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EXISTENCE AND MULTIPLICITY OF SOLUTIONS

FOR A p(x)-KIRCHHOFF TYPE PROBLEM

VIA VARIATIONAL TECHNIQUES

A. Mokhtari, T. Moussaoui, and D. O’Regan

Abstract. This paper discusses the existence and multiplicity of solutions
for a class of p(x)-Kirchhoff type problems with Dirichlet boundary data of
the following form{
−
(
a+ b

∫
Ω

1
p(x) |∇u|

p(x) dx

)
div
(
|∇u|p(x)−2∇u

)
= f(x, u) , in Ω

u = 0 on ∂Ω ,

where Ω is a smooth open subset of RN and p ∈ C(Ω) with N < p− =
infx∈Ω p(x) ≤ p+ = supx∈Ω p(x) < +∞, a, b are positive constants and
f : Ω× R→ R is a continuous function. The proof is based on critical point
theory and variable exponent Sobolev space theory.

1. Introduction

In this paper we study

(1)

−
(
a+ b

∫
Ω

1
p(x) |∇u|

p(x) dx
)

div
(
|∇u|p(x)−2∇u

)
= f(x, u) , in Ω

u = 0 on ∂Ω ,

where Ω is a bounded domain of RN with smooth boundary ∂Ω and N ≥ 1,
p ∈ C(Ω) with N < p− = infx∈Ω p(x) ≤ p+ = supx∈Ω p(x) < +∞, a, b are positive
constants and f : Ω× R→ R is a continuous function.

Problem (1) is related for example to vibrations and deformations of plates or
tended cords. The operator −div

(
|∇u|p(x)−2∇u

)
is said to be the p(x)-Laplacian,

and becomes the p-Laplacian when p(x) = p. The variable exponent Sobolev space
W

1,p(x)
0 (Ω) is a natural generalization of the classical Sobolev space W 1,p

0 (Ω) and
related preliminaries concerning W 1,p(x)

0 (Ω) and p(x)-Laplacian equations will be
given in Section 2.
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In this paper we examine existence and multiplicity of solutions of the p(x)-Kirch-
hoff equation associated to problem (1) by applying a minimization principle and
the genus theory introduced by Krasnoselskii (see [4], [13]). Problem (1) is related
to the stationary problem of a model introduced by Kirchhoff [12]. More precisely,
Kirchhoff proposed a model given by the equation

ρ
∂2u

∂t2
−
(ρ0

h
+ E

2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣2 dx)ρ∂2u

∂x2 = 0 ,

G. Dai and J. Wei established the existence of infinitely many nonnegative solutions
for problem (1) by applying a general variational principle due to B. Ricceri (see
Theorem 3.1 and Theorem 3.2 in [8]). In this paper, we first prove the existence of
a solution to problem (1), by using a minimization principle with the hypothesis
lim sup|u|→+∞

F (x,t)
|u|θ(x) ≤ a(x), where F (x, u) =

∫ u
0 f(x, t) dt and a is a measurable

function which belongs to L∞(Ω) and θ ∈ C(Ω) satisfies θ+ = supΩ θ(x) < 2p−.
Our second result gives the existence and multiplicity of solutions using Clarke’s
theorem under the following assumptions:
• there exists positive constants C1, C2 > 0 and a function q measurable on Ω

such that C1t
q(x)−1 ≤ f(x, t) ≤ C2t

q(x)−1 for all t ≥ 0 and for all x ∈ Ω,
where q ∈ L∞(Ω) and 1 < q− = essinfΩ q(x) ≤ q(x) ≤ q+ = esssupΩ q(x) <
p− = essinfΩ p(x),

• f(x,−t) = −f(x, t) for all t ∈ R and for all x ∈ Ω.
These hypotheses are a generalization of the hypotheses introduced in [7].

This paper is organized as follows. In Section 2, we present some necessary
preliminaries on variable exponent Lebesgue and Sobolev spaces and we recall
some definitions and basic properties of the Krasnoselskii genus. In Section 3, using
critical point theory, we establish existence and multiplicity results for problem (1).

