
Proof. We can write the given solution as

$$
\begin{aligned}
& x_{4 m+1}=x_{-3} \prod_{j=0}^{m} \frac{\left(\frac{b}{a}\right)^{2 j} \theta_{1}+c}{\left(\frac{b}{a}\right)^{2 j+1} \theta_{1}+c}, \quad x_{4 m+2}=x_{-2} \prod_{j=0}^{m} \frac{\left(\frac{b}{a}\right)^{2 j} \theta_{2}+c}{\left(\frac{b}{a}\right)^{2 j+1} \theta_{2}+c}, \\
& x_{4 m+3}=x_{-1} \prod_{j=0}^{m} \frac{\left(\frac{b}{a}\right)^{2 j+1} \theta_{1}+c}{\left(\frac{b}{a}\right)^{2 j+2} \theta_{1}+c}, \quad x_{4 m+4}=x_{0} \prod_{j=0}^{m} \frac{\left(\frac{b}{a}\right)^{2 j+1} \theta_{2}+c}{\left(\frac{b}{a}\right)^{2 j+2} \theta_{2}+c}, \quad m=0,1, \ldots
\end{aligned}
$$

It is easy to check the result when $m=0$. Suppose that the result is true for $m>0$.

Then

$$
\begin{aligned}
x_{4(m+1)+1} & =\frac{a x_{4 m+1}}{b+c x_{4 m+1} x_{4 m+3}}=\frac{a x_{-3} \prod_{j=0}^{m} \frac{\left(\frac{b}{a}\right)^{2 j} \theta_{1}+c}{\left(\frac{b}{a}\right)^{2 j+1} \theta_{1}+c}}{b+c x_{-3} \prod_{j=0}^{m} \frac{\left(\frac{b}{a}\right)^{2 j} \theta_{1}+c}{\left(\frac{a}{a}\right)^{2 j+1} \theta_{1}+c} x_{-1} \prod_{j=0}^{m} \frac{\left(\frac{b}{a}\right)^{2 j+1} \theta_{1}+c}{\left(\frac{b}{a}\right)^{2 j+2} \theta_{1}+c}} \\
& =\frac{a x_{-3} \prod_{j=0}^{m} \frac{\left(\frac{b}{a}\right)^{2 j} \theta_{1}+c}{\left(\frac{b}{a}\right)^{2 j+1} \theta_{1}+c}}{b+c x_{-3}\left(\prod_{j=0}^{m}\left(\frac{b}{a}\right)^{2 j} \theta_{1}+c\right) x_{-1} \prod_{j=0}^{m} \frac{1}{\left(\frac{b}{a}\right)^{2 j+2} \theta_{1}+c}} \\
& =\frac{a x_{-3} \prod_{j=0}^{m} \frac{\left(\frac{b}{a}\right)^{2 j} \theta_{1}+c}{\left(\frac{b}{a}\right)^{2 j+1} \theta_{1}+c}}{b+c x_{-1} x_{-3}\left(\theta_{1}+c\right)\left(\frac{1}{\left(\frac{b}{a}\right)^{2 m+2} \theta_{1}+c}\right)} \\
= & \frac{a x_{-3}\left(\left(\frac{b}{a}\right)^{2 m+2} \theta_{1}+c\right) \prod_{j=0}^{m} \frac{\left(\frac{b}{a}\right)^{2 j} \theta_{1}+c}{\left(\frac{b}{a}\right)^{2 j+1} \theta_{1}+c}}{b\left(\left(\frac{b}{a}\right)^{2 m+2} \theta_{1}+c\right)+c \alpha_{1}\left(\theta_{1}+c\right)} \\
= & \frac{a x_{-3}\left(\left(\frac{b}{a}\right)^{2 m+2} \theta_{1}+c\right) \prod_{j=0}^{m} \frac{\left.\frac{b}{a}\right)^{2 j} \theta_{1}+c}{\left(\frac{b}{a}\right)^{2 j+1} \theta_{1}+c}}{b\left(\left(\frac{b}{a}\right)^{2 m+2} \theta_{1}+c\right)+c(a-b)} \\
= & \frac{x_{-3}\left(\left(\frac{b}{a}\right)^{2 m+2} \theta_{1}+c\right) \prod_{j=0}^{m} \frac{\left.\frac{b}{a}\right)^{2 j} \theta_{1}+c}{\left(\frac{a}{a}\right)^{2 j+1} \theta_{1}+c}}{\frac{b}{a}\left(\left(\frac{b}{a}\right)^{2 m+2} \theta_{1}+c\right)+\frac{c}{a}(a-b)} \\
= & x_{-3} \frac{\left.\left(\frac{b}{a}\right)^{2 m+2} \theta_{1}+c\right)}{\left(\left(\frac{b}{a}\right)^{2 m+3} \theta_{1}+c\right)} \prod_{j=0}^{m} \frac{\left(\frac{b}{a}\right)^{2 j} \theta_{1}+c}{\left(\frac{b}{a}\right)^{2 j+1} \theta_{1}+c} \\
= & x_{-3}^{m+1} \prod_{j=0}^{m} \frac{\left(\frac{b}{a}\right)^{2 j} \theta_{1}+c}{\left(\frac{b}{a}\right)^{2 j+1} \theta_{1}+c} .
\end{aligned}
$$

