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PARALLEL AND TOTALLY GEODESIC HYPERSURFACES

OF SOLVABLE LIE GROUPS

Mehri Nasehi

Abstract. In this paper we consider special examples of homogeneous spaces
of arbitrary odd dimension which are given in [5] and [16]. We obtain the
complete classification and explicitly describe parallel and totally geodesic
hypersurfaces of these spaces in both Riemannian and Lorentzian cases.

1. Introduction

Parallel submanifolds are the first important class of submanifolds to study [13].
They play an important role in geometry and general relativity and the study of
these submanifolds helps us to enrich our knowledge of the geometry of the ambient
spaces.

A submanifold is called parallel if its second fundamental form is covariantly
constant and it is called totally geodesic if its second fundamental form vanishes
identically. Hence, the extrinsic invariants of parallel submanifolds do not vary
from point to point and these submanifold can be considered as a natural extension
of totally geodesic submanifolds.

Parallel and totally geodesic surfaces in four dimensional Lorentzian space forms
and in pseudo-Riemannian space forms with an arbitrary index and dimension
have been classified respectively in [10] and [11]. Also the classification of parallel
and totally geodesic hypersurfaces in real space forms of any dimension can be
found in [17] and [19].

A natural generalization of spaces of constant curvature are homogeneous spaces.
Thus it is interesting to choose these spaces as ambient spaces and classify their
parallel and totally geodesic hypersurfaces. Up to our knowledge, this study has been
done for the homogeneous spaces with dimension less than 6. In fact the complete
classification of parallel and totally geodesic surfaces in all three dimensional
Riemannian and Lorentzian homogeneous spaces is given in [4, 7, 8, 14, 15]. Also,
parallel hypersurfaces of four dimensional oscillator groups and totally geodesic
hypersurfaces of four dimensional generalized symmetric spaces are classified in [9]
and [12], respectively. Moreover, the complete classification of parallel and totally
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geodesic hypersurfaces of two-step homogeneous nilmanifolds of dimension five is
given in [18].

In the present paper, we deal with the problem of classifying parallel and totally
geodesic hypersurfaces for a class of solvable Lie groups of arbitrary odd dimension.
These Lie groups consist of all matrices of the form

(1)


eu0 0 · · · 0 x0
0 eu1 · · · 0 x1
...

...
. . .

...
...

0 0 · · · eun xn
0 0 · · · 0 1

 ,

where (x0, x1, . . . , xn, u1, . . . , un) ∈ R2n+1, u0 = −(u1 + · · · + un) and n is any
integer n ≥ 1. Following the works [5, 6, 16] to which we may refer for more details,
in [1] we investigated some geometrical properties of these spaces with dimension
five in both Riemannian and Lorentzian cases. Then in [3] we generalized this study
for an arbitrary odd dimension and in [2] we investigated the Randers metrics of
Douglas type on these spaces. Our aim in the present paper is to give the complete
classification and explicitly describe parallel and totally geodesic hypersurfaces of
these spaces in both Riemannian and Lorentzian cases. Moreover we describe some
results of this classification which are related to the number of these hypersurfaces.

2. Curvature properties of the class of solvable Lie groups Gn
Let us denote this class of solvable Lie groups by Gn and consider the following

left-invariant vector fields on Gn,

Xi = eui
∂

∂xi
, i = 0, 1, . . . , n, Uα = ∂

∂uα
α = 1, . . . , n .

Following [2], we can equip these spaces by the left-invariant Riemannian metric

g =
n∑
i=0

e−2ui(dxi)2 +
n∑
α=1

(duα)2 ,

and the left-invariant Lorentzian metric

ĝ = −e−2u0(dx0)2 +
n∑
i=1

e−2ui(dxi)2 +
n∑
α=1

(duα)2 .

