ASYMPTOTIC INTEGRATION OF DIFFERENTIAL EQUATIONS WITH SINGULAR p-LAPLACIAN

Milan Medveď and Eva Pekárková
Dedicated to professor Miroslav Bartušek on the occasion of his 70th birthday

Abstract

In this paper we deal with the problem of asymptotic integration of nonlinear differential equations with p-Laplacian, where $1<p<2$. We prove sufficient conditions under which all solutions of an equation from this class are converging to a linear function as $t \rightarrow \infty$.

1. Introduction

In the asymptotic theory of n-th order nonlinear ordinary differential equations

$$
\begin{equation*}
y^{(n)}=f\left(t, y, y^{\prime}, \ldots, y^{(n-1)}\right) \tag{1}
\end{equation*}
$$

the classical problem is to establish conditions for the existence of a solution which asymptotically behaves as a polynomial of degree $1 \leq m \leq n-1$ as $t \rightarrow \infty$. The first paper concerning this problem was published by D. Caligo [5] in 1941 (see also [1). He proved a result for that type of a linear second order differential equation. Since then many results concerning this problem for nonlinear differential equations have been proved, e.g. in the papers by D.S. Cohen [6], A. Constantin [7, [9] and [8, F.M. Dannan [10, T. Kusano and W.F. Trench [11] and [12], O. Lipovan [13], O.G. Mustafa, Y.V. Rogovchenko [17], Ch.G. Philos, I.K. Purnaras and P.Ch. Tsamatos [20], Y.V. Rogovchenko [22], S.P. Rogovchenko [21], J. Tong [23], F. Trench [24]. The paper by R.P. Agarwal, S.D. Djebali, T. Moussaoui and O.G. Mustafa [1 surveys the literature concerning the topic in asymptotic integration theory of ordinary differential equations. Several conditions under which all solutions of the one dimensional p-Laplacian equation

$$
\begin{equation*}
\left(\left|y^{\prime}\right|^{p-1} y^{\prime}\right)^{\prime}=f\left(t, y, y^{\prime}\right), \quad p>1 \tag{2}
\end{equation*}
$$

behave asymptotically as $a+b t$ as $t \rightarrow \infty$ for some real numbers a, b are proved in [16] and some sufficient conditions for the existence of such solutions of the

[^0]equation
\[

$$
\begin{equation*}
\left(\Phi\left(y^{(n)}\right)\right)^{\prime}=f(t, y), \quad n \geq 1 \tag{3}
\end{equation*}
$$

\]

where $\Phi: \mathbb{R} \rightarrow \mathbb{R}$ is an increasing homeomorphism with a locally Lipschitz inverse satisfying $\Phi(0)=0$ are given in the paper [14]. We remark that in the papers [2], 3], [15] and [19] problems of the global existence, extendability and non-extendability of solutions of systems of equations with p-Laplacian are studied.

In this paper we prove sufficient conditions under which all solutions of a p-Laplace equation behave asymptotically as a linear function for $t \rightarrow \infty$. In its proof we apply the Bihari inequality. This technique was applied also in the paper [16] concerning a p-Laplace equation. In some of the above mentioned papers, also in the paper [14] concerning a p-Laplace equation, some results on the existence of solutions behaving like linear functions near the infinity are proved by using the Schauder fixed point theorem.

2. Asymptotic properties of one-dimensional singular p-Laplace equations

Consider the initial problem

$$
\begin{equation*}
\left(Q(t) \Phi_{p}\left(u^{\prime}\right)\right)^{\prime}+f\left(t, u, u^{\prime}\right)=0 \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
u\left(t_{0}\right)=u_{0}, u^{\prime}\left(t_{0}\right)=u_{1}, \quad t_{0} \geq 1 \tag{5}
\end{equation*}
$$

where $\Phi_{p}(v)=|v|^{p-2} v, Q(t)$ is a continuous positive function. If $p>1$ and $q>1$ are such that $\frac{1}{p}+\frac{1}{q}=1$, then $\Phi_{q}(v)=\Phi_{p}^{-1}(v)$. We need to assume $q>2$. However in this case $1<p<2$ and this means that the p-Laplacian $\Phi_{p}(v)$ is singular.

