
ARCHIVUM MATHEMATICUM (BRNO)
Tomus 51 (2015), 87–105

CORRECT SOLVABILITY OF A GENERAL DIFFERENTIAL
EQUATION OF THE FIRST ORDER IN THE SPACE Lp(R)

N. Chernyavskaya and L.A. Shuster

Abstract. We consider the equation
(1) − r(x)y′(x) + q(x)y(x) = f(x) , x ∈ R

where f ∈ Lp(R), p ∈ [1,∞] (L∞(R) := C(R)) and

(2) 0 < r ∈ Cloc(R) , 0 ≤ q ∈ Lloc
1 (R) .

We obtain minimal requirements to the functions r and q, in addition to (2),
under which equation (1) is correctly solvable in Lp(R), p ∈ [1,∞].

1. Introduction

In the present paper, we continue the investigations of [1, 2, 3, 5]. We consider
the equation

(1.1) − r(x)y′(x) + q(x)y(x) = f(x) , x ∈ R

where f ∈ Lp, (Lp(R) := Lp), p ∈ [1,∞), (L∞(R) := C(R)), and

(1.2) 0 < r ∈ C loc(R) , 0 ≤ q ∈ Lloc
1 (R) .

By a solution of (1.1) we mean any absolutely continuous function y satisfying
(1.1) almost everywhere. In addition, we say that for a given p ∈ [1,∞] equation
(1.1) is correctly solvable in Lp if

I) for any function f ∈ Lp, equation (1.1) has a unique solution y ∈ Lp;
II) there is an absolute constant c(p) ∈ (0,∞) such that the solution y ∈ Lp

of (1.1) satisfies the inequality

(1.3) ‖y‖p ≤ c(p)‖f‖p , ∀f ∈ Lp (‖f‖p := ‖f‖Lp) .

For brevity, below we say “question on I)–II)” and “problem I)–II)”. We use
the letters c, c(·) to denote absolute positive constants which are not essential for
exposition and may differ even within a single chain of computations.
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Note that in [1, 2, 3] we studied a boundary value problem consisting of (1.1)
and the boundary conditions

(1.4) lim
|x|→∞

y(x) = 0 .

Here conditions (1.4) were useful in the study of the boundary value problem
because its solution y, if it exists, is of the form (see [2]):

(1.5) y(x) = (Gf)(x) = µ(x)
∫ ∞
x

θ(ξ)f(ξ)dξ , f ∈ Lp, x ∈ R .

Here

(1.6) µ(x) = exp
(∫ x

0

q(ξ)
r(ξ)dξ

)
, θ(x) = 1

r(x) exp
(
−
∫ x

0

q(ξ)
r(ξ)dξ

)
, x ∈ R .

In I)–II), the solution y ∈ Lp of (1.1) is also of form (1.5), but in the absence of
the a priori property (1.4) it is more difficult to prove (1.5). In any case, whenever
formula (1.5) is proven, the conditions for I)–II) to hold clearly coincide with
the conditions for the integral operator G : Lp → Lp to be bounded (for a fixed
p ∈ [1,∞]). We study these conditions and obtain a precise answer to the question
on correct invertibility in Lp of the simplest differential operation

Ly = −ry′ + qy

with coefficients of constant sign (see (1.2)). We thus propose three unconditional
criteria for I)–II) to hold: Theorems 3.1, 3.3 and 3.5 (see §3; the cases p = 1,
p ∈ (1,∞) and p =∞ are considered separately, according to theorems on norms of
integral operators). Note that to apply these criteria to particular equations (1.1),
one needs sharp by order estimates of improper integrals (see §3). This implies
that in their original form, these criteria are applicable to particular equations
only under strong additional requirements to r and q which guarantee all required
estimates. On the other hand, we use Theorems 3.1, 3.3 and 3.5 as a starting point
for obtaining less general but much more efficient conditions for practical checking
of conditions I)–II). See §§5–6 for some simple examples.

Likewise, but using special techniques due to M. Otelbaev (see [2, 3]), one can
obtain efficient necessary (and similar sufficient) conditions for the validity of I)–II),
expressed as local requirements to r and q. The proofs of such conditions are more
complicated than simple argument of §§5–6 and need a separate exposition. We
will present them in a forthcoming paper.

2. Preliminaries

Throughout this section (and also in §§3, 4), conditions (1.2) are assumed to be
valid and are not mentioned in our statements.

We need some facts from [2]. Assume that

(2.1) S1 =∞ , S1
def=
∫ 0

−∞

q(t)
r(t) dt .
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Then for every x ∈ R, one can define the function (see [1, 2]):

(2.2) d(x) = inf
d>0
{d : Φ(x, d) = 2} , Φ(x, d) def=

∫ x+d

x−d

q(t)
r(t) dt .

Functions of such a form were introduced by Otelbaev (see [6]).
Consider the boundary value problem (see §1):

−r(x)y′(x) + q(x)y(x) = f(x) , x ∈ R ,(2.3)

lim
|x|→∞

y(x) = 0 .(2.4)

Definition 2.1 ([2]). Let p ∈ [1,∞]. We say that the boundary value problem
(2.3)–(2.4) is correctly solvable in Lp if equation (2.3) is correctly solvable, and,
regardless of f ∈ Lp, the solution y ∈ Lp of (2.3) satisfies (2.4).

We now give the conditions for correct solvability of (2.3)–(2.4).

Theorem 2.2 ([2]). Let p ∈ (1,∞), p′ = p(p − 1)−1. Problem (2.3)–(2.4) is
correctly solvable in Lp if and only if the following conditions hold:

1) Mp <∞ where Mp = sup
x∈R

Mp(x),

Mp(x) =
[ ∫ x

−∞
exp

(
− p

∫ x

t

q(ξ)
r(ξ) dξ

)
dt
]1/p

×
[ ∫ ∞

x

1
r(t)p′ exp

(
− p′

∫ t

x

q(ξ)
r(ξ) dξ

)
dt
]1/p′

;(2.5)

2) S1 =∞ (see (2.1));
3) Ap′ <∞. Here

(2.6) Ap′ = sup
x∈R

Ap′(x)

(2.7) Ap′(x) =
∫ x+d(x)

x−d(x)

dt

r(t)p′ , x ∈ R .

