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ON THE ANDERSON-BADAWI ωR[X](I[X]) = ωR(I)
CONJECTURE

Peyman Nasehpour

Abstract. Let R be a commutative ring with an identity different from
zero and n be a positive integer. Anderson and Badawi, in their paper on
n-absorbing ideals, define a proper ideal I of a commutative ring R to be
an n-absorbing ideal of R, if whenever x1 . . . xn+1 ∈ I for x1, . . . , xn+1 ∈
R, then there are n of the xi’s whose product is in I and conjecture that
ωR[X](I[X]) = ωR(I) for any ideal I of an arbitrary ring R, where ωR(I) =
min{n : I is an n-absorbing ideal of R}. In the present paper, we use content
formula techniques to prove that their conjecture is true, if one of the following
conditions hold:

(1) The ring R is a Prüfer domain.
(2) The ring R is a Gaussian ring such that its additive group is torsion-free.
(3) The additive group of the ring R is torsion-free and I is a radical ideal

of R.

0. Introduction

Let R be a commutative ring with an identity different from zero and n be
a positive integer. Anderson and Badawi, in their paper [3], define a proper ideal I of
a commutative ring R to be an n-absorbing ideal of R, if whenever x1 . . . xn+1 ∈ I
for x1, . . . , xn+1 ∈ R, then there are n of the xi’s whose product is in I. In the fourth
section of their paper, they conjecture that ωR[X](I[X]) = ωR(I) for any ideal I of
an arbitrary ring R, where ωR(I) = min{n : I is an n-absorbing ideal of R}.

Clearly a 1-absorbing ideal is just a prime ideal and it is a well-known result
in commutative ring theory that I is a prime ideal of R iff I[X] is a prime ideal
of R[X]. In [3, Theorem 4.15], it is also proved that I[X] is a 2-absorbing ideal of
R[X] iff I is a 2-absorbing ideal of R.

In this paper, we use content formula techniques to prove that their conjecture is
true, i.e., ωR[X](I[X]) = ωR(I) for an ideal I of R, if one of the following conditions
hold:

(1) The ring R is a Prüfer domain.
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(2) The ring R is a Gaussian ring such that its additive group is torsion-free.
(3) The additive group of the ring R is torsion-free and I is a radical ideal

of R.
Since the content formula techniques for polynomials work for a generalization of

these algebras known as content algebras, we recall the concept of content algebras,
and then in the first section of this paper, we introduce Gaussian and Armendariz
algebras and investigate them a bit. Finally in the second section, we prove that the
formula ωB(IB) = ωR(I) holds for some content algebras that are a generalization
of their polynomial versions mentioned above.

Let R be a commutative ring with identity and B an R-algebra. For any element
f ∈ B, the ideal c(f) =

⋂
{I : I is an ideal of R and f ∈ IB} is attributed to

it, called the content of f . Note that the content function c is nothing but the
generalization of the content of a polynomial f ∈ R[X], which it is the ideal
generated by its coefficients. The R-algebra B is called a content R-algebra if the
following conditions hold:

(1) For all f ∈ B, f ∈ c(f)B.
(2) (Faithful flatness) c(rf) = rc(f) For any r ∈ R and f ∈ B, and c(1B) = R.
(3) (Dedekind-Mertens content formula) For all f , g in B, there exists a natural

number n such that c(f)nc(g) = c(f)n−1c(fg).
The algebra of all polynomials over an arbitrary ring in an arbitrary number

of indeterminates and all semigroup rings whose semigroups are commutative,
cancellative, and torsion-free are important and celebrated examples of content
algebras (cf. [21] and [20]). For more on content algebras and their examples,
one may refer to [21], [24], and [9], where content modules, content algebras and
weak content algebras were introduced and investigated. On the other hand, the
Dedekind-Mertens content formula and its generalization have been discussed
in other papers like [7], [13], [14], [15], [16], [17], [19], and [22] with different
perspectives as well.