Theorem 1. Let the following conditions be satisfied:
(C1) $1<p<2$;
(C2) There exists a continuous nonnegative function $h: \mathbb{R}_{+}=[0, \infty) \rightarrow \mathbb{R}$, continuous positive nondecreasing functions $g_{i}: \mathbb{R}_{+} \rightarrow \mathbb{R}, i=1,2$ and a positive number k such that

$$
|f(t, u, v)| \leq H(t)\left[g_{1}\left(\left[\frac{|u|}{t}\right]^{k}\right)+g_{2}\left(|v|^{k}\right)\right]
$$

for all $(t, u, v) \in(0, \infty) \times \mathbb{R} \times \mathbb{R}$;
(C3)

$$
\begin{equation*}
\int_{0}^{\infty} H(s)^{\frac{1}{p-1}} d s<\infty \tag{C4}
\end{equation*}
$$

$$
\int_{v_{0}}^{\infty} \frac{d \sigma}{g_{1}\left(\sigma^{k}\right)^{\frac{1}{p-1}}+g_{2}\left(\sigma^{k}\right)^{\frac{1}{p-1}}}=\frac{1}{k} \int_{v_{0}^{k}}^{\infty} \frac{\tau^{\frac{1}{k}-1} d \tau}{g_{1}(\tau)^{\frac{1}{p-1}}+g_{2}(\tau)^{\frac{1}{p-1}}}=\infty, \quad v_{0} \geq 0
$$

(C5) There exists a constant $K>0$ such that

$$
Q(t) \geq K t, \quad t \geq t_{0} \geq 1
$$

Then for any solution $u(t)$ of the initial value problem (4), (5) there exist $a, b \in \mathbb{R}$ such that

$$
\lim _{t \rightarrow \infty}|u(t)-(a+b t)|=0 .
$$

Proof. First let us write the equation (4) in the form

$$
\begin{equation*}
\left(\Phi_{p}\left(h(t) u^{\prime}\right)\right)^{\prime}+f\left(t, u, u^{\prime}\right)=0 \tag{6}
\end{equation*}
$$

where $h(t)=Q(t)^{r}=Q(t)^{q-1}=Q(t)^{\frac{1}{p-1}}\left(r=q-1=\frac{1}{p-1}\right)$. From condition (C5) it follows that

$$
\begin{equation*}
h(t) \geq K^{r} t^{r}, \quad t \geq t_{0} \geq 1 \tag{7}
\end{equation*}
$$

If $u(t)$ is a solution of equation (4) satisfying the initial value condition (5), then

$$
\begin{align*}
u^{\prime}(t) & =\frac{1}{h(t)}\left\{\Phi_{q}\left(\Phi_{p}\left(h\left(t_{0}\right) u_{1}\right)-\int_{t_{0}}^{t} f\left(s, u(s), u^{\prime}(s)\right) d s\right)\right\} \tag{8}\\
u(t) & =u_{0}+\int_{t_{0}}^{t} \frac{1}{h(\tau)}\left\{\Phi_{q}\left(\Phi_{p}\left(h\left(t_{0}\right) u_{1}\right)-\int_{t_{0}}^{\tau} f\left(s, u(s), u^{\prime}(s)\right) d s\right)\right\} d \tau \tag{9}
\end{align*}
$$

Using condition (C5) we obtain

$$
\frac{1}{h(t)}=\frac{1}{Q(t)^{r}} \leq L \frac{1}{t^{r}}, \quad L=\frac{1}{K^{r}}
$$

and

$$
|u(t)| \leq\left|u_{0}\right| t+L \int_{t_{0}}^{t} \frac{1}{\tau^{r}}\left(\left|\Phi_{p}\left(h\left(t_{0}\right) u_{1}\right)\right|+\int_{t_{0}}^{\tau}\left|f\left(s, u(s), u^{\prime}(s)\right)\right| d s\right)^{r} d \tau
$$