Theorem 2.3 ([2]). Problem (2.3)–(2.4) is correctly solvable in L1 if and only if
the following conditions hold:

1) S1 =∞ (see (2.1));
2)

(2.8) r0 > 0, r0
def= inf

x∈R
r(x) ;

3) M1 <∞, M1 = supx∈R M1(x) where

(2.9) M1(x) = 1
r(x)

∫ x

−∞
exp

(
−
∫ x

t

q(ξ)
r(ξ) dξ

)
dt , x ∈ R .
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Theorem 2.4 ([2]). Problem (2.3)–(2.4) is correctly solvable in C(R) if and only
if A0 = 0 where

(2.10) A0 = lim
|x|→∞

A(x) , A(x) =
∫ ∞
x

1
r(t) exp

(
−
∫ t

x

q(ξ)
r(ξ) dξ

)
dt , x ∈ R .

Our proofs (see §4, §6) are based on the following theorems.

Theorem 2.5 ([2]). Let p ∈ (1,∞), let µ, θ be continuous positive functions
defined on R, and let

(2.11) (Kf)(x) = µ(x)
∫ ∞
x

θ(ξ)f(ξ) dξ , x ∈ R .

Then the operator K : Lp → Lp is bounded if and only if Hp < ∞. Here Hp =
sup
x∈R

Hp(x),

Hp(x) =
[ ∫ x

−∞
µ(t)p dt

]1/p[ ∫ ∞
x

θ(ξ)p
′
dξ
]1/p′

,(2.12)

p′ = p

p− 1 , x ∈ R .

In addition, we have the inequalities
(2.13) Hp ≤ ‖K‖p→p ≤ (p)1/p · (p′)1/p′Hp .

Remark 2.6. Theorem 2.5 follows from Hardy’s inequality (see [7]). See, e.g., [2]
for such a proof. In [8], an original direct proof of this theorem (under weaker
requirements on µ and θ) are given.

Theorem 2.7 ([4]). Let K be the operator (2.11). Then

(2.14) ‖K‖C(R)→C(R) = sup
x∈R

µ(x)
∫ ∞
x

θ(t) dt .

Further, let −∞ ≤ a < b ≤ ∞, suppose that the functions µ(x) and θ(x) are
continuous for x ∈ (a, b) and let K̃ be the integral operator

(2.15) (K̃f)(x) = µ(x)
∫ b

x

θ(ξ)f(ξ) dξ , x ∈ (a, b) .

Then

(2.16) ‖K̃f‖L1(a,b)→L1(a,b) = sup
x∈(a,b)

θ(x)
∫ x

a

µ(t) dt .

Note that some technical assertions are given in §5.

3. Results

Below, we present only unconditional criteria for the validity of I)–II). Some
consequences requiring additional requirements to r and q are given in §5.

Theorem 3.1. Let p ∈ (1,∞). Equation (1.1) is correctly solvable in Lp if and
only if Mp <∞ (see Theorem 2.2).
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Corollary 3.2. Let p ∈ (1,∞). Equation (1.1) is correctly solvable in Lp if and
only if the operator G : Lp → Lp (see (1.5)) is bounded. In the latter case, S1 =∞
(see (2.1)), and the solution y ∈ Lp of (1.1) is of the form y = Gf . In addition,

(3.1) c−1(p)Mp ≤ ‖G‖p→p ≤ c(p)Mp .

Thus, the only difference between Theorem 2.2 and Theorem 3.1 is the condition
Ap′ <∞ (see (2.7)). This condition is a minimal requirement, in addition to the
conditions of Theorem 3.1, which guarantees (2.4). In §7, we give an example of
equation (1.1) for which S1 =∞, Mp <∞ and Ap′ =∞.

Theorem 3.3. Equation (1.1) is correctly solvable in L1 if and only if M1 <∞
(see Theorem 2.3).

Corollary 3.4. Equation (1.1) is correctly solvable in L1 if and only if the operator
G : L1 → L1 is bounded (see (1.5)). In the latter case, S1 =∞ (see (2.1)) and
(3.2) ‖G‖1→1 = M1 .

Thus the only difference between Theorem 2.3 and Theorem 3.3 is the condition
r0 > 0 (see (2.8)). This condition is a minimal requirement, in addition to the
conditions of Theorem 3.3, which guarantees (2.4). In §7, we give an example of
equation (1.1) for which S1 =∞, M1 <∞ and r0 = 0.

Theorem 3.5. Equation (1.1) is correctly solvable in C(R) if and only if the
following conditions hold:

1)

(3.3) S2 =∞, S2 =
∫ ∞

0

q(t)
r(t) dt ,

2) A <∞, A = sup
x∈R

A(x), where (see (1.6))

(3.4) A(x) = µ(x)
∫ ∞
x

θ(t) dt , x ∈ R .

Thus, the only difference between Theorem 2.4 and Theorem 3.5 is the condition
A0 = 0 (see Theorem 2.4. Thus equality is a minimal requirement, in addition to
1)–2), which guarantees (2.4). In §7, we give an equation (1.1) for which S2 =∞,
A <∞, A0 > 0.

4. Proofs

Proof of Theorem 3.1. Necessity.
The following obvious remark is stated as a separate assertion.

Lemma 4.1. Let y be a solution of (1.1), let µ and θ be defined by (1.6), and let
−∞ < x ≤ t <∞. Then we have the following equality:

(4.1) y(t)
µ(t) = y(x)

µ(x) −
∫ t

x

θ(ξ)f(ξ) dξ .
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Fix numbers −∞ < t1 < t2 <∞ and introduce the function

(4.2) f0(ξ) =
{
θ(ξ)p′−1 , ξ ∈ [t1, t2] ,

0, ξ /∈ [t1, t2] ,
p′ = p

p− 1 .