Now it is natural to ask when the simplest form of the Dedekind-Mertens content
formula, i.e., c(fg) = c(f)c(g), holds for all f , g ∈ B. It is obvious that if every
nonzero finitely generated ideal of the ring R is a cancelation ideal, i.e., R is a
Prüfer domain, then from the Dedekind-Mertens content formula, we can deduce
that c(fg) = c(f)c(g) for all f, g ∈ B. We remind the reader that an ideal I of a
ring R is called a cancellation ideal if for all ideals J , K of R, IJ = IK implies
J = K. On the other hand, it is a celebrated result that if D is a domain and
c(fg) = c(f)c(g) for all f, g ∈ D[X], then D is a Prüfer domain (cf. [12] and [25]).

An arbitrary ring R is called Gaussian if c(fg) = c(f)c(g) for all f , g ∈ R[X].
There are many rings that are not domain, but still Gaussian. For more on Gaussian
rings, one may refer to [1], [4], [2], and [6]. In the next section, we will define Gaussian
algebras and discuss them. The importance of the first section is that it supplies
many examples for what we prove in the second section on the Anderson-Badawi
ωR[X](I[X]) = ωR(I) conjecture.

Throughout this paper, all rings are commutative with an identity different from
zero. Also note that iff always stands for “if and only if”.
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1. Gaussian and Armendariz algebras

Let B be an R-algebra such that f ∈ c(f)B for all f ∈ B, where by c(f), we mean
the ideal

⋂
{I : I is an ideal of R and f ∈ IB}. Let f ∈ B. Then f ∈ c(f)B, and

this means that f =
∑
aifi, where ai ∈ R and fi ∈ B and c(f) = (a1, a2, . . . , an).

Similarly if g ∈ B, then g =
∑
bjgj , where bj ∈ R and gj ∈ B and c(g) =

(b1, b2, . . . , bm). Then fg =
∑
aibjfigj ∈ c(f)c(g)B, and hence c(fg) ⊆ c(f)c(g)

[24, Proposition 1.1, p. 330]. The question of when equality holds is the basis for
the following definition:

Definition 1. Let B be an R-algebra such that f ∈ c(f)B for all f ∈ B. We
define B to be a Gaussian R-algebra if c(fg) = c(f)c(g) for all f, g ∈ B.

Example 2. Let B be a content R-algebra such that R is a Prüfer domain.
Since every nonzero finitely generated ideal of R is a cancelation ideal of R, the
Dedekind-Mertens content formula forces B to be a Gaussian R-algebra.

Another example is given in the following remark.

Remark 3. Let (R,m) be a quasi-local ring with m2 = (0). If B is a content
R-algebra, then B is a Gaussian R-algebra.

Proof. Let f, g ∈ B such that c(f) ⊆m and c(g) ⊆m, then c(fg) ⊆ c(f)c(g) ⊆
(0), so c(fg) = c(f)c(g) = (0). Otherwise, one of them, say c(f), is R and according
to the Dedekind-Mertens content formula, we have c(fg) = c(g) = c(f)c(g). �

Now we give another interesting class of Gaussian algebras. Recall that a ring R
is said to be a Bézout ring if every finitely generated ideal of R is principal.

Theorem 4. Let R be a Bézout ring and S be a commutative, cancellative,
torsion-free semigroup. Then R[S] is a Gaussian R-algebra.

Proof. Let g = b1Xg1 + b2Xg2 + · · · + bnXgn , where bi ∈ R and gi ∈ S for all
0 ≤ i ≤ n. Then there exists a b ∈ R, such that c(g) = (b1, b2, . . . , bn) = (b). From
this, we have bi = rib and b =

∑
sibi, where ri, si ∈ R. Put d =

∑
siri. Then

b = db. Since S is an infinite set, it is possible to choose gn+1 ∈ S−{g1, g2, . . . , gn}.
Let g′ = r1Xg1 + r2Xg2 + · · · + rnXgn + (1 − d)Xgn+1 . One can easily check

that g = g′b, c(g′) = R, and c(fg) = c(fg′b) = c(fg′)b = c(f)b = c(f)c(g) for all
f ∈ R[S]. �

Note that the condition on the commutative semigroup S, i.e., being a cancellative
and torsion-free semigroup, cannot be reduced [18, Theorem 2].

Though the assertions of the following theorem are in the papers [10] and [2],
we express them in the present paper’s terminology for the reader’s convenience.

Theorem 5. Let R be a ring. Then the following statements hold:

(1) If R is a Noetherian ring, then R[[X]] is a content R-algebra.
(2) If R is a Dedekind domain, then R[[X]] is a Gaussian R-algebra.

