A NOTE ON ANOTHER CONSTRUCTION OF GRAPHS
 WITH $4 n+6$ VERTICES AND CYCLIC AUTOMORPHISM GROUP OF ORDER $4 n$

Peteris Daugulis

Abstract

The problem of finding minimal vertex number of graphs with a given automorphism group is addressed in this article for the case of cyclic groups. This problem was considered earlier by other authors. We give a construction of an undirected graph having $4 n+6$ vertices and automorphism group cyclic of order $4 n, n \geq 1$. As a special case we get graphs with $2^{k}+6$ vertices and cyclic automorphism groups of order 2^{k}. It can revive interest in related problems.

1. Introduction

This article addresses a problem in graph representation theory of finite groups - finding undirected graphs with a given full automorphism group and minimal number of vertices. All graphs in this article are undirected and simple.

It is known that finite graphs universally represent finite groups: for any finite group G there is a finite graph Γ such that $\operatorname{Aut}(\Gamma) \simeq G$, see Frucht [8]. It was proved by Babai [2] constructively that for any finite group G (except cyclic groups of order 3,4 or 5) there is a graph Γ such that $\operatorname{Aut}(\Gamma) \simeq G$ and $|V(\Gamma)| \leq 2|G|$ (there are $2 G$-orbits having $|G|$ vertices each). For certain group types such as symmetric groups Σ_{n}, dihedral groups $D_{2 n}$ and elementary abelian 2-groups $(\mathbb{Z} / 2 \mathbb{Z})^{n}$ graphs with smaller number of vertices (respectively, n, n and $2 n$) are obvious.

In the recent decades the problem of finding $\mu(G)=\min _{\Gamma: \operatorname{Aut}(\Gamma) \simeq G}|V(\Gamma)|$ for specific groups G does not seem to have been very popular although minimal graphs and directed graphs for most finite groups have not been found. See Babai [3] for an exposition of this area.

There are 10 -vertex graphs having automorphism group $\mathbb{Z} / 4 \mathbb{Z}$, this fact is mentioned in Bouwer and Frucht [5] and Babai [2]. There are 12 such 10-vertex graph isomorphism types, see 6].

[^0]In this paper we reminisce about the bound $\mu(G)=\min _{\Gamma: \text { Aut }(\Gamma) \simeq G}|V(\Gamma)| \leq 2|G|$ not being sharp for $G \simeq \mathbb{Z} / 4 n \mathbb{Z}$, for any natural $n \geq 1$. Namely, for any $n \geq 1$ there is an undirected graph Γ on $4 n+6$ vertices such that Aut $(\Gamma) \simeq \mathbb{Z} / 4 n \mathbb{Z}$. The number of orbits is 3 .

Graphs with abelian automorphism groups have been investigated in Arlinghaus [1]. In Harary [9] there is a claim (referring to Merriwether) that if G is a cyclic group of order $2^{k}, k \geq 2$, then the minimal number of graph vertices is $2^{k}+6$. In this paper we exhibit such graphs with the number of vertices $4 n+6, n \geq 1$, and give an explicit construction. The construction works for graphs with any $n \geq 1$, but if $n=2^{k}, k \geq 3$, we get graphs for which the number of vertices is smaller than the Babai's bound.

We use standard notations of graph theory, see Diestel [7]. Adjacency of vertices i and j is denoted by $i \sim j$ (edge (i, j)). For a graph $\Gamma=(V, E)$ the subgraph induced by $X \subseteq V$ is denoted by $\Gamma[X]: \Gamma[X]=\Gamma-\bar{X}$. The set $\{1,2, \ldots, n\}$ is denoted by V_{n}. The undirected cycle on n vertices is denoted by C_{n}. The cycle notation is used for permutations. Given a function $f: A \rightarrow B$ and a subset $C \subseteq A$ we denote the restriction of f to C by $\left.f\right|_{C}$.