Then

(4.3) ‖f0‖p =
[ ∫ t2

t1

|f0(ξ)|pdξ
]1/p

=
[ ∫ t2

t1

θ(ξ)p
′
dξ
]1/p

<∞ .

In (1.1), set f = f0, and denote by y0 ∈ Lp the solution of such an equation (1.1).
In (4.1), set f := f0, y := y0, x := t2 and let t ≥ x = t2. Then (see (4.2))

(4.4) y0(t) = y0(t2) µ(t)
µ(t2) , t ≥ t2 .

From (4.4) it follows that y0(t2) = 0 since otherwise (see (1.6)):

∞ > ‖y0‖pp ≥
∫ ∞
t2

|y0(t)|p dt = |y0(t2)|p
∫ ∞
t2

( µ(t)
µ(t2)

)p
dt

≥ |y0(t2)|p
∫ ∞
t2

1 dt =∞ ⇒ y0(t2) = 0 ⇒ (see (4.4))

y0(t) = 0 , t ≥ t2 .(4.5)

Hence, by (4.1) and (4.5), we have

(4.6) y0(x) = µ(x)
∫ ∞
x

θ(ξ)f0(ξ) dξ , x ∈ R .

Let us now estimate ‖y0‖p from below (see (4.6), (4.1), (4.2)):

‖y0‖pp =
∫ ∞
−∞

µ(t)p
∣∣∣ ∫ ∞
t

θ(ξ)f0(ξ) dξ
∣∣∣pdt

≥
∫ t1

−∞
µ(t)p

(∫ ∞
t

θ(ξ)f0(ξ) dξ
)p
dt

≥
∫ t1

−∞
µ(t)pdt

(∫ t2

t1

θ(ξ)f0(ξ) dξ
)p

⇒

‖y0‖p ≥
(∫ t1

−∞
µ(t)pdt

)1/p(∫ t2

t1

θ(ξ)p
′
dξ
)
.(4.7)

Therefore, by (1.3), (4.3) and (4.7), we get(∫ t1

−∞
µ(t)pdt

)1/p(∫ t2

t1

θ(ξ)p
′
dξ
)
≤ ‖y0‖p ≤ c(p)‖f0‖p

= c(p)
(∫ t2

t1

θ(ξ)p
′
dξ
)1/p

⇒(∫ t1

−∞
µ(t)pdt

)1/p(∫ t2

t1

θ(ξ)p
′
dξ
)1/p′

≤ c(p) <∞ , t1 ≤ t2 .(4.8)
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Since in (4.8) the numbers t1 and t2 (t1 ≤ t2) are arbitrary, from (4.8) for x ∈ R
we get[ ∫ x

−∞
exp

(
p

∫ t

0

q(ξ)
r(ξ) dξ

)
dt
]1/p[ ∫ ∞

x

1
r(ξ)p′ exp

(
− p′

∫ ξ

0

q(s)
r(s) ds

)
dξ
]1/p′

≤ c(p) <∞ .

Using the relations∫ t

0

q(ξ)
r(ξ) dξ =

∫ x

0

q(ξ)
r(ξ) dξ −

∫ x

t

q(ξ)
r(ξ) dξ , x ≥ t ,

∫ ξ

0

q(s)
r(s) ds =

∫ x

0

q(s)
r(s) ds+

∫ ξ

x

q(s)
r(s) ds , x ≤ ξ ,

we easily bring the second inequality to the form (2.5), which immediately give the
inequality Mp <∞ (see Theorem 2.2).
Proof of Theorem 3.1. Sufficiency.

Let p ∈ (1,∞) and Mp <∞. Set y = Gf (see (1.5), (1.6)). Then from Hölder’s
inequality, it follows that

(4.9) |y(x)|
µ(x) ≤

(∫ ∞
x

θ(ξ)p
′
dξ
)1/p′

‖f‖p , x ∈ R .

It remains to show that (1.5) presents the unique solution of (1.1) that belongs to
Lp. Since Mp < ∞ then due to (4.9) we obtain that the integral (2.5) converges
for x ∈ R, the function y = Gf is defined, absolutely continuous and satisfies (1.1)
almost everywhere on R. Moreover, (1.3) holds (see Theorem 2.5). Finally, the
solution z of the homogeneous equation
(4.10) − r(x)z′(x) + q(x)z(x) = 0 , x ∈ R
is of the form

z(x) = c exp
(∫ x

0

q(ξ)
r(ξ) dξ

)
, x ∈ R, c = const

and belongs to Lp only for c = 0 because otherwise we would have

∞ > ‖z‖pp ≥ ‖z‖
p
Lp(0,∞) = |c|p

∫ ∞
0

exp
(
p

∫ x

0

q(ξ)
r(ξ) dξ

)
dx

≥ |c|p
∫ ∞

0
1 dx =∞ contradiction ⇒ c = 0 ,

i.e., z ≡ 0. The theorem is proved.
Proof of Corollary 3.2. Let p ∈ (1,∞) and Mp < ∞. Then Mp(x)

∣∣
x=0 < ∞

and therefore ∫ 0

−∞
exp

(
− p

∫ 0

t

q(ξ)
r(ξ) dξ

)
dt <∞ .

Assume now that S1 <∞. This implies that

∞ >

∫ 0

−∞
exp

(
− p

∫ 0

t

q(ξ)
r(ξ) dξ

)
dt ≥

∫ 0

−∞
exp(−pS1) dt =∞ .
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Contradiction. Hence S1 = ∞. The remaining assertions of the corollary are
immediate consequences of Theorems 3.1 and 2.5.
Proof of Theorem 3.3 (Necessity) and Corollary 3.4. Let f ∈ L1, n ≥ 1 and

(4.11) fn(x) =
{
f(x) , if x ∈ [−n, n]
0 , if x /∈ [−n, n]

Denote by yn the solution of (1.1) with the right-hand side fn which lies in L1.
Then, repeating the initial part of the proof of necessity of the conditions of
Theorem 3.1, we obtain that y(n) = 0 and therefore (see (4.1), (1.5))

(4.12) yn(x) = (Gfn)(x) = µ(x)
∫ n

x

θ(ξ)fn(ξ) dξ , x ≤ n .