Then the set {X0, . . . , Xn, U1, . . . , Un} with respect to the inner product 〈 , 〉 which
is induced by the Riemannian metric g (Lorentzian metric ĝ) is an orthonormal
(pseudo-orthonormal) frame field for the Lie algebra Gn of Gn and we have

[X0, Uα] = X0 , [Xα, Uβ ] = −δαβXα and [Xi, Xj ] = [Uα, Uβ ] = 0 .
where α, β = 1, . . . , n and i, j = 0, 1, . . . , n. Also the non-zero Levi-Civita connection
components in the Riemannian case are given by

(2) ∇X0Uα = X0 , ∇X0X0 = −(
n∑
α=1

Uα) , ∇XiUα = −δiαXi,∇XiXi = δαiUα ,
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and in the Lorentzian case are given by

(3) ∇X0Uα = X0 , ∇X0X0 =
n∑
α=1

Uα , ∇XiUα = −δiαXi , ∇XiXi = δiαUα ,

where α, i = 1, . . . , n. If we adopt the following sign conventions for the curvature
tensor field R,

R(X,Y ) = ∇[X,Y ] − [∇X ,∇Y ] and RXY ZW = 〈R(X,Y )Z,W 〉 ,
where X, Y , Z and W are left-invariant vector fields on Gn, then the non-zero
curvature components in the Riemannian case are

RX0UiX0Uj = −RXiUiUiXi = RX0XiXiX0 = −1 , i, j = 1, . . . , n
and the ones obtained by these components using the symmetries of the curvature
tensor. Also the non-zero curvature components in the Lorentzian case are

RX0UiX0Uj = RXiUiUiXi = RX0XiXiX0 = 1 , i, j = 1, . . . , n
and the ones implied by them using the symmetries of the curvature tensor.

3. Parallel and totally geodesic hypersurfaces of Gn

Let F : M2n → N2n+1 be an isometric immersion of pseudo-Riemannian mani-
folds (M, 〈 , 〉) and (N, 〈 , 〉). Denote by ∇M and ∇ the Levi-Civita connections
of M and N and by ξ a normal vector field on the hypersurface M with 〈ξ, ξ〉 = ε,
where ε = {1,−1}. Let us define the shape operator S by SX = −∇Xξ and identify
vector fields tangent to M with their images under dF . Then the formula of Gauss
is given by
(4) ∇XY = ∇MX Y + h(X,Y )ξ ,
where X and Y are vector fields tangent to M and h is the second fundamental
form which is defined by h(X,Y ) = ε〈SX, Y 〉. If R is the curvature tensor of the
ambient space N , then the equation of Codazzi can be described by
(5) 〈R(X,Y )Z, ξ〉 = ε

(
(∇Mh)(Y,X,Z)− (∇Mh)(X,Y, Z)

)
,

where X, Y , Z and W are vector fields tangent to M and (∇Mh) is defined by
(∇Mh)(X,Y, Z) = X

(
h(Y,Z)

)
− h(∇MX Y,Z)− h(Y,∇MX Z) .

The hypersurface M is said to be a totally geodesic hypersurface in N , if h = 0
and it is said to be a parallel hypersurface in N , if ∇Mh = 0.
In order to classify parallel hypersurfaces of the class of solvable Lie groups Gn, we
prove the following result.

Theorem 3.1. Let F : M2n → Gn be a parallel hypersurface of the class of solvable
Riemannian Lie groups (Gn, g) (Lorentzian Lie groups (Gn, ĝ)). Also let ξ be a unit
(ε-unit) normal vector field on M and {X0, . . . , Un} be an (pseudo-)orthonormal
frame field on Gn. Then ξ has one of the following forms
Case (a): ξ = ±X0,
Case (b): ξ = ±Xr, where r ∈ {1, . . . , n},
Case (c): ξ = ±Ur, where r ∈ {1, . . . , n}.
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Proof. First we suppose that, M is a parallel hypersurface in Gn and assume that

ξ =
n∑
i=0

KiXi +
n∑
i=1

Kn+iUi, where Ki : U ⊆M → R are some functions. Then the

following vector fields, with respect to the Riemannian metric g (Lorentzian metric
ĝ) are tangent to the hypersurface:

(6)
Riemannian Lorentzian
Xi0 = KiX0 −K0Xi, Xi0 = KiX0+K0Xi, i = 1, . . . , n,
Xi1 = KiX1 −K1Xi, Xi1 = KiX1−K1Xi, i = 2, . . . , n,

...
...