Similarly we can show that

$$
x_{4(m+1)+2}=x_{-2} \prod_{j=0}^{m+1} \frac{\left(\frac{b}{a}\right)^{2 j} \theta_{2}+c}{\left(\frac{b}{a}\right)^{2 j+1} \theta_{2}+c}, \quad x_{4(m+1)+3}=x_{-1} \prod_{j=0}^{m+1} \frac{\left(\frac{b}{a}\right)^{2 j+1} \theta_{1}+c}{\left(\frac{b}{a}\right)^{2 j+2} \theta_{1}+c}
$$

and

$$
x_{4(m+1)+4}=x_{0} \prod_{j=0}^{m+1} \frac{\left(\frac{b}{a}\right)^{2 j+1} \theta_{2}+c}{\left(\frac{b}{a}\right)^{2 j+2} \theta_{2}+c}
$$

This completes the proof.

3. GLOBAL BEHAVIOR OF EQUATION (1.1)

In this section, we investigate the global behavior of equation with $a \neq b$, using the explicit formula of its solution.
We can write the solution of equation as

$$
x_{4 m+2 t+i}=x_{-4+2 t+i} \prod_{j=0}^{m} \beta(j, t, i)
$$

where $\beta(j, t, i)=\frac{\left(\frac{b}{a}\right)^{2 j+t} \theta_{i}+c}{\left(\frac{b}{a}\right)^{2 j+t+1} \theta_{i}+c}, t \in\{0,1\}$ and $i \in\{1,2\}$.
In the following theorem, suppose that $\alpha_{i} \neq \frac{a-b}{c}$ for all $i \in\{1,2\}$.
Theorem 3.1. Let $\left\{x_{n}\right\}_{n=-3}^{\infty}$ be a solution of equation (1.1) such that $\left(x_{0}, x_{-1}, x_{-2}, x_{-3}\right) \notin F$. Then the following statements are true.
(1) If $a<b$, then $\left\{x_{n}\right\}_{n=-3}^{\infty}$ converges to 0 .
(2) If $a>b$, then $\left\{x_{n}\right\}_{n=-3}^{\infty}$ converges to a period- 4 solution.

Proof.

(1) If $a<b$, then $\beta(j, t, i)$ converges to $\frac{a}{b}<1$ as $j \rightarrow \infty$, for all $t \in\{0,1\}$ and $i \in\{1,2\}$. So, for every pair $(t, i) \in\{0,1\} \times\{1,2\}$ we have for a given $0<\epsilon<1$ that, there exists $j_{0}(t, i) \in \mathbb{N}$ such that, $|\beta(j, t, i)|<\epsilon$ for all $j \geq j_{0}(t, i)$. If we set $j_{0}=\max _{0 \leq t \leq 1,1 \leq i \leq 2} j_{0}(t, i)$, then for all $t \in\{0,1\}$ and $i \in\{1,2\}$ we get

$$
\begin{aligned}
\left|x_{4 m+2 t+i}\right| & =\left|x_{-4+2 t+i}\right|\left|\prod_{j=0}^{m} \beta(j, t, i)\right| \\
& =\left|x_{-4+2 t+i}\right|\left|\prod_{j=0}^{j_{0}-1} \beta(j, t, i)\right|\left|\prod_{j=j_{0}}^{m} \beta(j, t, i)\right| \\
& <\left|x_{-4+2 t+i}\right|\left|\prod_{j=0}^{j_{0}-1} \beta(j, t, i)\right| \epsilon^{m-j_{0}+1}
\end{aligned}
$$