2. Main Results

2.1. The graph Γ_{n}.

Definition 2.1. Let $n \geq 1, n \in \mathbb{N}, m=4 n$. Let $V\left(\Gamma_{n}\right)=V_{m+6}=\{1,2, \ldots, m+6\}$ and edges be given by the following adjacency description. We define 8 types of edges.
(1) $i \sim i+1$ for all $i \in V_{m-1}$ and $1 \sim m$.
(It implies that $\Gamma_{n}[1,2, \ldots, m] \simeq C_{m}$.)
(2) $m+1 \sim i$ with $i \in V_{m}$ iff $i \equiv 1 \quad$ or $2(\bmod 4)$.
(3) $m+2 \sim i$ with $i \in V_{m}$ iff $i \equiv 2$ or $3(\bmod 4)$.
(4) $m+3 \sim i$ with $i \in V_{m}$ iff $i \equiv 3$ or $0(\bmod 4)$.
(5) $m+4 \sim i$ with $i \in V_{m} \quad$ iff $i \equiv 0 \quad$ or $1(\bmod 4)$.
(6) $m+5 \sim i \quad$ with $i \in V_{m} \quad$ iff $i \equiv 1(\bmod 2)$.
(7) $m+6 \sim i \quad$ with $\quad i \in V_{m} \quad$ iff $\quad i \equiv 0(\bmod 2)$.
(8) $m+1 \sim m+5 \sim m+3, \quad m+2 \sim m+6 \sim m+4$.

Definition 2.2. Denote $O_{1}=\{1,2, \ldots, m\}, O_{2}=\{m+1, m+2, m+3, m+4\}$, $O_{3}=\{m+5, m+6\}$. Note that O_{i} are the Aut $\left(\Gamma_{n}\right)$-orbits.

2.2. The special case $n=1$.

A graph with automorphism group $\mathbb{Z} / 4 \mathbb{Z}$ and minimal number of vertices (10) and edges (18) was exhibited in Bouwer and Frucht [5], p.58. Γ_{1} (which is not isomorphic to the Bouwer-Frucht graph) is shown in Fig. 1. It can be thought as embedded in
the 3 D space. It is planar but a plane embedding is not given here. Aut $\left(\Gamma_{1}\right) \simeq \mathbb{Z} / 4 \mathbb{Z}$ is generated by the vertex permutation $g=(1,2,3,4)(5,6,7,8)(9,10)$.

Subgraphs $\Gamma_{1}[1,2,3,4,5,7,9]$ and $\Gamma_{1}[1,2,3,4,6,8,10]$ which can be thought as being drawn above and below the orbit $\{1,2,3,4\}$ are interchanged by g.

Fig. 1. $-\Gamma_{1}$

2.3. Automorphism group of Γ_{n}.

Proposition 2.3. Let $n \geq 1, n \in \mathbb{N}, m=4 n$. Let Γ_{n} be defined as above. For any n, $\operatorname{Aut}\left(\Gamma_{n}\right) \simeq \mathbb{Z} / m \mathbb{Z}$.

Proof. We will show that $\operatorname{Aut}\left(\Gamma_{n}\right)=\langle g\rangle$, where $g=(1,2, \ldots, m)(m+1, m+$ $2, m+3, m+4)(m+5, m+6)$.

Inclusion $\langle g\rangle \leq$ Aut $\left(\Gamma_{n}\right)$ is proved by showing that g maps an edge of each type to an edge.

Let us prove the inclusion $\operatorname{Aut}\left(\Gamma_{n}\right) \leq\langle g\rangle$. Let $f \in \operatorname{Aut}\left(\Gamma_{n}\right)$. We will show that $f=g^{\alpha}$ for some α. There are two subcases $n \neq 2$ and $n=2$.

For any $n \geq 1$ the vertices $m+5$ and $m+6$ are the only vertices having eccentricity 3 , so they must form an orbit.

Let $n \neq 2$. Suppose $f(1)=k$. Since $n \neq 2$, we have that $\operatorname{deg}(1)=5, \operatorname{deg}(v)=$ $\frac{m}{2}+1 \neq 5$ for any $v \in O_{2}$, therefore $f(1) \in O_{1}$. Moreover, f stabilizes setwise both O_{1} and O_{2}. Consider the f-image of the edge (1,m+5). $(f(1), f(m+5))=(k, f(m+5))$ must be an edge, therefore
(1) if $k \equiv 1(\bmod 2)$, then $f(m+5)=m+5$,
(2) if $k \equiv 0(\bmod 2)$, then $f(m+5)=m+6$.

It follows that $\left.f\right|_{O_{3}}=g^{k-1}$.

Consider the f-image of $\Gamma_{n}[1,2, m+1, m+5]$, denote its isomorphism type by Γ_{0}, see Fig. 5.