2. Preliminaries

Suppose that Ω is a smooth bounded open domain of RN with a smooth boundary
∂Ω and p ∈ C(Ω) satisfies

1 < p−
.= inf
x∈Ω

p(x) ≤ p+ .= sup
x∈Ω

p(x) < +∞ .

The variable exponent Lebesgue space Lp(x)(Ω) is defined by

Lp(x)(Ω) =
{
u : Ω→ R is mesurable,

∫
Ω
|u(x)|p(x) dx < +∞

}
endowed with the norm

|u|p(x) = inf
{
λ > 0 :

∫
Ω

∣∣∣u(x)
λ

∣∣∣p(x)
dx ≤ 1

}
.

Define the variable exponent Sobolev space W 1,p(x)(Ω) by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}
endowed with the norm ‖u‖1,p(x) = |u|p(x) + |∇u|p(x).
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Denote by C(Ω) the space of continuous functions on Ω endowed with the norm
|u|∞ = supx∈Ω |u(x)|. W 1,p(x)

0 (Ω) denotes the closure of C∞0 (Ω) in W 1,p(x)(Ω).

Proposition 2.1 (See [10]). Lp(x)(Ω), W 1,p(x)
0 (Ω) and W 1,p(x)(Ω) are separable,

reflexive and uniformly convex Banach spaces.

Proposition 2.2 (See [10]). Let ρ(u) =
∫

Ω |u(x)|p(x) dx. For any u, uk ∈ Lp(x)(Ω),
k = 1, 2, . . . , we have

(1) For u 6= 0, |u|p(x) = λ⇔ ρ
(
u
λ

)
= 1.

(2) |u|p(x) < 1(= 1;> 1)⇔ ρ(u) < 1(= 1;> 1).

(3) If |u|p(x) > 1, then |u|p
−

p(x) ≤ ρ(u) ≤ |u|p
+

p(x).

(4) If |u|p(x) < 1, then |u|p+p(x) ≤ ρ(u) ≤ |u|p
−

p(x).

(5) limk→+∞ |uk|p(x) = 0⇔ limk→+∞ ρ(uk) = 0.

(6) limk→+∞ |uk|p(x) = +∞⇔ limk→+∞ ρ(uk) = +∞.

Proposition 2.3 (See [10]). If u, uk ∈ Lp(x)(Ω), k = 1, 2, . . . , then the following
statements are equivalent to each other:

(1) limk→+∞ |uk − u|p(x) = 0 (i.e. uk → u in Lp(x)(Ω)).
(2) limk→+∞ ρ(uk − u) = 0.
(3) uk → u in measure in Ω and limk→+∞ ρ(uk) = ρ(u).

Proposition 2.4 (See [9]). The Poincaré-type inequality holds, that is, there exists
a positive constant cΩ such that

|u|p(x) ≤ cΩ|∇u|p(x) , ∀u ∈W 1,p(x)
0 (Ω) .

Thus |∇u|p(x) is an equivalent norm in W
1,p(x)
0 (Ω). We will use this equivalent

norm in the following discussion and write ‖u‖ = |∇u|p(x) for simplicity.
We now recall the Krasnoselskii genus and more information on this subject

may be found in ([11], [1], [4], [13]). Let E be a real Banach space. Let us denote
by Σ the class of all closed subsets A ⊂ E − {0} that are symmetric with respect
to the origin, that is, u ∈ A implies −u ∈ A.

Definition 2.1. Let A ∈ Σ. The Krasnoselskii genus γ(A) is defined as being the
least positive integer n such that there is an odd mapping ϕ ∈ C(A,Rn − {0}). If
such an n does not exist we set γ(A) = +∞. Furthermore, by definition, γ(∅) = 0.

Theorem 2.1 (See [11]). Let E = RN and ∂Ω be the boundary of an open,
symmetric and bounded subset Ω ⊂ RN with 0 ∈ Ω. Then γ(∂Ω) = N .

Note γ(SN−1) = N . If E is of infinite dimension and separable and S is the unit
sphere in E, then γ(S) = +∞.

Proposition 2.5 (See [11]). Let A, B ∈ Σ. Then:
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• if there exists an odd map f ∈ C(A,B), then γ(A) ≤ γ(B). Consequently, if
there exists an odd homeomorphism f : A→ B, then γ(A) = γ(B).
• if A ⊂ B, then γ(A) ≤ γ(B).
• γ(A ∪B) ≤ γ(A) + γ(B).