Now from (4.11), (4.12) and (1.3), it follows that
(4.13) ‖yn‖L1(−n,n) ≤ ‖yn‖L1 ≤ c‖fn‖L1 = c(1)‖fn‖L1(−n,n) .

Since fn is an arbitrary function from the class L1(−n, n), from (4.13) we obtain
that the operator Gn : L1(−n, n)→ L1(−n, n) where

(4.14) (Gnf̃)(x) = µ(x)
∫ n

x

θ(ξ)f̃(ξ) dξ , f̃ ∈ L1(−n, n) , |x| ≤ n

is bounded, and (see Theorem 2.7)

sup
|x|≤n

θ(x)
∫ x

−n
µ(t) dt = ‖G‖L1(−n,n)→L1(−n,n) ≤ c(1) <∞ .

The latter bound holds for all n ≥ 1, and therefore M1 <∞ and (3.2) holds. The
equality S1 =∞ can be checked in the same way as Corollary 3.2.
Proof of Theorem 3.3 (Sufficiency) and Corollary 3.4. LetM1 <∞. Set y =
Gf for f ∈ L1 (see (1.5), (1.6)). Since ‖G‖1→1 < ∞ (see (2.9), (2.16)), we have
y ∈ L1. In addition, from (1.5), (1.6) for t ≥ x we get

y(x)
µ(x) =

∫ t

x

θ(ξ)f(ξ) dξ +
∫ ∞
t

θ(ξ)f(ξ) dξ =
∫ t

x

θ(ξ)f(ξ) dξ + y(t)
µ(t) ,

i.e., (4.1) holds. Further, since the function θ(ξ) is continuous for ξ ∈ R, from (4.1)
and absolute continuity of the integral, it follows that the function y(t), t ∈ R is
absolutely continuous too. Now from (1.5), (1.6) it is easy to obtain (1.1), i.e., y is
a solution of (1.1), y ∈ L1 and (see above) (1.3) holds with c(1) = ‖G‖1→1 = M1.
Finally, ro prove that (1.1) has a unique solution in the class L1, one can use the
same argument as in Theorem 3.1.
Proof of Theorem 3.5. Necessity. Suppose that equation (1.1) is correctly sol-
vable in C(R), and let z be the function from (4.10) with c = 1. If S2 <∞, then
setting c = 1 in (4.10) we obtain that z ∈ C(R), and z is a solution of (1.1) with
f ≡ 0. Then by (1.3) we have

0 < ‖z‖C(R) = exp(S2) ≤ c(∞)‖0‖C(R) = 0 .
Contradiction. Hence S2 = ∞. Now set f ≡ 1 in (1.1), and let y be a solution
of this equation such that y ∈ C(R). Since S2 = ∞ and y ∈ C(R), from (4.1) it
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follows that y(t)
µ(t) → 0 as t → ∞, and therefore (1.5) holds with f ≡ 1. Together

with (1.3), this implies that

A = sup
x∈R

∫ ∞
x

1
r(t) exp

(
−
∫ t

x

q(ξ)
r(ξ) dξ

)
dt = sup

x∈R
|y(x)|

= ‖y‖C(R) ≤ c(∞)‖f‖C(R) = c(∞) <∞ .

Proof of Theorem 3.5. Sufficiency.
For f ∈ C(R) set y = Gf (see (1.5), (1.6)). Clearly, y ∈ C(R) since

‖y‖C(R) = sup
x∈R

µ(x)
∣∣∣ ∫ ∞
x

θ(ξ)f(ξ) dξ
∣∣∣ ≤ sup

x∈R

(
µ(x)

∫ ∞
x

θ(ξ) dξ
)
‖f‖C(R)

= A‖f‖C(R) <∞ ,

and this also gives (1.3). In addition, y is a unique solution of (1.1) in the class
C(R) because the function z from (4.10) for c 6= 0 does not belong to C(R) in view
of (3.3).

5. Additional assertions

In this section, we show that one can extract from result of §3 certain assertions
which are efficient and convenient for investigating concrete equations. Several such
theorems are presented below; see §6 for their proofs.

Theorem 5.1. If equation (1.1) is correctly solvable in Lp, p ∈ [1,∞], then
Bp <∞. Here (see (2.2))

(5.1) Bp =


supx∈R

d(x)
r(x) , for p = 1

supx∈R d(x)1/p
( ∫ x+d(x)

x
dt

r(t)p′
)1/p′

, p′ = p
p−1 , for p ∈ (1,∞)

supx∈R
∫ x+d(x)
x−d(x)

dt
r(t) , for p =∞ .

The main difference between the necessary condition (5.1) and those of the
theorems of §3 is the fact that the condition Bp <∞ is usually local because for
particular equations one has, as a rule, the inequality d0 <∞ where
(5.2) d0 = sup

x∈R
d(x) .

Even if d0 = ∞, when studying the condition Bp < ∞, we nevertheless can rely
on powerful of local analysis since d(x) <∞ for any x ∈ R (see [2]). In particular,
below we give convenient tools for establishing two-sided, sharp by order estimates
of the function d, which guarantee all our assertions in most cases.

Note that under some non-rigid additional requirement to the function d, the
condition Bp < ∞ becomes also sufficient for the correct solvability of equation
(1.1) in Lp for all p ∈ [1,∞]. Thus (under this additional condition on d), when
investigating I)–II), we can study, instead of hard global conditions of §3, the
significantly and conceptually easier local requirement Bp <∞. However, to prove
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the latter fact, we need separate considerations, which will be given in a forthcoming
paper.