Fig. 5. $-\Gamma_{0} \simeq \Gamma_{n}[1,2, m+1, m+5]$
Vertex 2 must be mapped to a $\Gamma_{n}\left[O_{1}\right]$-neighbour of k. For any $k \in O_{1}$ there are two triangles containing the vertex k and a vertex adjacent to k in $\Gamma_{n}\left[O_{1}\right]$. Taking into account that $f(m+5) \in O_{3}$ we check that there is only one suitable induced Γ_{n}-subgraph - containing k, another vertex in O_{1} adjacent to k and a vertex in O_{3} - which is isomorphic to $\Gamma_{n}[1,2, m+1, m+5]$.

It follows that in each case we must have $f(2) \equiv k+1(\bmod m)$. By similar arguments for all $j \in\{1,2, \ldots, m\}$ it is proved that $f(j) \equiv(k-1)+j(\bmod m)$, thus $\left.f\right|_{O_{1}}=g^{k-1}$.

Finally we describe $\left.f\right|_{O_{2}}$. It can also be found considering Γ_{n}-subgraphs isomorphic to Γ_{0}, but we will use edge inspection. Consider the f-images of the edges $(1, m+1)$ and $(1, m+4)$. Vertex pairs $(f(1), f(m+1))=(k, f(m+1))$ and $(f(1), f(m+4))$ must be edges, therefore we can deduce images of all O_{2} vertices.

If $n \neq 2$ and $f(1)=k$, then $f=g^{k-1}$, therefore $f \in\langle g\rangle$.
In the special case $n=2$ we also consider f-images of $\Gamma_{1}[1,2,9,13]$ and find suitable Γ_{1}-subgraphs isomorphic to Γ_{0}. It is shown similarly to the above argument that f can be expressed as a power of g and hence $f \in\langle g\rangle$.

2.4. Abelian 2-groups.

It is known that $\mu\left(\mathbb{Z} / 2^{k} \mathbb{Z}\right)=2^{k}+6$, it was proved in [1]. We note that it can be proved using the following steps. First notice that Γ with $\operatorname{Aut}(\Gamma) \simeq \mathbb{Z} / 2^{k} \mathbb{Z}$ must have a least one orbit of size 2^{k}, thus $|V(\Gamma)| \geq 2^{k}$. Eliminate possibilities $2^{k} \leq|V(\Gamma)|<2^{k}+6$ by considering orbits of size 1,2 or 4 , which can be removed, or which cause Aut (Γ) to contain a dihedral subgroup $D_{2 \cdot 2^{k}}$.

We also give an implication - a bound for $\mu(G)$ if G is an abelian 2-group.
Proposition 2.4. Let G be an abelian 2-group: $G \simeq \prod_{i=1}^{k}\left(\mathbb{Z} / 2^{i} \mathbb{Z}\right)^{n_{i}}, n_{i} \in \mathbb{N} \cap\{0\}$. Then $\mu(G) \leq 2 n_{1}+\sum_{i=2}^{k} n_{i}\left(2^{i}+6\right)$.

Proof. Denote $\left(\mathbb{Z} / 2^{i} \mathbb{Z}\right)^{n_{i}}$ by $G_{i}, G \simeq \prod_{i=1}^{k} G_{i}$. We can construct a sequence of graphs $\Delta_{i, n}, i \in \mathbb{N}, n \in \mathbb{N}$, inductively using complements and unions as follows. For $i>1$ define $\Delta_{i, 1}=\Gamma_{2^{i-2}}$ and define $\Delta_{1,1}=K_{2}$. Define inductively $\Delta_{i, n}$:
$\Delta_{i, n}=\bar{\Delta}_{i, n-1} \cup \Delta_{i, 1}$. Since $\bar{\Delta}_{i, n-1} \not 千 \Delta_{i, 1}$ and $\bar{\Delta}_{i, j}$ is connected for all constructed graphs, we have inductively that $\operatorname{Aut}\left(\Delta_{i, n}\right) \simeq \operatorname{Aut}\left(\Delta_{i, n-1}\right) \times(\mathbb{Z} / 2 \mathbb{Z}) \simeq\left(\mathbb{Z} / 2^{i} \mathbb{Z}\right)^{n}$.