Using the Hölder inequality (with r and $\frac{r}{r-1}$) and the inequality ($a_{1}+a_{2}+\cdots+$ $\left.a_{m}\right)^{n} \leq m^{n-1}\left(a_{1}^{n}+a_{2}^{n}+\cdots+a_{m}^{n}\right), a_{1}, a_{2}, \ldots, a_{m} \geq 0, n \in \mathbb{N}$, and condition (C2) we obtain for $t \geq t_{0} \geq 1$:

$$
\begin{aligned}
|u(t)| \leq & \left|u_{0}\right| t+L \int_{t_{0}}^{t} \frac{1}{\tau^{r}}\left(2^{r-1}\left|\Phi_{p}\left(h\left(t_{0}\right) u_{1}\right)\right|^{r}+2^{r-1} \tau^{r-1} \int_{0}^{\tau}\left|f\left(s, u(s), u^{\prime}(s)\right)\right|^{r} d s\right) d \tau \\
\leq & \left|u\left(t_{0}\right)\right| t+L t 2^{r-1}\left|\Phi_{p}\left(h\left(t_{0}\right) u_{1}\right)\right|^{r}+L 2^{r-1} \int_{0}^{t} \int_{t_{0}}^{s}\left|f\left(\tau, u(\tau), u^{\prime}(\tau)\right)\right|^{r} d \tau d s \\
\leq & \left|u\left(t_{0}\right)\right| t+L t 2^{r-1}\left|\Phi_{p}\left(h\left(t_{0}\right) u_{1}\right)\right|^{r} \\
& +L 2^{r-1} t \int_{t_{0}}^{t} H(s)^{r}\left(g_{1}\left(\left[\frac{|u(s)|}{s}\right]^{k}\right)+g_{2}\left(\left|u^{\prime}(s)\right|^{k}\right)\right)^{r} d s \\
\leq & \left|u\left(t_{0}\right)\right| t+L t 2^{r-1}\left|\Phi_{p}\left(h\left(t_{0}\right) u_{1}\right)\right|^{r} \\
& +L 4^{r-1} t \int_{t_{0}}^{t} H(s)^{r}\left(g_{1}\left(\left[\frac{|u(s)|}{s}\right]^{k}\right)^{r}+g_{2}\left(\left|u^{\prime}(s)\right|^{k}\right)^{r}\right) d s
\end{aligned}
$$

This yields

$$
\frac{|u(t)|}{t} \leq A_{1}+B \int_{t_{0}}^{t} H(s)^{r}\left(g_{1}\left(\left[\frac{|u(s)|}{s}\right]^{k}\right)^{r}+g_{2}\left(\left|u^{\prime}(s)\right|^{k}\right)^{r}\right) d s
$$

where $A_{1}=\left|u\left(t_{0}\right)\right|+L 2^{r-1}\left|\Phi_{p}\left(h\left(t_{0}\right) u_{1}\right)\right|^{r}, B=4^{r-1} L$. One can show that

$$
\begin{equation*}
\frac{|u(t)|}{t} \leq z(t), \quad\left|u^{\prime}(t)\right| \leq z(t) \tag{10}
\end{equation*}
$$

where

$$
z(t)=A+B \int_{t_{0}}^{t} H(s)^{r}\left(g_{1}\left(\left[\frac{|u(s)|}{s}\right]^{k}\right)^{r}+g_{2}\left(\left|u^{\prime}(s)\right|^{k}\right)^{r}\right) d s
$$

$A=A_{1}+\left|u_{1}\right|$. Since the functions g_{1}, g_{2} are nondecreasing, the inequalities 10) yield

$$
z(t) \leq A+B \int_{t_{0}}^{t} H(s)^{r}\left(g_{1}\left(z(s)^{k}\right)^{r}+g_{2}\left(z(s)^{k}\right)^{r}\right) d s
$$

and from the Bihari inequality it follows

$$
\Omega(z(t)) \leq K_{1}:=\Omega(A)+B \int_{t_{0}}^{\infty} H(s)^{r} d s<\infty
$$

where

$$
\Omega(v)=\int_{v_{0}}^{v} \frac{d \sigma}{g_{1}\left(\sigma^{k}\right)^{r}+g_{2}\left(\sigma^{k}\right)^{r}}, \quad r=q-1
$$

From inequalities (10) we have

$$
\begin{equation*}
\frac{|u(t)|}{t} \leq K:=\Omega^{-1}\left(K_{1}\right)<\infty, \quad\left|u^{\prime}(t)\right| \leq K, \quad t \geq t_{0} \tag{11}
\end{equation*}
$$