...
Xi(n−1) = KiXn−1−Kn−1Xi, Xi(n−1) = KiXn−1−Kn−1Xi, i = n,

Yt0 = Kn+tX0−K0Ut, Yt0 = Kn+tX0 +K0Ut, t = 1, . . . , n,
Yt1 = Kn+tX1−K1Ut, Yt1 = Kn+tX1−K1Ut, t = 1, . . . , n,

...
...

...
Ytn = Kn+tXn−KnUt, Ytn = Kn+tXn−KnUt, t = 1, · · · , n,

Zj1 = Kp+jU1−KpU1+j , Zj1 = Kp+jU1−KpU1+j ,
p=n+1

j = 1, . . . , n− 1,

Zj2 = Kq+jU2−KqU2+j , Zj2 = Kq+jU2−KqU2+j ,
q=n+2

j = 1, . . . , n− 2,
...

...
...

Zj(n−1) = K2nUn−1−Kn−1Un, Zj(n−1) = K2nUn−1−Kn−1Un, j = 1.

Since M is parallel in Gn, we have ∇Mh = 0. Thus by the equation (5) we have

(7)
〈
R(Xik, Ytl)Zjm, ξ

〉
= 0 ,

where Xik, Ytl and Zjm are among the vector fields which are given in the system
(6). Here we apply (7) to obtain the acceptable forms of ξ for the Riemannian and
Lorentzian cases as follows

In the Riemannian case
We will consider the following two cases, namely K0 = 0 and K0 6= 0.

Case 1: K0 6= 0. In this case from 0 = 〈R(X10, Xj0)X10, ξ〉 = K3
0Kj where

j = 2, . . . , n we have K2 = · · · = Kn = 0. Thus by 0 = 〈R(X10, X20)X21, ξ〉 =
−K2

0 (K2
1 +K2

2 ) we obtain that K2
0K

2
1 = 0 which gives us K1 = 0. Also since the

condition

0 =
〈
R(Xi0, Yt0)Xi0, ξ

〉
= K2

iK0

( n∑
i=1

Kn+i +Kn+i

)
+ 2K3

0Kn+t ,

where i = t = 1, . . . , n is equivalent to 2K3
0Kn+t = 0, we have Kn+1 = · · · = K2n

= 0. Thus the condition 〈ξ, ξ〉 = 1 gives us ξ = ±X0.



PARALLEL AND TOTALLY GEODESIC HYPERSURFACES 225

Case 2: K0 = 0. In this case we will consider the following two subcases K1 = 0
and K1 6= 0.
Case 2.1: K1 6= 0. In this case from 0 = 〈R(Xi1, Yt1)Xi1, ξ〉 = K3

1Kn+t and
0 = 〈R(Xi1, Y11)Y11, ξ〉 = KiK1(K2

n+1 + K2
i ), where i = t = 2, . . . , n, we obtain

that K2 = · · · = Kn = Kn+2 = . . . = K2n = 0. Also by considering these solutions
and using

0 = 〈R(Y10, Y11)Y10, ξ〉 = K2
n+1

(
K1Kn+1 +K1

n∑
i=1

Kn+i

)
,

we have 2K1K
3
n+1 = 0 which gives us Kn+1 = 0. Thus by 〈ξ, ξ〉 = 1 we have

ξ = ±X1.
Case 2.2: K1 = 0. In this case we will consider the following two subcases K2 6= 0
and K2 = 0.
Case 2.2.1: K2 6= 0. In this case from 0 = 〈R(Xi2, Yt2)Xi2, ξ〉 = K3