Now we present our results. The following assertion serves as a main tool for
obtaining estimates for the function d (see Theorem 5.3 below).

Theorem 5.2. [2] Let S1 = ∞ (see (2.1)). For x ∈ R, the inequality η ≥ d(x)
(0 ≤ η ≤ d(x) holds if and only if F (η) ≥ 2 (F (η) ≤ 2). Here

F (η) def=
∫ x+η

x−η

q(t)
r(t) dt .

Theorem 5.3. Suppose that the following conditions hold:
1)

(5.3) 0 < r ∈ C loc(R), 0 ≤ q ∈ Lloc
1 (R);

2) there exist functions q1 and q2 such that
(5.4) q = q1 + q2

(5.5) 0 < q1 ∈ C loc(R), q2 ∈ Lloc
1 (R), q1

r
∈ AC(1)

loc(R);

3)
(5.6) κ1(x)→ 0 , κ2(x)→ 0 as |x| → ∞ ,

where

κ1(x) =
( r(x)
q1(x)

)2
sup

|ξ|≤2 r(x)
q1(x)

∣∣∣ ∫ x+ξ

x−ξ

(q1(s)
r(s)

)′′
ds
∣∣∣ ,(5.7)

κ2(x) = sup
|ξ|≤2 r(x)

q1(x)

∣∣∣ ∫ x+ξ

x−ξ

q2(s)
r(s) ds

∣∣∣.(5.8)

Then the following relations hold:

(5.9) d(x) = r(x)
q1(x) (1 + δ(x)) , |δ(x)| ≤ c(κ1(x) + κ2(x)) , |x| � 1 ,

(5.10) c−1 r(x)
q1(x) ≤ d(x) ≤ c r(x)

q1(x) , x ∈ R .

We note another useful property of the function d.

Theorem 5.4 ([2]). Let S1 =∞ (see (2.1)). Then d0 <∞ (see (5.2)) if and only
if there exists a ∈ (0,∞) such that m(a) > 0. Here

(5.11) m(a) = inf
x∈R

∫ x+a

x−a

q(t)
r(t) dt .

In the following theorems, we give sufficient conditions for correct solvability of
equation (1.1) in Lp, p ∈ [1,∞].
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Theorem 5.5. Let m(a) > 0 (see (5.11)), `(a) <∞ for some a ∈ (0,∞). Here

(5.12) `(a) = sup
x∈R

∫ x+a

x−a

dt

r(t) .

Suppose that there exists α ∈ [0,∞) such that the following inequality holds:

(5.13) r(t)
r(x) + r(x)

r(t) ≤ c exp
(
α
∣∣∣ ∫ t

x

q(ξ)
r(ξ) dξ

∣∣∣) , x, t ∈ R .

Then equation (1.1) is correctly solvable in Lp for all p > α.

The next assertion gives us a way for checking (5.13).

Theorem 5.6. Suppose that conditions (1.2) hold and, in addition.

1)

(5.14) r ∈ AC loc(R) ;

2) there exist functions q1 and q2 such that

q = q1 + q2(5.15)

0 < q1 ∈ Lloc
1 (R) , q2 ∈ Lloc

1 (R) ;(5.16)

3) there exists α > 0 such that

(5.17) |r′(x)| ≤ αq1(x) , x ∈ R ;

4) the following inequality holds:

(5.18) C0 = sup
x,t∈R

∣∣∣ ∫ t

x

q2(ξ)
r(ξ) dξ

∣∣∣ <∞ .

Then the estimate (5.13) holds.

Theorem 5.7. Suppose that the following conditions hold.

1) m(a) > 0 for some a ∈ (0,∞) (see (5.11));

2)

(5.19) r0 > 0 , r0
def= inf

x∈R
r(x) .

Then (1.1) is correctly solvable in Lp for all p ∈ [1,∞].

Theorem 5.8. Let m(a) > 0 and `(a) <∞ for some a ∈ (0,∞). Then equation
(1.1) is correctly solvable in C(R).
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6. Proofs of additional assertions

Proof of Theorem 5.1. Suppose that for a given p ∈ [1,∞] conditions I)–II)
hold. Consider the cases 1) p = 1; 2) p ∈ (1,∞); 3) p =∞.

Then we have
1) S1 =∞ (see (2.1)) by Corollary 3.4 and M1 <∞ (see (2.9)) by Theorem 3.3.

We now use (2.2):

∞ > M1 = sup
x∈R

1
r(x)

∫ x

−∞
exp

(
−
∫ x

t

q(ξ)
r(ξ) dξ

)
dt

≥ sup
x∈R

1
r(x)

∫ x

x−d(x)
exp

(
−
∫ x

t

q(ξ)
r(ξ) dξ

)
dt

≥ sup
x∈R

d(x)
r(x) exp

(
−
∫ x+d(x)

x−d(x)

q(ξ)
r(ξ) dξ

)
= e−2 sup

x∈R

d(x)
r(x) = c−1B1 ;

2) S1 =∞ (see (2.1)) by Corollary 3.2 and Mp <∞ (see (2.5)) by Theorem 3.1.
We now use (2.2):

∞ > Mp = sup
x∈R

( x∫
−∞

exp
(
− p

x∫
t

q(ξ)
r(ξ) dξ

)
dt
)1/p( ∞∫

x

1
r(t)p′ exp

(
− p′

t∫
x

q(ξ)
r(ξ) dξ

)
dt
)1/p′

≥ sup
x∈R

( x∫
x−d(x)

exp
(
− p

x∫
t

q(ξ)
r(ξ) dξ

)
dt
)1/p(x+d(x)∫

x

1
r(t)p′ exp

(
− p′

t∫
x

q(ξ)
r(ξ) dξ

)
dt
)1/p′

≥ sup
x∈R

( x∫
x−d(x)

exp
(
− p

x∫
x−d(x)

q(ξ)
r(ξ) dξ

)
dt
)1/p

×
( x+d(x)∫

x

1
r(t)p′ exp

(
− p′

x+d(x)∫
x

q(ξ)
r(ξ) dξ

)
dt
)1/p′

= sup
x∈R

exp
(
−

x+d(x)∫
x−d(x)

q(ξ)
r(ξ) dξ

)
d(x)1/p

( x+d(x)∫
x

dt

r(t)p′
)1/p′

= e−2Bp .