Since

$$
\begin{aligned}
\int_{t_{0}}^{t}\left|f\left(s, u(s), u^{\prime}(s)\right)\right| d s & \leq \int_{t_{0}}^{t} H(s)\left(g_{1}\left(\left[\frac{|u(s)|}{s}\right]^{k}\right)+g_{2}\left(\left|u^{\prime}(s)\right|^{k}\right)\right) d s \\
& \leq z(t) \leq K, \quad t \geq t_{0}
\end{aligned}
$$

the integral $\int_{t_{0}}^{\infty}\left|f\left(s, u(s), u^{\prime}(s)\right)\right| d s$ exists.
From (11) it follows that there exists $a \in \mathbb{R}$ such that

$$
\lim _{t \rightarrow \infty} u^{\prime}(t)=a
$$

and by using the L'Hospital rule we obtain

$$
\lim _{t \rightarrow \infty} \frac{|u(t)|}{t}=\lim _{t \rightarrow \infty} u^{\prime}(t)=a
$$

Therefore there exist $a, b \in \mathbb{R}$ such that $u(t)=a t+b+o(t)$ as $t \rightarrow \infty$.
Example. Let $t_{0}=1,1<p<2,0<k \leq 1, H(t)$ be a nonnegative, continuous function on $[0, \infty)$ with $\int_{1}^{\infty} H(s)^{\frac{1}{p-1}} d s<\infty$ and

$$
f(t, u, v)=H(t)\left(u^{\frac{(p-1)(1-k)}{k}} \ln ^{p-1} u+v^{\frac{(p-1)(1-k)}{k}}\right), \quad u, v>0, t \in[0, \infty)
$$

If $g_{1}(u):=u^{\frac{(p-1)(1-k)}{k}} \ln ^{p-1} u, g_{2}(v):=v^{\frac{(p-1)(1-k)}{k}}, Q(t):=t, t \geq 1$, then

$$
\int_{v_{0}^{k}}^{\infty} \frac{\tau^{\frac{1}{k}-1} d \tau}{g_{1}(\tau)^{p-1}+g_{2}(\tau)^{p-1}}=\int_{v_{0}^{k}}^{\infty} \frac{d \tau}{\ln \tau+\tau}=\infty
$$

(see [7) and thus all conditions of Theorem 1 are satisfied.

Remark 1. Let us define the following classes of functions defined on the region $D \subset(0, \infty) \times \mathbb{R} \times \mathbb{R}:$

$$
\mathcal{C}_{i}=\{f(t, u, v): f \in C(D) \text { and satisfies the condition }(K i)\}, \quad i=0,1,2,
$$

where (K0) is given by the conditions (C2), (C3), (C4) from Theorem 1 ,

$$
\begin{equation*}
|f(t, u, v)| \leq h_{1}(t)\left[g_{1}\left(\left[\frac{|u|}{t}\right]^{k}\right)+h_{2}(t) g_{2}\left(|v|^{k}\right)+h_{3}(t)\right] \tag{K1}
\end{equation*}
$$

for all $(t, u, v) \in(0, \infty) \times \mathbb{R} \times \mathbb{R}$ with

$$
\int_{0}^{\infty} h_{j}(s)^{\frac{1}{p-1}} d s<\infty, \quad j=1,2,3
$$

and

$$
\int_{v_{0}}^{\infty} \frac{d \sigma}{g_{1}\left(\sigma^{k}\right)^{\frac{1}{p-1}}+g_{2}\left(\sigma^{k}\right)^{\frac{1}{p-1}}}=\frac{1}{k} \int_{v_{0}^{k}}^{\infty} \frac{\tau^{\frac{1}{k}-1} d \tau}{g_{1}(\tau)^{\frac{1}{p-1}}+g_{2}(\tau)^{\frac{1}{p-1}}}=\infty, \quad v_{0} \geq 0
$$

$$
\begin{equation*}
|f(t, u, v)| \leq h_{4}(t)\left[g_{1}\left(\left[\frac{|u|}{t}\right]^{k}\right) g_{2}\left(|v|^{k}\right)+h_{5}(t)\right] \tag{K2}
\end{equation*}
$$

