# A NOTE ON ANOTHER CONSTRUCTION OF GRAPHS WITH 4n + 6 VERTICES AND CYCLIC AUTOMORPHISM GROUP OF ORDER 4n

### Peteris Daugulis

ABSTRACT. The problem of finding minimal vertex number of graphs with a given automorphism group is addressed in this article for the case of cyclic groups. This problem was considered earlier by other authors. We give a construction of an undirected graph having 4n + 6 vertices and automorphism group cyclic of order 4n,  $n \ge 1$ . As a special case we get graphs with  $2^k + 6$  vertices and cyclic automorphism groups of order  $2^k$ . It can revive interest in related problems.

## 1. INTRODUCTION

This article addresses a problem in graph representation theory of finite groups - finding undirected graphs with a given full automorphism group and minimal number of vertices. All graphs in this article are undirected and simple.

It is known that finite graphs universally represent finite groups: for any finite group G there is a finite graph  $\Gamma$  such that Aut  $(\Gamma) \simeq G$ , see Frucht [8]. It was proved by Babai [2] constructively that for any finite group G (except cyclic groups of order 3, 4 or 5) there is a graph  $\Gamma$  such that Aut  $(\Gamma) \simeq G$  and  $|V(\Gamma)| \leq 2|G|$  (there are 2 G-orbits having |G| vertices each). For certain group types such as symmetric groups  $\Sigma_n$ , dihedral groups  $D_{2n}$  and elementary abelian 2-groups  $(\mathbb{Z}/2\mathbb{Z})^n$  graphs with smaller number of vertices (respectively, n, n and 2n) are obvious.

In the recent decades the problem of finding  $\mu(G) = \min_{\Gamma: \operatorname{Aut}(\Gamma) \simeq G} |V(\Gamma)|$  for specific groups G does not seem to have been very popular although minimal graphs and directed graphs for most finite groups have not been found. See Babai [3] for an exposition of this area.

There are 10-vertex graphs having automorphism group  $\mathbb{Z}/4\mathbb{Z}$ , this fact is mentioned in Bouwer and Frucht [5] and Babai [2]. There are 12 such 10-vertex graph isomorphism types, see [6].

<sup>2010</sup> Mathematics Subject Classification: primary 05C25; secondary 05E18, 05C35, 05C75. Key words and phrases: graph, automorphism group.

Received March 7, 2016, revised January 2017. Editor J. Nešetřil.

DOI: 10.5817/AM2017-1-13

In this paper we reminisce about the bound  $\mu(G) = \min_{\Gamma:\operatorname{Aut}(\Gamma)\simeq G} |V(\Gamma)| \leq 2|G|$ not being sharp for  $G \simeq \mathbb{Z}/4n\mathbb{Z}$ , for any natural  $n \geq 1$ . Namely, for any  $n \geq 1$ there is an undirected graph  $\Gamma$  on 4n + 6 vertices such that  $\operatorname{Aut}(\Gamma) \simeq \mathbb{Z}/4n\mathbb{Z}$ . The number of orbits is 3.

Graphs with abelian automorphism groups have been investigated in Arlinghaus [1]. In Harary [9] there is a claim (referring to Merriwether) that if G is a cyclic group of order  $2^k$ ,  $k \ge 2$ , then the minimal number of graph vertices is  $2^k + 6$ . In this paper we exhibit such graphs with the number of vertices 4n + 6,  $n \ge 1$ , and give an explicit construction. The construction works for graphs with any  $n \ge 1$ , but if  $n = 2^k$ ,  $k \ge 3$ , we get graphs for which the number of vertices is smaller than the Babai's bound.

We use standard notations of graph theory, see Diestel [7]. Adjacency of vertices i and j is denoted by  $i \sim j$  (edge (i, j)). For a graph  $\Gamma = (V, E)$  the subgraph induced by  $X \subseteq V$  is denoted by  $\Gamma[X]: \Gamma[X] = \Gamma - \overline{X}$ . The set  $\{1, 2, \ldots, n\}$  is denoted by  $V_n$ . The undirected cycle on n vertices is denoted by  $C_n$ . The cycle notation is used for permutations. Given a function  $f: A \to B$  and a subset  $C \subseteq A$  we denote the restriction of f to C by  $f|_C$ .