Theorem 2.2 (Minimization principle). Let X be a real reflexive Banach space.
If the functional J : X → R is weakly lower semi-continuous and coercive (i.e.
lim‖u‖→+∞ J(u) = +∞), then there exists u0 ∈ X such that J(u0) = infu∈X J(u).
Moreover, if J is also Gateaux differentiable on X, then J ′(u0) = 0.

Definition 2.2. Let J ∈ C1(X,R). If any sequences (un) ⊂ X for which (J(un)) is
bounded and J ′(un)→ 0 when n→ +∞ in X ′ possesses a convergent subsequence,
then we say that J satisfies the Palais-Smale condition (denoted by the (P-S)
condition).

We now state a theorem due to Clarke.

Theorem 2.3 (See [5], [15]). Let J ∈ C1(E,R) be a functional satisfying the
Palais-Smale condition. Also suppose that:
• J is bounded from below and even;
• there is a compact set K ∈ Σ such that γ(K) = k and supx∈K J(x) < J(0).

Then J possesses at least k pairs of distinct critical points and their corresponding
critical values are less than J(0).

3. Main results

In this section we will discuss the existence of weak solutions of (1).

Definition 3.1. We say that u ∈W 1,p(x)
0 (Ω) is a weak solution of problem (1) if

and only if(
a+ b

∫
Ω

1
p(x) |∇u|

p(x) dx
)∫

Ω
|∇u|p(x)−2∇u∇v dx =

∫
Ω
f(x, u)v dx ,

for all v ∈W 1,p(x)
0 (Ω).

The energy functional corresponding to problem (1) is defined as follows,

J(u) = a

∫
Ω

1
p(x) |∇u|

p(x) dx+ b

2

(∫
Ω

1
p(x) |∇u|

p(x) dx
)2
−
∫

Ω
F (x, u) dx

where F (x, t) =
∫ t

0 f(x, s) ds. It is easy to see that J ∈ C1(W 1,p(x)
0 (Ω),R) and for

all u, v ∈W 1,p(x)
0 (Ω)

J ′(u)·v =
(
a+b

∫
Ω

1
p(x) |∇u|

p(x) dx
)∫

Ω

1
p(x) |∇u|

p(x)−2∇u∇v dx−
∫

Ω
f(x, u)v dx .

Thus the critical points of J are the weak solutions of (1).
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Theorem 3.1. Assume that

(H1) lim sup
|u|→+∞

F (x, u)
|u|θ(x) ≤ a(x) ,

where θ ∈ C(Ω) with θ− = infx∈Ω θ(x) > 1 and a ∈ L∞(Ω). If θ+ = supx∈Ω θ(x) <
2p−, then (1) has a weak solution.

Proof. From the continuity of F and assumption (H1) we deduce that there exists
a positive constant C such that

F (x, u) ≤ a(x)|u|θ(x) + C , ∀u ∈ R , ∀x ∈ Ω .

We have for ‖u‖ > 1 that

J(u) = a

∫
Ω

1
p(x) |∇u|

p(x) dx+ b

2

(∫
Ω

1
p(x) |∇u|

p(x) dx
)2
−
∫

Ω
F (x, u) dx

≥ a

p+ ρp(∇u) + b

2(p+)2

(
ρp(∇u)

)2 − ∫
Ω

(a(x)|u|θ(x) + C) dx ,

≥ a

p+ ‖u‖
p− + b

2(p+)2 ‖u‖
2p− − C meas(Ω)− |a|L∞

∫
Ω
|u|θ(x) dx .

Since p− > N , the embedding W 1,p(x)
0 ↪→ C(Ω) is continuous and we see that∫

Ω
|u|θ(x) dx ≤

∫
Ω
|u|θ(x)
∞ dx ≤ C0

∫
Ω
‖u‖θ(x) ≤ C0‖u‖θ

+
,

where C0 = maxx∈Ω C
θ(x) and C is the constant of the embedding, and this implies

that

J(u) ≥ a

p+ ‖u‖
p− + b

2(p+)2 ‖u‖
2p− − C meas(Ω)− |a|L∞C0‖u‖θ

+
.