for all $(t, u, v) \in(0, \infty) \times \mathbb{R} \times \mathbb{R}$ with

$$
\int_{0}^{\infty} h_{j}(s)^{\frac{1}{p-1}} d s<\infty, \quad j=4,5
$$

and

$$
\int_{v_{0}}^{\infty} \frac{d \sigma}{g_{1}\left(\sigma^{k}\right)^{\frac{1}{p-1}} g_{2}\left(\sigma^{k}\right)^{\frac{1}{p-1}}}=\frac{1}{k} \int_{v_{0}^{k}}^{\infty} \frac{\tau^{\frac{1}{k}-1} d \tau}{g_{1}(\tau)^{\frac{1}{p-1}} g_{2}(\tau)^{\frac{1}{p-1}}}=\infty, \quad v_{0} \geq 0
$$

Proposition 2. It holds

$$
\mathcal{C}_{1} \subset \mathcal{C}_{0}, \quad \mathcal{C}_{2} \subset \mathcal{C}_{0}
$$

This proposition is a corollary of Proposition 2 from [18]. If we substitute conditions (K1) or (K2) instead of conditions (C1), (C2), (C3) in Theorem 1 we obtain results which are corollaries of Theorem 1 This type of results with these classes of nonlinearities are proved in [22, [21] and also in [16], separately.
Remark 2. Since we study equation (6) with $1<p<2$ we need condition (C5). This condition is not necessary in the case studied in [16].

Theorem 3. Let conditions (C1)-(C5) of Theorem 1 be satisfied. Then any solution $u:[0, T) \rightarrow \mathbb{R}$ with $0<T<\infty$ can be extended to the right beyond T.

Proof. Let $u:[0, T) \rightarrow \mathbb{R}$ be a solution of equation (4) with $0<T<\infty$ satisfying the initial value condition (5), which cannot be extended to the right beyond T. Then $\lim _{t \rightarrow T^{-}}|u(t)|=\infty$. However from inequality 10 we have

$$
\begin{equation*}
|u(t)| \leq t|z(t)|, \quad t \geq 1 \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
z(t) \leq A+B \int_{t_{0}}^{t} H(s)^{r}\left(g_{1}\left(z(s)^{k}\right)^{r}+g_{2}\left(z(s)^{k}\right)^{r}\right) d s \tag{13}
\end{equation*}
$$

and by applying the Bihari inequality we obtain that $|z(t)| \leq K$ for all $t \in[1, \infty)$, where $K>0$ is a constant. However from the inequality 12 we have $|u(t)| \leq T K$ for all $t \in[1, \infty)$ and it is a contradiction.

Theorem 4. Let conditions (C1)-(C4) of Theorem 1 be satisfied and suppose that there exists a solution $u:[1, T) \rightarrow \mathbb{R}$ of equation (4) with $0<T<\infty$ which cannot be extended to the right of T. Then $G(+\infty)<\infty$, where

$$
G(v)=\int_{v_{0}}^{v} \frac{d \sigma}{g_{1}\left(\sigma^{k}\right)^{\frac{1}{p-1}}+g_{2}\left(\sigma^{k}\right)^{\frac{1}{p-1}}}, \quad v \geq v_{0} \geq 0 .
$$

This theorem can be proved by a modification of the procedure used in the proof of Lemma 3.6 from [18].

Acknowledgement. Research of the first author was supported by the Slovak Grant Agency VEGA-MŠ, project No. 1/0071/14. The authors are grateful to the referee for his very useful comments and suggestions.