Proof. (1): Let R[[X]] be the ring of formal power series over the Noetherian ring
R. For f ∈ R[[X]], let Af denote the ideal of R generated by the coefficients of f
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(cf. [11]). It is straightforward to see that Af ⊆ I iff f ∈ I[[X]] for every ideal I of
R and f ∈ R[[X]]. Since R is a Noetherian ring, I[[X]] = I ·R[[X]] for every ideal
I of R, and so Af ⊆ I iff f ∈ I ·R[[X]]. This implies that Af = c(f) (refer to the
statement 1.2 in [21]). Obviously c(rf) = Arf = (r)Af = rc(f) for any r ∈ R and
f ∈ R[[X]] and c(1R[[X]]) = R. On the other hand, the Dedekind-Mertens formula
holds for formal power series over Noetherian rings ([10, Theorem 2.6]). From the
above, we deduce that R[[X]] is a content R-algebra.

(2): If R is a Dedekind domain, then every ideal of R is a cancelation ideal, and
therefore c(fg) = c(f)c(g) for all f , g ∈ R[[X]] (also refer to [2, Theorem 2.4]) and
R[[X]] is a Gaussian R-algebra. �

We next define Armendariz algebras and show their relationship with Gaussian
algebras. Armendariz rings were introduced in [23]. A ring R is said to be an
Armendariz ring if for all f, g ∈ R[X] with f = a0 + a1X + · · · + anXn and
g = b0 + b1X + · · · + bmXm, fg = 0 implies aibj = 0 for all 0 ≤ i ≤ n and
0 ≤ j ≤ m. This is equivalent to saying that if fg = 0, then c(f)c(g) = 0, and is
our inspiration for defining Armendariz algebras.

Definition 6. Let B be an R-algebra such that f ∈ c(f)B for all f ∈ B. We say
B is an Armendariz R-algebra if fg = 0 implies c(f)c(g) = (0) for all f, g ∈ B.

An R-algebra B is called a weak content algebra if f ∈ c(f)B and c(f)c(g) ⊆√
c(fg) for all f, g ∈ B ([24]). For example, if B is a weak content R-algebra and
R is a reduced ring, then B is an Armendariz R-algebra. This is because if fg = 0,
then c(f)c(g) ⊆

√
c(fg) =

√
(0) = (0).

Theorem 7. Let R be a ring, (0) a p-primary ideal of R such that p2 = (0), and
B a content R-algebra. Then B is an Armendariz R-algebra.

Proof. Let f, g ∈ B, where fg = 0. If f = 0 or g = 0, then c(f)c(g) = 0. Otherwise,
suppose that f 6= 0 and g 6= 0. Therefore f and g are both zero-divisors of B.
Since (0) is a p-primary ideal of R, (0) is a pB-primary ideal of B [24, p. 331], and
therefore pB is the set of zero-divisors of B. So f, g ∈ pB, and this means that
c(f) ⊆ p and c(g) ⊆ p. Finally, c(f)c(g) ⊆ p2 = (0). �

In order to characterize Gaussian algebras in terms of Armendariz algebras, we
mention the following useful lemma.

Lemma 8. Let R be a ring and I an ideal of R. If B is a Gaussian R-algebra,
then B/IB is a Gaussian (R/I)-algebra.

Proof. Straightforward. �

Theorem 9. Let B be a content R-algebra. Then B is a Gaussian R-algebra iff
B/IB is an Armendariz (R/I)-algebra for every ideal I of R.

Proof. (⇒): According to the above lemma, since B is a Gaussian R-algebra,
B/IB is a Gaussian (R/I)-algebra. On the other hand, any Gaussian algebra is an
Armendariz algebra and this completes the proof.

(⇐): In the beginning of this section, we proved that if B is an R-algebra
such that f ∈ c(f)B for all f ∈ B, then c(fg) ⊆ c(f)c(g) for all f , g ∈ B [24,
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Proposition 1.1, p. 330]. Therefore, we need to prove that c(f)c(g) ⊆ c(fg). Put
I = c(fg). Since B/IB is an Armendariz (R/I)-algebra and c(fg + IB) = I, we
have c(f + IB)c(g + IB) = I, and this means that c(f)c(g) ⊆ c(fg). �

The two recent theorems are generalizations of the similar theorems for polyno-
mial rings in [1].