Since θ+ < 2p− then J is coercive. Now J is also weakly lower semicontinuous (see
Theorem 3.2.9 in [9]), so we see that J has a global minimum point u ∈W 1,p(x)

0 (Ω),
which is a weak solution to problem (1). �

Example 3.1. We consider Ω = (0, 1) and f(x, t) = a(x)θ(x)|t|θ(x)−2t, for all
t ∈ R, and we put for x ∈ Ω, a(x) = sin x, θ(x) = x+ 3

2 and p(x) = x2 + 2. Our
problem becomes −

(
a+ b

∫ 1
0

1
x2+2 |u

′|x2+2 dx
)(
|u′|x2

u′
)′ = sin x

x2+2 |u|
− 2x2+3
x2+2 u, in (0, 1)

u(0) = u(1) = 0 ,

and it admits at least one weak solution.

Remark 3.1. To obtain a nontrivial solution, we may assume that f(x0, 0) 6= 0
for some x0 ∈ [0, 1].

Theorem 3.2. Assume that:
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(H2) there exist positive constants C1, C2 > 0 and a function q measurable on
Ω such that C1t

q(x)−1 ≤ f(x, t) ≤ C2t
q(x)−1 for all t ≥ 0 and for all

x ∈ Ω, where q ∈ L∞(Ω) and 1 < q− = essinfx∈Ω q(x) ≤ q(x) ≤ q+ =
esssupx∈Ω q(x) < p− = infx∈Ω p(x),

(H3) f(x,−t) = −f(x, t) for all t ∈ R and for all x ∈ Ω.
Then (1) has infinitely many weak solutions.

For the proof of Theorem 3.2 we will need the following steps.
Step 1: J is bounded from below.

Indeed, for any u ∈W 1,p(x)
0 (Ω), we have

J(u) ≥ a

p+

∫
Ω
|∇u|p(x) dx+ b

2(p+)2

(∫
Ω
|∇u|p(x) dx

)2
− C2

q−

∫
Ω
|∇u|q(x) dx .

Let ρp(u) =
∫

Ω |u|
p(x) dx and ρq(u) =

∫
Ω |u|

q(x) dx. We have the following four
cases:

(i) If ρp(u) > 1 and ρq(u) < 1, then by Proposition 2.2, we obtain

J(u) ≥ a

p+ ‖u‖
p− + b

2(p+)2 ‖u‖
2p− − C2

q−
|u|q

−

q(x) .

Since q(x) ≤ p(x) for all x ∈ Ω,

J(u) ≥ a

p+ ‖u‖
p− + b

2(p+)2 ‖u‖
2p− − C2C3

q−
|u|q

−

p(x) ,

where C3 is the constant of the continuous embedding of Lp(x) in Lq(x).
Using the Poincaré inequality, we have

J(u) ≥ a

p+ ‖u‖
p− + b

2(p+)2 ‖u‖
2p− −

C2C3c
q−

Ω
q−

‖u‖q
−

p(x) .

We note that 2p− > q−, so J is bounded from below.
(ii) If ρp(u) > 1 and ρq(u) > 1 then,

J(u) ≥ a

p+ ‖u‖
p− + b

2(p+)2 ‖u‖
2p− −

C2C3c
q−

Ω
q−

‖u‖q
+

p(x) .

We note that 2p− > q+, so J is bounded from below.
(iii) If ρp(u) < 1 and ρq(u) < 1 then,

J(u) ≥ a

p+ ‖u‖
p+

+ b

2(p+)2 ‖u‖
2p+
−
C2C3c

q−

Ω
q−

‖u‖q
−

p(x) .

(iv) If ρp(u) < 1 and ρq(u) > 1 then,

J(u) ≥ a

p+ ‖u‖
p+

+ b

2(p+)2 ‖u‖
2p+
−
C2C3c

q−

Ω
q−

‖u‖q
+

p(x).