3) S2 = ∞ (see (3.3)). Then the function d (see (2.2)) is defined on R. This
can be proved in the same way as in the case S1 =∞ (see [2]). In addition, it is
known (see [2]) that the function d(x) is continuous for x ∈ R, and x− d(x)→∞
as x→∞. Further, A <∞ (see (3.4)). We now use (2.2):

∞ > A = sup
x∈R

∫ ∞
x−d(x)

1
r(t) exp

(
−
∫ t

x−d(x)

q(ξ)
r(ξ) dξ

)
dt

≥ sup
x∈R

∫ x+d(x)

x−d(x)

1
r(t) exp

(
−
∫ x+d(x)

x−d(x)

q(ξ)
r(ξ) dξ

)
dt = e−2B∞.
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Proof of Theorem 5.3. We need the following assertion.

Lemma 6.1. Let f ∈ AC(1)
loc (R), x ∈ R, η ≥ 0. Then

(6.1)
∫ x+η

x−η
f(t) dt = 2ηf(x) +

∫ η

0

∫ t

0

∫ x+ξ

x−ξ
f ′′(s) ds dξ dt .

Proof. The following relations are obvious:∫ x+η

x−η
f(t) dt =

∫ x

x−η
f(t) dt+

∫ x+η

x

f(t) dt =
∫ η

0
[f(x+ t) + f(x− t)] dt

= 2ηf(x) +
∫ η

0
[f(x+ t)− f(x)] dt−

∫ η

0
[f(x)− f(x− t)] dt

= 2ηf(x) +
∫ η

0

∫ x+t

x

f ′(ξ) dξ dt−
∫ η

0

∫ x

x−t
f ′(ξ) dξ dt

= 2ηf(x) +
∫ η

0

∫ t

0
[f(x+ s)]′ ds dt−

∫ η

0

∫ t

0
[f(x− s)]′ ds dt

= 2ηf(x) +
∫ η

0

∫ t

0

∫ x+s

x−s
f ′′(τ) dτ ds dt .

Let x ∈ R, η ≥ 0. Then (see (5.4), (6.1)):

F (η) =
∫ x+η

x−η

q(t)
r(t) dt =

∫ x+η

x−η

q1(t)
r(t) dt+

∫ x+η

x−η

q2(t)
r(t) dt

= 2η q1(x)
r(x) +

∫ η

0

∫ t

0

∫ x+ξ

x−ξ

(q1(s)
r(s)

)′′
ds dξ dt+

∫ x+η

x−η

q2(t)
r(t) dt .(6.2)

Set

(6.3) η = η1(x) = 3
2
r(x)
q1(x) , |x| � 1 .

In the following relations we use (6.2), (6.3), (5.7), (5.8) and (5.6):

F (η1(x)) ≥ 3− 9
8

( r(x)
q1(x)

)2
sup

|ξ|≤2 r(x)
q1(x)

∣∣∣ ∫ x+ξ

x−ξ

(q1(s)
r(s)

)′′
ds
∣∣∣

− sup
|ξ|≤2 r(x)

q1(x)

∣∣∣ ∫ x+ξ

x−ξ

q2(s)
r(s) ds

∣∣∣ = 3− 9
8κ1(x)− κ2(x) ≥ 2 .(6.4)

From (6.4) and Theorem 5.2 it follows that η ≥ d(x), |x| � 1. Set

η = η2(x) = 1
2
r(x)
q1(x) , |x| � 1 .
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Then we obtain in a similar way that

F (η2(x)) ≤ 1 + 1
8

( r(x)
q1(x)

)2
sup

|ξ|≤2 r(x)
q1(x)

∣∣∣ ∫ x+ξ

x−ξ

(q1(s)
r(s)

)′′
ds
∣∣∣

+ sup
|ξ|≤ 2r(x)

q1(x)

∣∣∣ ∫ x+ξ

x−ξ

q2(s)
r(s) ds

∣∣∣ ≤ 1 + κ1(x)
8 + κ2(x) ≤ 2 .(6.5)

From (6.5) and Theorem 5.2 it follows that η2(x) ≤ d(x), |x| � 1. Thus we
obtained (5.9). Let

(6.6) ϕ(x) = d(x)q1(x)
r(x) , x ∈ R .

Since the function d(x) is positive and continuous for x ∈ R, so is the function ϕ
(see (6.6)), (5.3), (5.5)). In addition, ϕ(x) ∈

[ 1
2 ,

3
2
]

for |x| ≥ |x0| � 1 (see (5.9)).
The function ϕ is positive and continuous on [−x0, x0] and hence is separated from
zero and bounded, and we obtain (5.10).

Proof of Theorem 5.5. We need the following assertion.

Lemma 6.2. Let δ > 0 and m(a) > 0, `(a) <∞ for some a ∈ (0,∞) (see (5.11)
and (5.12)). Then

sup
x∈R

∫ x

−∞

1
r(t) exp

(
− δ

∫ x

t

q(ξ)
r(ξ) dξ

)
dt = c(δ) <∞ ,(6.7)

sup
x∈R

∫ ∞
x

1
r(t) exp

(
− δ

∫ t

x

q(ξ)
r(ξ) dξ

)
dt = c(δ) <∞ .(6.8)

Proof. Estimates (6.7) and (6.8) are proved in the same way; therefore, we only
consider (6.8). Let us introduce segments {∆n}∞n=1 :
(6.9) ∆n = [∆−n ,∆+

n ] , ∆±n = xn ± a , xn = x+ (2n− 1)a , ∆−1 = x .