2Kn+i and
0 = 〈R(Xi2, Y22)Y22, ξ〉 = K1K2(K2

n+2 + K2
2 ), where i = t = 3, . . . , n, we obtain

that K3 = · · · = Kn = Kn+3 = · · · = K2n = 0. Also from

0 = 〈R(Yt0, Yt2)Yt0, ξ〉 = K2K
2
n+t

(
Kn+t +

n∑
i=1

Kn+i

)
, t = 1, 2 ,

we obtain that Kn+1 = Kn+2 = 0. Thus by 〈ξ, ξ〉 = 1 we have ξ = ±X2.
Case 2.2.2: K2 = 0. In this case we will distinguish between the cases K3 6= 0
and K3 = 0.
Case 2.2.2.1: K3 6= 0. In this case from 0 = 〈R(Xi3, Yt3)Xi3, ξ〉 = −K3

3Kn+t and
0 = 〈R(Xi3, Y33)Y33, ξ〉 = KiK3(K2

n+3 + K2
3 ), where i = t = 4, . . . , n we obtain

that K4 = · · · = Kn = Kn+4 = . . . = K2n = 0. Also from

0 = 〈R(Yt0, Yt3)Yt0, ξ〉 = K3K
2
n+t

(
Kn+t +

n∑
i=1

Kn+i

)
,

where t = 1, 2, 3 we have Kn+1 = Kn+2 = Kn+3 = 0. Thus 〈ξ, ξ〉 = 1 gives us
ξ = ±X3.
Case 2.2.2.2: K3 = 0. In this case we will consider the two subcases K4 6= 0 and
K4 = 0.

By a similar argument from the cases, case
4 times︷ ︸︸ ︷
2. . . . .2 .1, . . . , case

n times︷ ︸︸ ︷
2. . . . .2 .1, respec-

tively we obtain ξ = ±X4, . . . , ξ = ±Xn.

Case
n times︷ ︸︸ ︷
2. . . . .2.2:Kn = 0. In this case we will distinguish between the casesKn+1 6= 0

and Kn+1 = 0.

Case
n+1 times︷ ︸︸ ︷
2. . . . .2 .1: Kn+1 6= 0. In this case if we consider the condition 0 =

〈R(Y11, Zj1)Y11, ξ〉 = −Kn+1Kn+1+j(K2
1 + K2

n+1), where j = 1, · · · , n − 1 (since
in this case K1 = . . . = Kn = 0), then we obtain that Kn+2 = . . . = K2n = 0. Thus
by 〈ξ, ξ〉 = 1 we have ξ = ±U1.



226 M. NASEHI

Case
n+1 times︷ ︸︸ ︷
2. . . . .2 .2: Kn+1 = 0. In this case we will consider the following two subcases

Kn+2 = 0 and Kn+2 6= 0.

Case
n+2 times︷ ︸︸ ︷
2. . . . .2 .1: Kn+2 6= 0. In this case if we consider the condition

0 = 〈R(Y22, Zj2)Y22, ξ〉 = −Kn+2Kn+2+j(K2
n+2 +K2

2 ), where j = 1, . . . , n− 2 we
obtain that Kn+3 = . . . = K2n = 0. Thus ξ = ±U2.

Case
n+2 times︷ ︸︸ ︷
2. . . . .2 .2: Kn+2 = 0. In this case we will consider the two subcases

Kn+3 = 0 and Kn+3 6= 0.

By the same arguments from the cases, case
n+3 times︷ ︸︸ ︷
2. . . . .2 .1, . . . ,case

2n times︷ ︸︸ ︷
2. . . . .2 .1,

respectively we get ξ = ±U3, . . . , ξ = ±Un.

Case
2n times︷ ︸︸ ︷
2. . . . .2 .2: K2n = 0. In this case since K0 = . . . = K2n = 0, we have ξ = 0

which yields the contradiction 〈ξ, ξ〉 = 0 6= 1.

In the Lorentzian case
If we use Xik,Ytl and Zjm which are among the vector fields which are given

in the second column of the system (6), then by a straightforward computation
similar to the Riemannian case we have the result. �

By the Theorem 3.1 we can obtain a complete classification of parallel hypersur-
faces of these homogeneous spaces in both Riemannian and Lorentzian cases as
follows.