After this short introductory section on Gaussian algebras, we pass to the next
section to discuss the Anderson-Badawi ωR[X](I[X]) = ωR(I) conjecture.

2. Anderson-Badawi ωR[X](I[X]) = ωR(I) conjecture

The concept of 2-absorbing ideals was introduced and investigated in [5]. This
concept has been generalized for any positive integer n by Anderson and Badawi. In
their paper [3], a proper ideal I of a commutative ring R is defined as an n-absorbing
ideal of R if whenever x1 . . . xn+1 ∈ I for x1, . . . , xn+1 ∈ R, then there are n of the
xi’s whose product is in I. In the final section of the paper [3], the authors define a
strongly n-absorbing ideal of a ring as follows: A proper ideal I of a commutative
ring R is called a strongly n-absorbing ideal if whenever I1 . . . In+1 ⊆ I for ideals
I1, . . . , In+1 of R, then there are n of the Ii’s whose product is contained in I.

Clearly a 1-absorbing ideal is just a prime ideal, and it is a famous result in
commutative ring theory that I is a prime ideal of R iff I[X] is a prime ideal of
R[X]. In [3, Theorem 4.15], it is also proved that I[X] is a 2-absorbing ideal of
R[X] iff I is a 2-absorbing ideal of R. One can easily check that if an ideal is a
strongly n-absorbing ideal of R, then it is an n-absorbing ideal of R, and Anderson
and Badawi in [3] conjectured that these two concepts are equivalent and they
showed that the two concepts are equivalent for Prüfer domains [3, Corollary 6.9].

In the same paper, Anderson and Badawi also conjecture that ωR[X](I[X]) =
ωR(I) for any ideal I of an arbitrary ring R, where ωR(I) = min{n : I is
an n-absorbing ideal of R}. In the following, we prove that Anderson-Badawi
ωR[X](I[X]) = ωR(I) conjecture holds for Prüfer domains. Actually, we prove a
generalization of this formula for content algebras over Prüfer domains.
Theorem 10. Let R be a Prüfer domain, I an ideal of R, and B a content
R-algebra. Then ωB(IB) = ωR(I).
Proof. LetB be a contentR-algebra. Then it is easy to see thatR can be considered
as a subring of B. This means that if I is an ideal of R, then ωR(IB∩R) ≤ ωB(IB)
by [3, Corollary 4.3]. But IB ∩ R = I for any ideal I of R, since B is a content
R-algebra. Therefore ωR(I) ≤ ωB(IB).

It is obvious that ωR(I) = 0 iff ωB(IB) = 0, since ωR(I) = 0 iff I = R for
any ideal I of R, according to its definition in [3]. Also note that in content
algebras, IB = B iff I = R. Now let ωR(I) = n for a positive integer n. We
claim that IB is an n-absorbing ideal of B. Since R is a Prüfer domain and B is
a content R-algebra, B is a Gaussian R-algebra. Now assume that f1 . . . fn+1 ∈
IB for arbitrary f1, . . . , fn+1 ∈ B. It is clear that c(f1 · · · fn+1) ⊆ I. But B is
a Gaussian R-algebra, so c(f1 . . . fn+1) = c(f1) . . . c(fn+1). On the other hand,
by [3, Corollary 6.9], I is a strongly n-absorbing ideal of R and this implies
c(f1) . . . c(fi−1)c(fi+1) . . . c(fn+1) ⊆ I for some i with 1 ≤ i ≤ n + 1. Therefore,
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c(f1 . . . fi−1fi+1 · · · fn+1) ⊆ I, and finally f1 . . . fi−1fi+1 . . . fn+1 ∈ IB. So we have
already proved that n = ωR(I) ≤ ωB(IB) ≤ n. Now let ωB(IB) = n for a
positive integer n. First we prove that I is an n-absorbing ideal of R. To show
that, we let a1 . . . an+1 ∈ I. Then a1 · · · an+1 ∈ IB, since I ⊆ IB. But IB is
an n-absorbing ideal of B and therefore a1 . . . ai−1ai+1 . . . an+1 ∈ IB for some i
with 1 ≤ i ≤ n + 1. Since IB ∩ R = I and a1 . . . ai−1ai+1 . . . an+1 ∈ R, we have
a1 . . . ai−1ai+1 . . . an+1 ∈ I. This means that ωR(I) is finite and nonzero. So we let
ωR(I) = m be a positive integer and according to what we proved in above, we have
n = ωB(IB) = ωR(I) = m. From what we said, we conclude that ωB(IB) =∞ iff
ωR(I) =∞, and the proof is complete. �

Corollary 11. Let R be a domain. Then the following statements hold.