As m tends to infinity, the solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ converges to 0 .
(2) If $a>b$, then $\beta(j, t, i) \rightarrow 1$ as $j \rightarrow \infty, t \in\{0,1\}$ and $i \in\{1,2\}$. This implies that, for every pair $(t, i) \in\{0,1\} \times\{1,2\}$ there exists $j_{1}(t, i) \in \mathbb{N}$ such that, $\beta(j, t, i)>0$ for all $j \geq j_{1}(t, i)$. If we set $j_{1}=\max _{0 \leq t \leq 1,1 \leq i \leq 2} j_{1}(t, i)$, then for all $t \in\{0,1\}$ and $i \in\{1,2\}$ we get

$$
\begin{aligned}
x_{4 m+2 t+i} & =x_{-4+2 t+i} \prod_{j=0}^{m} \beta(j, t, i) \\
& =x_{-4+2 t+i} \prod_{j=0}^{j_{1}-1} \beta(j, t, i) \exp \left(\sum_{j=j_{1}}^{m} \ln (\beta(j, t, i))\right) .
\end{aligned}
$$

We shall test the convergence of the series $\sum_{j=j_{1}}^{\infty}|\ln (\beta(j, t, i))|$.
Since for all $t \in\{0,1\}$ and $i \in\{1,2\}$ we have $\lim _{j \rightarrow \infty}\left|\frac{\ln (\beta(j+1, t, i)}{\ln (\beta(j, t, i)}\right|=\frac{0}{0}$, using L'Hospital's rule we obtain

$$
\lim _{j \rightarrow \infty}\left|\frac{\ln \beta(j+1, t, i)}{\ln \beta(j, t, i)}\right|=\left(\frac{b}{a}\right)^{2}<1
$$

It follows from the ratio test that the series $\sum_{j=j_{1}}^{\infty}|\ln \beta(j, t, i)|$ is convergent. This ensures that there are four positive real numbers $\nu_{t i}, t \in\{0,1\}$ and $i \in\{1,2\}$ such that

$$
\lim _{m \rightarrow \infty} x_{4 m+2 t+i}=\nu_{t i}, \quad t \in\{0,1\} \quad \text { and } \quad i \in\{1,2\}
$$

where

$$
\nu_{t i}=x_{-4+2 t+i} \prod_{j=0}^{\infty} \frac{\left(\frac{b}{a}\right)^{2 j+t} \theta_{i}+c}{\left(\frac{b}{a}\right)^{2 j+t+1} \theta_{i}+c}, \quad t \in\{0,1\} \quad \text { and } \quad i \in\{1,2\} .
$$

FIG. 1: $\quad x_{n+1}=\frac{2 x_{n-3}}{3+x_{n-1} x_{n-3}}$

FIG. 2: $\quad x_{n+1}=\frac{3 x_{n-3}}{1+2 x_{n-1} x_{n-3}}$

Example 1. Figure 1 shows that if $a=2, b=3, c=1(a<b)$, then the solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ of equation (1.1) with initial conditions $x_{-3}=0.2, x_{-2}=2, x_{-1}=-2$ and $x_{0}=0.4$ converges to zero.

Example 2. Figure 2 shows that if $a=3, b=1, c=2(a>b)$, then the solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ of equation (1.1) with initial conditions $x_{-3}=0.2, x_{-2}=2, x_{-1}=-2$ and $x_{0}=0.4$ converges to a period- 4 solution.

$$
\text { 4. CASE } a=b=c
$$

In this section, we investigate the behavior of the solution of the difference equation

$$
\begin{equation*}
x_{n+1}=\frac{x_{n-3}}{1+x_{n-1} x_{n-3}}, \quad n=0,1, \ldots \tag{4.1}
\end{equation*}
$$

Lemma 4.1. The forbidden set G of equation (1.1) is
$G=\bigcup_{n=0}^{\infty}\left\{\left(u_{0}, u_{-1}, u_{-2}, u_{-3}\right): u_{-3}=-\left(\frac{1}{n+1}\right) \frac{T}{u_{-1}}\right\} \cup \bigcup_{m=0}^{\infty}\left\{\left(u_{0}, u_{-1}, u_{-2}, u_{-3}\right):\right.$ $\left.u_{-2}=-\left(\frac{1}{m+1}\right) \frac{1}{u_{0}}\right\}$.