Theorem 3.2. Let F : M2n → Gn be a parallel hypersurface of the class of solvable
Riemannian Lie groups (Gn, g) (Lorentzian Lie groups (Gn, ĝ)). Then there exist
local coordinates (w1, . . . , w2n) on M2n, such that this immersion with respect to
these coordinates, up to isometrics, is given by one of the following expressions:

F (w1, . . . , w2n) = (0, ewn+1w1, e
wn+2w2 . . . , e

w2nwn, wn+1, . . . , w2n) ,

F (w1, . . . , w2n) = (e−(
∑n

i=1
wn+i)w1, 0, ewn+2w2 . . . , e

w2nwn, wn+1, wn+2 . . . , w2n) ,
...

F (w1, . . . , w2n) = (e−(
∑n

i=1
wn+i)w1, e

wn+1w2, . . . , e
wn+r−1wr, 0,

ewn+r+1wr+1, . . . , e
w2nwn, wn+1, . . . , w2n) ,

...

F (w1, . . . , w2n) = (e−(
∑n

i=1
wn+i)w1, e

wn+1w2, . . . , e
w2n−1wn, 0, wn+1, . . . , w2n) ,
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F (w1, . . . , w2n) =
(
e−(
∑n

i=1
wn+i)w1, e

wn+1w2, . . . , e
w2nwn+1, wn+2, . . . , wn+r,

0, wn+r+1 . . . , w2n
)
,

...

F (w1, . . . , w2n) =
(
e−(
∑n

i=1
wn+i)w1, e

wn+1w2, . . . , e
w2nwn+1, wn+2 . . . , w2n, 0

)
.

Conversely, all these hypersurfaces are parallel.

Proof. Assume that M is a parallel hypersurface in Gn. Then in both Riemannian
and Lorentzian cases, ξ has one of the forms which are given in the cases (a), (b)
and (c) of the Theorem 3.1. Let us start with the case (a), i.e. ξ = ±X0. Then the
following vector fields span the tangent space to M at each point

(8) Y1 = X1 , · · · , Yn = Xn , Yn+1 = U1 , · · · , Y2n = Un .

Also, by using the equations (2) and (8), we see that the non-zero connection
components are

∇YiYi = Yn+i , ∇YiYn+i = −Yi , i = 1, . . . , n .(9)

Then by (9) and the Gauss formula (4), the second fundamental form is determined
by h(Yk, Yl) = 0, where k, l ∈ {1, . . . , 2n}. Thus ∇Mh = 0 and the hypersurface is
parallel. In order to obtain this hypersurface we put ∂wi = Yi, where i = 1, . . . , 2n
and denote by F : M2n → Gn : (w1, . . . , w2n) 7→ (F1(w1, . . . , w4), . . . , F2n+1(w1, . . .,
w2n)) the immersion of the hypersurface. Thus by (8) we obtain

(10)

(∂w1F1, . . . , ∂w1F2n+1) = (0, ewn+1 , 0, . . . , 0) ,
...

(∂wnF1, . . . , ∂wnF2n+1) = (
n times︷ ︸︸ ︷
0, . . . , 0, ew2n , 0, . . . , 0) ,

(∂wn+1F1, . . . , ∂wn+1F2n+1) = (
n+1 times︷ ︸︸ ︷
0, . . . , 0 , 1,

n−1 times︷ ︸︸ ︷
0, . . . , 0 ) ,

...

(∂w2nF1, . . . , ∂w2nF2n+1) = (
2n times︷ ︸︸ ︷
0, . . . , 0, 1) .

Then the general solution of the system (10) is given by

F1 = a1, F2 = ewn+1w1 + a2, . . . , Fn+1 = ew2nwn + an+1 ,

Fn+2 = wn+1 + an+2, . . . , F2n+1 = w2n + a2n+1 ,

where a1, . . . , a2n+1 are real constants and give us the immersion which is isometric
with the first immersion of the theorem.
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Let us consider the case (b), i.e. ξ = ±Xr, where r ∈ {1, . . . , n}. Then the following
vector fields span the tangent space to M at each point.