Since 2p+ > q− and 2p+ > q+ in (iii) and (iv) successively then J is
bounded from below.
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Step 2: J satisfies the (P-S) condition.
Indeed, let (un) be a Palais-Smale sequence for J . Thus there exists a positive

constant C such that J(un) ≤ C. Arguing as above, we obtain for all u ∈W 1,p(x)
0 (Ω),

the following cases:
(1) If ρp(u) < 1 and ρq(u) < 1 then,

J(u) ≥ a

p+ ‖u‖
p+

+ b

2(p+)2 ‖u‖
2p+
−
C2C3c

q−

Ω
q−

‖u‖q
−

p(x) .

(2) If ρp(u) < 1 and ρq(u) > 1 then,

J(u) ≥ a

p+ ‖u‖
p+

+ b

2(p+)2 ‖u‖
2p+
−
C2C3c

q−

Ω
q−

‖u‖q
+

p(x) .

(3) If ρp(u) > 1 and ρq(u) < 1 then,

J(u) ≥ a

p+ ‖u‖
p− + b

2(p+)2 ‖u‖
2p− −

C2C3c
q−

Ω
q−

‖u‖q
−

p(x) .

(4) If ρp(u) > 1 and ρq(u) > 1 then,

J(u) ≥ a

p−
‖u‖p

−
+ b

2(p−)2 ‖u‖
2p− −

C2C3c
q−

Ω
q−

‖u‖q
+

p(x) .

Since q+ < p−, in all cases we now deduce that the sequence (un) is bounded in
W

1,p(x)
0 (Ω). Thus, passing to a subsequence if necessary, there exists u ∈W 1,p(x)

0 (Ω)
such that un ⇀ u weakly in W

1,p(x)
0 (Ω). Since a, b > 0 we get

a+ b

∫
Ω

1
p(x) |∇u|

p(x) dx > a > 0 .

Consider the sequence

Kn = J ′(un)un +
∫

Ω
f(x, un)un dx− J ′(un)u−

∫
Ω
f(x, un)u dx .

From the Lebesgue dominated convergence theorem and the Sobolev embedding,
we have that∫

Ω
f(x, un)un dx→

∫
Ω
f(x, u)u dx ,

∫
Ω
f(x, un)u dx→

∫
Ω
f(x, u)u dx ,

so we have that Kn → 0 and it can be seen that

Kn =
(
a+ b

∫
Ω

1
p(x) |∇un|

p(x) dx
)∫

Ω
|∇un|p(x)

−
(
a+ b

∫
Ω

1
p(x) |∇u|

p(x) dx
)∫

Ω
|∇un|p(x)−2∇un∇u dx .

Let

Ln = −
(
a+ b

∫
Ω

1
p(x) |∇un|

p(x) dx
)∫

Ω
|∇u|p(x)−2∇un∇u dx
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+
(
a+ b

∫
Ω

1
p(x) |∇un|

p(x) dx
)∫

Ω
|∇u|p(x) dx

= −
(
a+ b

∫
Ω

1
p(x) |∇un|

p(x) dx
)[ ∫

Ω
|∇u|p(x)−2∇un∇u dx−

∫
Ω
|∇u|p(x) dx

]
.

From the weak convergence of (un), we have that Ln → 0. Hence,

Kn + Ln =
(
a+ b

∫
Ω

1
p(x) |∇un|

p(x) dx
)[ ∫

Ω
|∇un|p(x) −

∫
Ω
|∇un|p(x)−2∇un∇u dx

−
∫

Ω
|∇u|p(x)−2∇un∇u dx+

∫
Ω
|∇u|p(x) dx

]
=
(
a+ b

∫
Ω

1
p(x) |∇un|

p(x) dx
)

×
∫

Ω

(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
(∇un −∇u) dx .

We can generalize the elementary inequalities from [14] to the variable exponent
case and we obtain

(|x|p(·)−2x− |y|p(·)−2y)(x− y) ≥ Cp(·)|x− y|p(·) if p(·) ≥ 2 ,

where Cp(·) ≥ min
{

1, 1
2p+−2

}
, and

(|x|p(·)−2x− |y|p(·)−2y)(x− y) ≥
Cp(·)|x− y|2

(|x|+ |y|)2−p(·) if 1 < p(·) < 2 .

We obtain that,
Kn + Ln ≥ aCp(·)ρp(·)

(
∇(un − u)

)
,

and as Cp(·) is dominated by a constant we deduce that ρp(∇(un−u)) converges to
0 as n→ +∞. By Proposition 2.3, we conclude that ‖un − u‖ → 0 in W

1,p(x)
0 (Ω).