Theorem 4.2. Let x_{-3}, x_{-2}, x_{-1} and x_{0} be real numbers such that $\left(x_{0}, x_{-1}, x_{-2}, x_{-3}\right) \notin G$. Then the solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ of equation 4.1) is

$$
x_{n}= \begin{cases}x_{-3} \prod_{j=0}^{\frac{n-1}{4}} \frac{1+(2 j) \alpha_{1}}{1+(2 j+1) \alpha_{1}}, & n=1,5,9, \ldots \tag{4.2}\\ x_{-2} \prod_{j=0}^{\frac{n-2}{4}} \frac{1+(2 j) \alpha_{2}}{1+(2 j+1) \alpha_{2}}, & n=2,6,10, \ldots \\ x_{-1} \prod_{j=0}^{\frac{n-3}{4}} \frac{1+(2 j+1) \alpha_{1}}{1+(2 j+2) \alpha_{1}}, & n=3,7,11, \ldots \\ x_{0} \prod_{j=0}^{\frac{n-4}{4}} \frac{1+(2 j+1) \alpha_{2}}{1+(2 j+2) \alpha_{2}}, & n=4,8,12 \ldots\end{cases}
$$

Proof. The proof is similar to that of Theorem 2.2 and will be omitted.
We can write the solution of equation (4.1) as

$$
x_{4 m+2 t+i}=x_{-4+2 t+i} \prod_{j=0}^{m} \gamma(j, t, i),
$$

where $\gamma(j, t, i)=\frac{1+(2 j+t) \alpha_{i}}{1+(2 j+t+1) \alpha_{i}}, t \in\{0,1\}$ and $i \in\{1,2\}$.
In the following theorem, suppose that $\alpha_{i} \neq 0$ for all $i \in\{1,2\}$.
Theorem 4.3. Let $\left\{x_{n}\right\}_{n=-3}^{\infty}$ be a solution of equation (4.1) such that $\left(x_{0}, x_{-1}, x_{-2}, x_{-3}\right) \notin G$. Then $\left\{x_{n}\right\}_{n=-3}^{\infty}$ converges to 0 .

Proof. It is clear that $\gamma(j, t, i) \rightarrow 1$ as $j \rightarrow \infty, t \in\{0,1\}$ and $i \in\{1,2\}$. This implies that, for every pair $(t, i) \in\{0,1\} \times\{1,2\}$ there exists $j_{2}(t, i) \in \mathbb{N}$ such that, $\gamma(j, t, i)>0$ for all $j \geq j_{2}(t, i)$. If we set $j_{2}=\max _{0 \leq t \leq 1,1 \leq i \leq 2} j_{2}(t, i)$, then for all $t \in\{0,1\}$ and $i \in\{1,2\}$ we get

$$
\begin{aligned}
x_{4 m+2 t+i} & =x_{-4+2 t+i} \prod_{j=0}^{m} \gamma(j, t, i) \\
& =x_{-4+2 t+i} \prod_{j=0}^{j_{2}-1} \gamma(j, t, i) \exp \left(-\sum_{j=j_{2}}^{m} \ln \frac{1}{\gamma(j, t, i)}\right) .
\end{aligned}
$$

We shall show that $\sum_{j=j_{2}}^{\infty} \ln \frac{1}{\gamma(j, t, i)}=\sum_{j=j_{2}}^{\infty} \ln \frac{1+(2 j+t+1) \alpha_{i}}{1+(2 j+t) \alpha_{i}}=\infty$, by considering the series $\sum_{j=j_{2}}^{\infty} \frac{\alpha_{i}}{1+\alpha_{i}(2 j+t)}$. As