(11)
Y0 = X0 , Y1 = X1 , Y2 = X2 , . . . , Yr−1 = Xr−1 ,

Yr+1 = Xr+1 , . . . Yn = Xn , Yn+1 = U1 , . . . , Y2n = Un .

From the equations (2) and (11) we obtain

(12) ∇Y0Y0 = −
( n∑
i=1

Yn+i

)
, ∇Y0Yn+j = Y0 , ∇YiYn+i = −Yi , ∇YiYi = Yn+i ,

where i 6= r, i = j = 1, . . . , n and the remaining connection components are
zero. Therefore from (12) and the Gauss formula (4), the second fundamental
form is given by h(Yk, Yl) = 0, where k, l ∈ {0, . . . , r − 1, r + 1, . . . , 2n}. Then the
hypersurface is parallel and if we put ∂wi+1 = Yi where i = 0, . . . , r − 1 and put
∂wi = Yi where i = r + 1, . . . , 2n, then we obtain

(∂w1F1, . . . , ∂w1F2n+1) =
(
e−(
∑n

i=1
wn+i), 0, . . . , 0

)
,

(∂w2F1, . . . , ∂w1F2n+1) =
(
0, ewn+1 ,

2n−1 times︷ ︸︸ ︷
0, . . . , 0

)
,

...

(∂wr−1F1, . . . , ∂wr−1F2n+1) =
( r−2 times︷ ︸︸ ︷

0, . . . , 0 , ewn+r−2 ,

2n−r+2 times︷ ︸︸ ︷
0, . . . , 0

)
,

(∂wrF1, · · · , ∂wrF2n+1) =
( r−1 times︷ ︸︸ ︷

0, . . . , 0 , ewn+r−1 ,

2n+1−r times︷ ︸︸ ︷
0, . . . , 0

)
,

∂wr+1F1, . . . , ∂wr+1F2n+1) =
( r+1 times︷ ︸︸ ︷

0, . . . , 0 , ewn+r+1 ,

2n−r−1 times︷ ︸︸ ︷
0, . . . , 0

)
,

...

(∂wnF1, . . . , ∂wnF2n+1) =
( n times︷ ︸︸ ︷

0, . . . , 0, ew2n ,

n times︷ ︸︸ ︷
0, . . . , 0

)
,

(∂wn+1F1, . . . , ∂wn+1F2n+1) =
( n+1 times︷ ︸︸ ︷

0, . . . , 0 , 1,
n−1 times︷ ︸︸ ︷
0, . . . , 0

)
,

...

(∂w2nF1, . . . , ∂w2nF2n+1) =
( 2n times︷ ︸︸ ︷

0, . . . , 0, 1
)
.
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From these equations we obtain the following solutions for F1, . . . , F2n+1

F1 = e−(
∑n

i=1
wn+i)w1 + b1 , F2 = ewn+1w2 + b2, . . . ,

Fr−1 = ewn+r−2wr−1 + br−1 , Fr = ewn+r−1wr + br, Fr+1 = br+1 ,

Fr+2 = ewn+r+1wr+1 + br+2, . . . , Fn+1 = ew2nwn + bn ,

Fn+2 = wn+1 + bn+2, . . . , F2n+1 = w2n + b2n+1 ,

where b1, . . . , b2n+1 are real constants and give us the immersions which are isometric
with the immersions given in the cases (2), . . . ,(n+1) of the theorem.

Finally we consider the case (c), where ξ = ±Ur, with r ∈ {1, . . . , n}. Then the
following vector fields span the tangent space to M at each point

(13)
Y0 = X0, Y1 = X1, . . . , Yn = Xn, Yn+1 = U1, . . . , Yn+r−1 = Ur−1 ,

Yn+r+1 = Ur+1, . . . , Y2n = Un ,

By a direct computation, using (2) and (13), we obtain the following non-zero
connection components

∇Y0Y0 = −
( n∑
i=1,i6=r

Yn+i

)
− ξ , ∇Y0Yn+i = Y0 , ∇YiYn+i = −Yi ,

∇YiYi = Yn+i , ∇YrYr = ξ , r 6= i, i = 1, . . . , n .(14)