Proof of Theorem 3.2. We notice that W 1,p+

0 (Ω) ⊂ W
1,p(x)
0 (Ω). Consider

{e1, e2, . . .}, a Schauder basis of the space W 1,p+

0 (Ω) (see [17]), and for each k ∈ N,
consider Xk, the subspace of W 1,p+

0 (Ω) generated by k vectors {e1, e2, . . . , ek}.
Clearly Xk is subspace of W 1,p(x)

0 (Ω). So we notice that Xk ⊂ Lq(x)(Ω) because
Xk ⊂ W 1,p+

0 (Ω) ⊂ Lq(x). Thus, the norms ‖ · ‖ and | · |q(x) are equivalent on
Xk because Xk is a finite dimension space. Consequently, there exists a positive
constant Ck such that

−|u|q(x) ≤ −Ck‖u‖ , for all u ∈ Xk .

Thus we have

J(u) ≤ a

p−
ρp(∇u) + b

2(p−)2

(
ρp(∇u)

)2 − C1

q+ ρq(u) .



ON A p(x)-KIRCHHOFF TYPE PROBLEM 171

• If ρp(∇u) < 1 and ρq(u) < 1, then

J(u) ≤ a

p−
‖u‖p

−
+ b

2(p−)2 ‖u‖
2p− − C1

q+ |u|
q+

q(x)

≤ a

p−
‖u‖p

−
+ b

2(p−)2 ‖u‖
2p− − C1

q+Ck‖u‖
q+

= ‖u‖q
+
[ a
p−
‖u‖p

−−q+
+ b

2(p−)2 ‖u‖
2p−−q+

− C1

q+Ck

]
.

We choose R > 0 small enough such that
a

p−
Rp
−−q+

+ b

2(p−)2R
2p−−q+

<
C1

q+Ck .

Thus, for 0 < r < R, we consider the set K = {u ∈ Xk : ‖u‖ = r}. For all
u ∈ K, we have

J(u) ≤ rq
+
[ a
p−
rp
−−q+

+ b

2(p−)2 r
2p−−q+

− C1

q+Ck

]
< Rq

+
[ a
p−
Rp
−−q+

+ b

2(p−)2R
2p−−q+

− C1

q+Ck

]
< 0 = J(0) .

We can apply similar reasoning to the other cases since:

• If ρp(∇u) < 1 and ρq(u) > 1, then

J(u) ≤ ‖u‖q
−
[ a
p−
‖u‖p

−−q− + b

2(p−)2 ‖u‖
2p−−q− − C1

q+Ck

]
.

• If ρp(∇u) > 1 and ρq(u) < 1, then

J(u) ≤ ‖u‖q
+
[ a
p−
‖u‖p

+−q+
+ b

2(p−)2 ‖u‖
2p+−q+

− C1

q+Ck

]
.

• If ρp(∇u) > 1 and ρq(u) > 1, then

J(u) ≤ ‖u‖q
−
[ a
p−
‖u‖p

+−q− + b

2(p−)2 ‖u‖
2p+−q− − C1

q+Ck

]
.

We can be considered the odd homeomorphism h : K → Sk−1 defined by
h(u) = (α1, α2, ..., αk), where Sk−1 is the sphere in Rk. From Theorem 2.1 and
proposition 2.5 we conclude that γ(K) = k. thanks to theorem 2.3, J has at least
k pairs of different critical points. Since k is arbitrary, we obtain infinitely many
critical points of J . �

Example 3.2. We consider Ω = (0, 1) and let f(x, t) = C1t
q(x)−1 if t ≥ 0 and

f(x, t) = −C1(−t)q(x)−1 if t < 0, where p(x) = x2 + 2 and q(x) = 1
x2+2 + 1, for all

x ∈ Ω. Then, the problem{
−
(
a+ b

∫
Ω

1
x2+2 |u

′|x2+2 dx
)(
|u′|x2

u′
)′ = sgn (u)C1|u|

1
x2+2 , in (0, 1)

u(0) = u(1) = 0 ,
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has infinitely many solutions.
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