We have the equality
(6.10) ∆−n+1 = ∆+

n , n ≥ 1 .
Below we use (6.9) and (6.10):∫ ∞
x

1
r(t) exp

(
− δ

∫ t

x

q(ξ)
r(ξ) dξ

)
dt =

∞∑
n=1

∫
∆n

1
r(t) exp

(
− δ

∫ t

∆−1

q(ξ)
r(ξ) dξ

)
dt

≤
∞∑
n=1

(∫
∆n

dt

r(t)

)
exp

(
− δ

∫ ∆−n

∆−1

q(ξ)
r(ξ) dξ

)
≤ `(a)

∞∑
n=1

exp(−δm(a)(n− 1)) = c(δ) <∞ .

Let us now go over to the main assertion for p = 1. By Theorem 3.3, we have to
prove that M1 <∞ (see (2.9)).
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Below we use the inequalities (5.13), m(a) > 0, `(a) <∞ and (6.7):

M1 = sup
x∈R

1
r(x)

∫ x

−∞
exp

(
−
∫ x

t

q(ξ)
r(ξ) dξ

)
dt

= sup
x∈R

∫ x

−∞

r(t)
r(x)

1
r(t) exp

(
−
∫ x

t

q(ξ)
r(ξ) dξ

)
dt

≤ sup
x∈R

∫ x

−∞

1
r(t) exp

(
− (1− α)

∫ x

t

q(ξ)
r(ξ) dξ

)
dt <∞ .

For p ∈ (1,∞), by Theorem 3.1, we have to show that Mp < ∞ (see (2.5)).
Below, for p ∈ (1,∞), we use the same tools as in the case p = 1 (see above):

Mp = sup
x∈R

[ ∫ x

−∞
exp

(
− p
∫ x

t

q(ξ)
r(ξ) dξ

)
dt
]1/p[ ∫ ∞

x

1
r(t)p′ exp

(
− p′

∫ t

x

q(ξ)
r(ξ) dξ

)
dt
]1/p′

= sup
x∈R

[ ∫ x

−∞

r(t)
r(x)

1
r(t) exp

(
− p

∫ x

t

q(ξ)
r(ξ) dξ

)
dt
]1/p

×
[ ∫ ∞

x

(r(x)
r(t)

)p′−1 1
r(t) exp

(
− p′

∫ t

x

q(ξ)
r(ξ) dξ

)]1/p′
≤ sup

x∈R

[ ∫ x

−∞

1
r(t) exp

(
− (p− α)

∫ x

t

q(ξ)
r(ξ) dξ

)
dt
]1/p′

×
[ ∫ ∞

x

1
r(t) exp

(
− (p′ − α(p′ − 1))

∫ t

x

q(ξ)
r(ξ) dξ

)
dt
]1/p′

≤ c sup
x∈R

[ ∫ ∞
x

1
r(t) exp

(
− p′

(
1− α

p

)∫ t

x

q(ξ)
r(ξ)

)
dt
]1/p′

<∞ .

Proof of Theorem 5.6. The assumptions of the theorem allow one to deduce
the following obvious implications:

−αq1(ξ) ≤ r′(ξ) ≤ αq1(ξ), ξ ∈ R ⇒

− αq1(ξ)
r(ξ) ≤

r′(ξ)
r(ξ) ≤ α

q1(ξ)
r(ξ) , ξ ∈ R .(6.11)

Let, say, x ≤ t (the case x ≥ t can be considered in the same way). From (6.11)
it follows that

−α
∫ t

x

q1(ξ)
r(ξ) dξ ≤ ln r(t)

r(x) ≤ α
∫ t

x

q1(ξ)
r(ξ) dξ ⇒

ln r(t)
r(x) ≤ α

∫ t

x

q(ξ)− q2(ξ)
r(ξ) dξ = α

∫ t

x

q(ξ)
r(ξ) dξ − α

∫ t

x

q2(ξ)
r(ξ) dξ

≤ α
∣∣∣ ∫ t

x

q(ξ)
r(ξ) dξ

∣∣∣+ α
∣∣∣ ∫ t

x

q2(ξ)
r(ξ) dξ

∣∣∣ ≤ α∣∣∣ ∫ t

x

q(t)
r(ξ) dξ

∣∣∣+ c ,
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ln r(t)
r(x) ≥ −α

∫ t

x

q1(ξ)
r(ξ) dξ = −α

∫ t

x

q(ξ)− q2(ξ)
r(ξ) dξ

= −α
∫ t

x

q(ξ)
r(ξ)dξ + α

∫ t

x

q2(ξ)dξ
r(ξ)

≥ −α
∣∣∣ ∫ t

x

q(ξ)dξ
r(ξ)

∣∣∣− α∣∣∣ ∫ t

x

q2(ξ)dξ
r(ξ)

∣∣∣ ≥ −α∣∣∣ ∫ t

x

q(ξ)dξ
r(ξ)

∣∣∣− c .
This implies (5.13).
Proof of Theorem 5.7. We need the following assertion.

Lemma 6.3. Suppose that the conditions of the theorem hold and δ > 0. Then
one has the inequalities

sup
x∈R

∫ x

−∞
exp

(
− δ

∫ x

t

q(ξ)
r(ξ)dξ

)
dt = c <∞ ,(6.12)

sup
x∈R

∫ ∞
x

exp
(
− δ

∫ t

x

q(ξ)
r(ξ)dξ

)
dt = c <∞ .(6.13)

Proof. Below we use the notation of the proof of Lemma 6.2.

sup
x∈R

∫ ∞
x

exp
(
− δ

∫ t

x

q(ξ)
r(ξ) dξ

)
=
∞∑
n=1

∫
∆n

exp
(
− δ

∫ t

∆−1

q(ξ)
r(ξ) dξ

)
dt

≤
∞∑
n=1

2a exp
(
− δ

∫ ∆−n

∆−1

q(ξ)
r(ξ) dξ

)
≤ 2a

∞∑
n=1

exp(−δm(a)(n− 1)) = c <∞ .