Thus from (14) and the Gauss formula (4) we can see that the second fundamental
form is determined by h(Yk, Yl) = C, where k, l ∈ {0, . . . , n+r−1, n+r+1, . . . , 2n}
and C is a real constant. Hence, the hypersurface is parallel and if we put ∂wi+1 = Yi
where i = 0, . . . , n + r − 1 and put ∂wi = Yi where i = n + r + 1, . . . , n, then by
some computations similar to the cases (a) and (b) we obtain

F1 = e−(
∑n

i=1
wn+i)w1 + c1 , F2 = ewn+1w2 + c2, . . . ,

Fn+1 = ew2nwn+1 + cn+1 , Fn+2 = wn+2 + cn+2, . . . ,

Fn+r = wn+r + cn+r , Fn+r+1 = cn+n+1 ,

Fn+r+2 = wn+r+1 + cn+r+2 , . . . , F2n+1 = w2n + c2n .

where c1, . . . , cn are real constants and give us the immersions which are isometric
with the immersions given in the cases (n+ 2), . . . , (2n+ 1) of the theorem.
The converse of theorem can be obtained by a straightforward computation. A si-
milar argument holds for the Lorentzian case. �

Since every totally geodesic hypersurface is parallel, Theorem 3.2 gives us the
following result.

Theorem 3.3. Let F : M2n → Gn be a totally geodesic hypersurface of the class
of solvable Riemannian Lie groups (Gn, g) (Lorentzian Lie groups (Gn, ĝ)). Then
there exist local coordinates (w1, . . . , w2n) on M2n such that this immersion with
respect to these coordinates, up to isometries, is given by one of the following
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expressions:
F (w1, · · · , w2n) = (0, ewn+1w1, e

wn+2w2 . . . , e
w2nwn, wn+1, . . . , w2n) ,

F (w1, . . . , w2n) =
(
e−(
∑n

i=1
wn+i)w1, 0, ewn+2w2 . . . , e

w2nwn, wn+1,

wn+2, . . . , w2n
)
,

...

F (w1, . . . , w2n) =
(
e−(
∑n

i=1
wn+i)w1, e

wn+1w2, . . . , e
wn+r−1wr, 0,

ewn+r+1wr+1, . . . , e
w2nwn, wn+1, . . . , w2n

)
,

...

F (w1, . . . , w2n) =
(
e−(
∑n

i=1
wn+i)w1, e

wn+1w2, . . . , e
w2n−1wn, 0,

wn+1, . . . , w2n
)
,

Conversely, these hypersurfaces are totally geodesic.

Proof. Assume that M is a totally geodesic hypersurface in Gn. Then it is sufficient
to choose the hypersurfaces which are obtained in the Theorem 3.2 such that for
them the second fundamental form vanishes identically. Since in the case that
ξ = ±Ur, where r ∈ {1, . . . , n} we obtain that h(Yr, Yr) = 1 6= 0, where Yr is
given in (13). Then the acceptable immersions are the ones which are given in
the cases (1), . . . , (n + 1) of the Theorem 3.2. The converse can be verified by
a straightforward computation. The Lorentzian case can be proved by a similar
argument. �

As a consequence of Theorems 3.2 and 3.3 we have the following result.

Corollary 3.4. Let (Gn, g) ((Gn, ĝ)) be the class of solvable Riemannian (Lorentzi-
an) Lie groups. If we denote by dimGn the dimension of Gn, then up to isometries
we obtain the following results.
(I) These spaces always admit an odd number of parallel hypersurfaces which is
equal to the dimGn.
(II) These spaces can admit an even or odd number of totally geodesic hypersurfaces
which is equal to dimGn+1

2 .

Proof. Assume that F : M2n → Gn is an isometric immersion of the class of
solvable Lie groups. Then up to isometries parallel hypersurfaces can be expressed
by 2n + 1 = dimGn cases which are given in the Theorem 3.2. Also from the
Theorem 3.3 it follows that n+ 1 = dimGn+1

2 of them are totally geodesic. These
give us the results given in (I) and (II). �
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