$$
\lim _{j \rightarrow \infty} \frac{1 / \gamma(j, t, i)}{\alpha_{i} /\left(1+\alpha_{i}(2 j+t)\right)}=\lim _{j \rightarrow \infty} \frac{\ln \left(\left(1+\alpha_{i}(2 j+t+1)\right) /\left(1+\alpha_{i}(2 j+t)\right)\right)}{\alpha_{i} /\left(1+\alpha_{i}(2 j+t)\right)}=1,
$$

using the limit comparison test, we get $\sum_{j=j_{2}}^{\infty} \ln \frac{1}{\gamma(j, t, i)}=\infty$.
Therefore,

$$
x_{4 m+2 t+i}=x_{-4+2 t+i} \prod_{j=0}^{j_{2}-1} \gamma(j, t, i) \exp \left(-\sum_{j=j_{2}}^{m} \ln \frac{1}{\gamma(j, t, i)}\right)
$$

converges to zero as $m \rightarrow \infty$.

References

[1] Abo-Zeid, R., Global asymptotic stability of a higher order difference equation, Bull. Allahabad Math. Soc. 2 (2) (2010), 341-351.
[2] Abo-Zeid, R., Global asymptotic stability of a second order rational difference equation, J. Appl. Math. \& Inform. 2 (3) (2010), 797-804.
[3] Agarwal, R.P., Difference Equations and Inequalities, first ed., Marcel Decker, 1992.
[4] Al-Shabi, M.A., Abo-Zeid, R., Global asymptotic stability of a higher order difference equation, Appl. Math. Sci. 4 (17) (2010), 839-847.
[5] Camouzis, E., Ladas, G., Dynamics of Third-Order Rational Difference Equations; With Open Problems and Conjectures, Chapman and Hall/HRC Boca Raton, 2008.
[6] Elsayed, E.M., On the difference equation $x_{n+1}=\frac{x_{n-5}}{-1+x_{n-2} x_{n-5}}$, Int. J. Contemp. Math. Sciences 3 (33) (2008), 1657-1664.
[7] Elsayed, E.M., On the solution of some difference equations, European J. Pure Appl. Math. 4 (2011), 287-303.
[8] Grove, E.A., Ladas, G., Periodicities in Nonlinear Difference Equations, Chapman and Hall/CRC, 2005.
[9] Karakostas, G., Convergence of a difference equation via the full limiting sequences method, Differential Equations Dynam. Systems 1 (4) (1993), 289-294.
[10] Karatas, R., Cinar, C., Simsek, D., On the positive solution of the difference equation $x_{n+1}=\frac{x_{n-5}}{1+x_{n-2} x_{n-5}}$, Int. J. Contemp. Math. Sciences 1 (10) (2006), 495-500.
[11] Kocic, V.L., Ladas, G., Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic, Dordrecht, 1993.
[12] Kruse, N., Nesemann, T., Global asymptotic stability in some discrete dynamical systems, J. Math. Anal. Appl. 235 (1) (1999), 151-158.
[13] Kulenović, M.R.S., Ladas, G., Dynamics of Second Order Rational Difference Equations; With Open Problems and Conjectures, Chapman and Hall/HRC Boca Raton, 2002.
[14] Levy, H., Lessman, F., Finite Difference Equations, Dover, New York, NY, USA, 1992.
[15] Sedaghat, H., Global behaviours of rational difference equations of orders two and three with quadratic terms, J. Differ. Equations Appl. 15 (3) (2009), 215-224.
[16] Simsek, D., Cinar, C., Karatas, R., Yalcinkaya, I., On the recursive sequence $x_{n+1}=$ $\frac{x_{n-5}}{1+x_{n-1} x_{n-3}}$, Int. J. Pure Appl. Math. 28 (1) (2006), 117-124.
[17] Simsek, D., Cinar, C., Yalcinkaya, I., On the recursive sequence $x_{n+1}=\frac{x_{n-3}}{1+x_{n-1}}$, Int. J. Contemp. Math. Sciences 1 (10) (2006), 475-480.
[18] Stević, S., More on a rational recurrence relation, Appl. Math. E-Notes 4 (2004), 80-84.
[19] Stević, S., On positive solutions of $a(k+1)$ th order difference equation, Appl. Math. Lett. 19 (5) (2006), 427-431.

Department of Basic Science,
The Valley Higher Institute of Engineering \& Technology,
Cairo, Egypt
E-mail: abuzead73@yahoo.com