Inequality (6.12) is checked in the same way.
To finish the proof, we use Lemma 6.3 and Theorems 3.1 and 3.3. For p = 1 and

p ∈ (1,∞), we get, respectively,

M1 = sup
x∈R

1
r(x)

∫ x

−∞
exp

(
−
∫ x

t

q(ξ)
r(ξ) dξ

)
dt

≤ 1
r0

sup
x∈R

∫ x

−∞
exp

(
−
∫ x

t

q(ξ)
r(ξ) dξ

)
dt = c <∞ ,

Mp = sup
x∈R

(∫ x

−∞
exp

(
− p

∫ x

t

q(ξ)
r(ξ) dξ

)
dt
)1/p

×
(∫ ∞

x

1
r(t)p

′ exp
(
− p′

∫ t

x

q(ξ)
r(ξ) dξ

)
dt
)1/p′

≤ c

r0
sup
x∈R

(∫ ∞
x

exp
(
− p′

∫ t

x

q(ξ)
r(ξ) ds

)
dt
)1/p′

= c <∞ .

Proof of Theorem 5.8. This is an immediate consequence of Lemma 6.2 and
Theorem 3.5.
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7. Examples

As an example, we have the following assertion.

Theorem 7.1. [5] Suppose that in (1.2) we have r ≡ 1 and p ∈ [1,∞]. Then
equation (1.1) is correctly solvable in Lp if and only if q0(a) > 0 for some a ∈ (0,∞).
Here

(7.1) q0(a) = inf
x∈R

∫ x+a

x−a
q(t) dt .

Proof of Theorem 7.1. Necessity.
From Corollaries 3.2, 3.4 and Theorem 3.5, we obtain

(7.2)
∫ ∞
−∞

q(t) dt =∞

and therefore the function d(x), x ∈ R (see (2.2)), is defined. Further, from
Theorem 5.1 and the equality r ≡ 1 it follows that

(7.3) ∞ > Bp ≥ sup
x∈R

d(x) := d0, p ∈ [1,∞].

From (7.3) we now get (see (7.1) and (2.2))

q0(d0) = inf
x∈R

∫ x+d0

x−d0

q(t) dt ≥ inf
x∈R

∫ x+d(x)

x−d(x)
q(t) dt = 2 .

Proof of Theorem 7.1. Sufficiency.
Since d0 <∞ (see (7.3) and Theorem 5.4), we have (see (5.11) and (7.1))

m(d0) = q0(d0) ≥ 1 , r0 = 1

and it remains to refer to Theorem 5.7.
Below we give an example of an equation which is correctly solvable in Lp,

p ∈ [1,∞], for which the boundary problem (2.3)–(2.4) is not correctly solvable.
See [2, 3] for various situations related to (2.3)–(2.4).

Consider equation (1.1) with

(7.4) r(x) = 1
2(1 + x2) , q(x) = 1 , x ∈ R .

We need the following assertion.

Lemma 7.2. Suppose that (7.4) holds and we are given numbers α, β, γ satisfying
the following conditions:

(7.5) α ≥ 1 , |γ − 1| < 2β .

Then we have inequalities

J(x, α) ≤ cr(x) , I(x, β, γ) ≤ cr(x)1−γ , x ∈ R .(7.6)
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Here

J(x, α) =
∫ x

−∞
exp

(
− α

∫ x

t

q(ξ)
r(ξ)

)
dt , x ∈ R ,(7.7)

I(x, β, γ) =
∫ ∞
x

1
r(t)γ exp

(
− β

∫ t

x

q(ξ)
r(ξ) dξ

)
dt , x ∈ R.(7.8)

Proof. Inequalities (7.7) and (7.8) are proved in the same way, by integrating by
parts. Therefore we only prove (7.8):

I(x, β, γ) =
∫ ∞
x

1
r(t)γ exp

(
− β

∫ t

x

dξ

r(ξ)

)
dt

= − 1
β

∫ ∞
x

1
r(t)γ−1 d

(
exp

(
− β

∫ t

x

dξ

r(ξ)

))
= 1
βr(x)γ−1 −

γ − 1
β

∫ ∞
x

r′(t)
r(t)γ exp

(
− β

∫ t

x

dξ

r(ξ)

)
dt

≤ 1
βr(x)γ−1 + |γ − 1|

2β I(x, β, γ) ⇒ (7.8).

Let p = 1. By Lemma 7.2, we obtain M1 <∞ and then by Theorem 3.3, equation
(1.1) in the case (7.4) is correctly solvable in L1. Since here we have r0 = 0 (see
(2.8)), by Theorem 2.3, the boundary problem (2.3)–(2.4) is not correctly solvable
in L1. Let p ∈ (1,∞). By Lemma 7.2, for α = p, γ = β = p′, we obtain Mp <∞;
therefore, by Theorem 3.1, equation (1.1) in the case (7.4) is correctly solvable in
Lp. Let us estimate Ap′ (see (2.7)). We apply Theorem 5.3 to the pair of functions
(7.4) and easily obtain

(7.9) c−1

1 + x2 ≤ d(x) ≤ c

1 + x2 , x ∈ R .

Since p′ > 1, from (7.9), we easily get the following relations (see (2.7)):

Ap′ = sup
x∈R

Ap′(x) = sup
x∈R

∫ x+d(x)

x−d(x)

dt

r(t)p′ ≥ c
−1 sup

x∈R
(1 + x2)p

′−1 =∞.

Hence, problem (2.3)–(2.4) is not correctly solvable in Lp for p ∈ (1,∞), due to
Theorem 2.2.

Let p =∞. In this case, A <∞ by Lemma 7.2, and by Theorem 3.5 equation
(1.1) in the case (7.4) is correctly solvable in C(R). Further, we establish the equality
A0 = 1 (see (2.10)) in a straightforward way; therefore, problem (2.3)–(2.4) is not
correctly solvable in C(R) by Theorem 2.4.
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