Define $\Gamma=\bigcup_{i=1}^{k} \Delta_{i, n_{i}}$. For different values of i the $\Delta_{i, n_{i}}$ are nonisomorphic therefore Aut $(\Gamma) \simeq \prod_{i=1}^{k} G_{i} \simeq G$. Thus $\mu(G) \leq|V(\Gamma)|=\sum_{i=1}^{k}\left|V\left(\Delta_{i, n_{i}}\right)\right|=2 n_{1}+$ $\sum_{i=2}^{k} n_{i}\left(2^{i}+6\right)$.

2.5. Other graphs and developments.

We briefly describe without proofs graphs $\Gamma_{m, n}$ having $m^{n}+m$ vertices and cyclic automorphism group of order $m^{n}, m \geq 6, n \geq 2$. Existence of such graphs is mentioned in [9, see also [1]. We use the construction of graphs with $2 m$ vertices having cyclic automorphism group of order $m(m \geq 6)$ given in [11]. Let $V\left(\Gamma_{m, n}\right)=W \cup W^{\prime}$, where $W=\left\{0,1, \ldots, m^{n}-1\right\}, W^{\prime}=\left\{0^{\prime}, 1^{\prime}, \ldots,(m-1)^{\prime}\right\}$. The edges of $\Gamma_{m, n}$ are defined as follows: 1) $\Gamma_{m, n}[W]$ and $\Gamma_{m, n}\left[W^{\prime}\right]$ are natural cycles of order m^{n} and m, respectively, with edges $\left.(i, i+1), 2\right)$ for any vertex $i^{\prime} \in W^{\prime}$ there are $3 m^{n-1}$ edges of type $\left(i^{\prime}, j m+i\left(\bmod m^{n}\right)\right),\left(i^{\prime}, j m+i+1\left(\bmod m^{n}\right)\right)$ and $\left(i^{\prime}, j m+i-2\left(\bmod m^{n}\right)\right), 0 \leq i^{\prime} \leq m-1,0 \leq j \leq m^{n-1}-1$. It can be checked that $\operatorname{Aut}\left(\Gamma_{m, n}\right) \simeq \mathbb{Z} / m^{n} \mathbb{Z}$, there are 2 orbits $-W$ and W^{\prime}.

Acknowledgement. Computations were performed using the computational algebra system MAGMA, see Bosma et al. [4], and the program nauty, available at http://cs.anu.edu.au/~bdm/data/, see McKay and Piperno 10.

References

[1] Arlinghaus, W.C., The classification of minimal graphs with given abelian automorphism group, Mem. Amer. Math. Soc. 57 (1985), no. 330, viii+86 pp.
[2] Babai, L., On the minimum order of graphs with given group, Canad. Math. Bull. 17 (1974), 467-470.
[3] Babai, L., In Graham R.L.; Grotschel M.; Lovasz L., Handbook of Combinatorics I, ch. Automorphism groups, isomorphism, reconstruction, pp. 1447-1540, North-Holland, 1995.
[4] Bosma, W., Cannon, J., Playoust, C., The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235-265.
[5] Bouwer, I.Z., Frucht, R., In Jagdish N. Srivastava, A survey of combinatorial the, ch. Line-minimal graphs with cyclic group, pp. 53-69, North-Holland, 1973.
[6] Daugulis, P., 10-vertex graphs with cyclic automorphism group of order 4, 2014, http: //arxiv.org/abs/1410.1163
[7] Diestel, R., Graph Theory, Graduate Texts in Mathematics, vol. 173, Springer-Verlag, Heidelberg, 2010.
[8] Frucht, R., Herstellung von Graphen mit vorgegebener abstrakter Gruppe, Compositio Math. (in German) 6 (1939), 239-250.
[9] Harary, F., Graph Theory, Addison-Wesley, Reading, MA, 1969.
[10] McKay, B.D., Piperno, A., Practical Graph Isomorphism, II, J. Symbolic Comput. 60 (2013), 94-112.
[11] Sabidussi, G., On the minimum order of graphs with given automorphism group, Monatsh. Math. 63 (2) (1959), 124-127.

Institute of Life Sciences and Technologies,
Daugavpils University,
Daugavpils, LV-5400, Latvia
E-mail: peteris.daugulis@du.lv

[^0]: 2010 Mathematics Subject Classification: primary 05C25; secondary 05E18, 05C35, 05C75.
 Key words and phrases: graph, automorphism group.
 Received March 7, 2016, revised January 2017. Editor J. Nešetřil.
 DOI: 10.5817/AM2017-1-13