(1) If R is a Prüfer domain, then ωR[X](I[X]) = ωR(I) for every ideal I of R.
(2) If R is a Dedekind domain, then ωR[[X]](I[[X]]) = ωR(I) for every ideal I

of R.

Remark 12. Recall that Anderson and Badawi conjectured that the two concepts
of n-absorbing ideal and strongly n-absorbing ideal are equivalent ([3, Conjecture
1]). In [8], A. Y. Darani and E. R. Puczyłowski show that this conjecture holds for
rings whose additive group is torsion-free. On the other hand, if R is a ring such
that every n-absorbing ideal of R is strongly n-absorbing and B is a faithfully flat
Gaussian R-algebra, then a proof similar to the proof of Theorem 10 shows that
ωB(IB) = ωR(I). So we have the following result:

Corollary 13. If R is a Gaussian ring and its additive group is torsion-free, then
ωR[X](I[X]) = ωR(I) for every ideal I of R.

Example 14. In Theorem 10, we proved that if R is a Prüfer domain, then
ωR[X](I[X]) = ωR(I) for every ideal I of R. In the following, we give an example
of a ring S satisfying ωS[X](I[X]) = ωS(I), while the ring S is not a domain. Let
k be a field with characteristic 0 and put R = k[[X1, . . . , Xn]]. Then R is a local
ring with the maximal ideal m = (X1, . . . , Xn). We consider the ring S = R/m2.
It is easy to check that (S,n) is a local ring with n2 = (0), where n = m/m2.
Therefore according to Remark 3, S is a Gaussian ring. On the other hand, since
the characteristic of the field k is 0, the additive group of the ring S is torsion-free,
and finally ωS[X](I[X]) = ωS(I) for every ideal I of S, while S is not a domain.

Theorem 15. Let B be a content R-algebra and R be a ring such that every
n-absorbing ideal of R is a strongly n-absorbing ideal of R for any positive integer
n (for example, let the additive group of R be torsion free ([8, Theorem 4.2])). If I
is a radical ideal of R, then ωB(IB) = ωR(I).

Proof. We just need to prove that if ωR(I) = n for a positive integer n, then
IB is an n-absorbing ideal of B, since the rest of the proof is similar to the
proof of Theorem 10. So let f1 . . . fn+1 ∈ IB. Obviously c(f1 . . . fn+1) ⊆ I. Let
g = f2 · · · fn+1. By the Dedekind-Mertens content formula for content algebras,
there is a natural number l1 such that c(f1)l1c(g) = c(f1)l1−1c(f1g) and since
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c(f1g) ⊆ I, we have c(f1)l1c(g) ⊆ I. Continuing this process, we get the natural
numbers l2, . . . , ln such that c(f1)l1 . . . c(fn)lnc(fn+1) ⊆ I. Obviously, if we let
l = max{l1, . . . , łn}, then (c(f1) . . . c(fn+1))l ⊆ I, and since I =

√
I, we have

c(f1) . . . c(fn+1) ⊆ I.
But ωR(I) = n. So I is an n-absorbing ideal and according to our assumptions,

a strongly n-absorbing ideal of R. Thus c(f1) . . . c(fi−1)c(fi+1) . . . c(fn+1) ⊆ I for
some i with 1 ≤ i ≤ n+ 1.

On the other hand, c(f1 . . . fi−1fi+1 . . . fn+1) ⊆ c(f1) . . . c(fi−1)c(fi+1) . . .
c(fn+1), hence f1 . . . fi−1fi+1 . . . fn+1 ∈ IB. �

Corollary 16. Let R be a ring and I a radical ideal of R. Then the following
statements hold.

(1) If the additive group of the ring R is torsion-free, then ωR[X](I[X]) = ωR(I).
(2) If R is a Noetherian ring and the additive group of the ring R is torsion-free,

then ωR[[X]](I[[X]]) = ωR(I).
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