References

[1] Agarwal, R.P., Djebali, S., Moussaoui, T., Mustafa, O.G., On the asymptotic integration of nonlinear differential equations, J. Comput. Appl. Math 202 (2007), 352-376.
[2] Bartušek, M., Medved, M., Existence of global solutions for systems of second-order functional-differential equations with p-Laplacian, EJDE 40 (2008), 1-8.
[3] Bartušek, M., Pekárková, E., On the existence of proper solutions of quasilinear second order differential equations, EJQTDE 1 (2007), 1-14.
[4] Bihari, I., A generalization of a lemma of Bellman and its applications to uniqueness problems of differential equations, Acta Math. Hungar. 7 (1956), 81-94.
[5] Caligo, D., Comportamento asintotico degli integrali dell'equazione $y^{\prime \prime}(x)+A(x) y(x)=0$, nell'ipotesi $\lim _{x \rightarrow+\infty} A(x)=0$, Boll. Un. Mat. Ital. (2) 3 (1941), 286-295.
[6] Cohen, D.S., The asymptotic behavior of a class of nonlinear differntial equations, Proc. Amer. Math. Soc. 18 (1967), 607-609.
[7] Constantin, A., On the asymptotic behavior of second order nonlinear differential equations, Rend. Mat. Appl. (7) 13 (4) (1993), 627-634.
[8] Constantin, A., Solutions globales d'équations différentielles perturbées, C. R. Acad. Sci. Paris Sér. I Math. 320 (11) (1995), 1319-1322.
[9] Constantin, A., On the existence of positive solutions of second order differential equations, Ann. Mat. Pura Appl. (4) 184 (2) (2005), 131-138.
[10] Dannan, F.M., Integral inequalities of Gronwall-Bellman-Bihari type and asymptotic behavior of certain second order nonlinear differential equations, J. Math. anal. Appl. 108 (1) (1985), 151-164.
[11] Kusano, T., Trench, W.F., Existence of global solutions with prescribed asymptotic behavior for nonlinear ordinary differential equations, J. London Math. Soc.(2) 31 (3) (1985), 478-486.
[12] Kusano, T., Trench, W.F., Existence of global solutions with prescribed asymptotic behavior for nonlinear ordinary differential equations, Ann. Mat. Pura Appl. (4) 142 (1985), 381-392.
[13] Lipovan, O., On the asymptotic behaviour of the solutions to a class of second order nonlinear differential equations, Glasgow Math. J. 45 (1) (2003), 179-187.
[14] Medved', M., Moussaoui, T., Asymptotic integration of nonlinear Φ-Laplacian differential equations, Nonlinear Anal. 72 (2010), 1-8.
[15] Medved, M., Pekárková, E., Existence of global solutions for systems of second-order differential equations with p-Laplacian, EJDE 2007 (136) (2007), 1-9.
[16] Medved', M., Pekárková, E., Long time behavior of second order differential equations with p-Laplacian, EJDE 2008 (108) (2008), 1-12.
[17] Mustafa, O.G., Rogovchenko, Y.V., Global existence of solutions with prescribed asymptotic behavior for second-order nonlinear differential equations, Nonlinear Anal. 51 (2002), 339-368.
[18] Mustafa, O.G., Rogovchenko, Y.V., Asymptotic behavior of nonoscillatory solutions of second-order nonlinear differential equations, Dynamic Systems and Applications 4 (2004), 312-319.
[19] Pekárková, E., Estimations of noncontinuable solutions of second order differential equations with p-Laplacian, Arch. Math.(Brno) 46 (2010), 135-144.
[20] Philos, Ch.G., Purnaras, I.K., Tsamatos, P.Ch., Large time asymptotic to polynomials solutions for nonlinear differential equations, Nonlinear Anal. 59 (2004), 1157-1179.
[21] Rogovchenko, S.P., Rogovchenko, Y.V., Asymptotics of solutions for a class of second order nonlinear differential equations, Portugal. Math. 57 (1) (2000), 17-32.
[22] Rogovchenko, Y.V., On asymptotic behavior of solutions for a class of second order nonlinear differential equations, Collect. Math. 49 (1) (1998), 113-120.
[23] Tong, J., The asymptotic behavior of a class of nonlinear differential equations of second order, Proc. Amer. Math. Soc. 54 (1982), 235-236.
[24] Trench, W.F., On the asymptotic behavior of solutions of second order linear differential equations, Proc. Amer. Math. Soc. 54 (1963), 12-14.

Department of Mathematical and Numerical Mathematics,
Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, 84248 Bratislava, Slovakia
E-mail: Milan.Medved@fmph.uniba.sk

Institute of Manufacturing Technology,
Faculty of Mechanical Engineering, Brno University of Technology, TechnickÁ 2896/2, 61669 Brno, Czech Republic
E-mail: pekarkova@fme.vutbr.cz

[^0]: 2010 Mathematics Subject Classification: primary 34D05; secondary 35B40.
 Key words and phrases: p-Laplacian, differential equation, asymptotic integration. Received March 30, 2015, revised August 2015. Editor O. Došlý.
 DOI: 10.5817/AM2016-1-13