#### 2. Main results

## 2.1. The graph $\Gamma_n$ .

**Definition 2.1.** Let  $n \ge 1$ ,  $n \in \mathbb{N}$ , m = 4n. Let  $V(\Gamma_n) = V_{m+6} = \{1, 2, \dots, m+6\}$  and edges be given by the following adjacency description. We define 8 types of edges.

- (1)  $i \sim i+1$  for all  $i \in V_{m-1}$  and  $1 \sim m$ . (It implies that  $\Gamma_n[1, 2, \dots, m] \simeq C_m$ .)
- (2)  $m+1 \sim i$  with  $i \in V_m$  iff  $i \equiv 1$  or  $2 \pmod{4}$ .
- (3)  $m + 2 \sim i$  with  $i \in V_m$  iff  $i \equiv 2$  or  $3 \pmod{4}$ .
- (4)  $m+3 \sim i$  with  $i \in V_m$  iff  $i \equiv 3$  or  $0 \pmod{4}$ .
- (5)  $m + 4 \sim i$  with  $i \in V_m$  iff  $i \equiv 0$  or  $1 \pmod{4}$ .
- (6)  $m + 5 \sim i$  with  $i \in V_m$  iff  $i \equiv 1 \pmod{2}$ .
- (7)  $m + 6 \sim i$  with  $i \in V_m$  iff  $i \equiv 0 \pmod{2}$ .
- (8)  $m+1 \sim m+5 \sim m+3$ ,  $m+2 \sim m+6 \sim m+4$ .

**Definition 2.2.** Denote  $O_1 = \{1, 2, ..., m\}$ ,  $O_2 = \{m + 1, m + 2, m + 3, m + 4\}$ ,  $O_3 = \{m + 5, m + 6\}$ . Note that  $O_i$  are the Aut  $(\Gamma_n)$ -orbits.

## 2.2. The special case n = 1.

A graph with automorphism group  $\mathbb{Z}/4\mathbb{Z}$  and minimal number of vertices (10) and edges (18) was exhibited in Bouwer and Frucht [5], p.58.  $\Gamma_1$  (which is not isomorphic to the Bouwer-Frucht graph) is shown in Fig. 1. It can be thought as embedded in

the 3D space. It is planar but a plane embedding is not given here. Aut  $(\Gamma_1) \simeq \mathbb{Z}/4\mathbb{Z}$  is generated by the vertex permutation g = (1, 2, 3, 4)(5, 6, 7, 8)(9, 10).

Subgraphs  $\Gamma_1[1, 2, 3, 4, 5, 7, 9]$  and  $\Gamma_1[1, 2, 3, 4, 6, 8, 10]$  which can be thought as being drawn above and below the orbit  $\{1, 2, 3, 4\}$  are interchanged by g.



Fig. 1. –  $\Gamma_1$ 

#### 2.3. Automorphism group of $\Gamma_n$ .

**Proposition 2.3.** Let  $n \ge 1$ ,  $n \in \mathbb{N}$ , m = 4n. Let  $\Gamma_n$  be defined as above. For any n, Aut  $(\Gamma_n) \simeq \mathbb{Z}/m\mathbb{Z}$ .

**Proof.** We will show that Aut  $(\Gamma_n) = \langle g \rangle$ , where  $g = (1, 2, \ldots, m)(m + 1, m + 2, m + 3, m + 4)(m + 5, m + 6).$ 

Inclusion  $\langle g \rangle \leq \operatorname{Aut}(\Gamma_n)$  is proved by showing that g maps an edge of each type to an edge.

Let us prove the inclusion  $\operatorname{Aut}(\Gamma_n) \leq \langle g \rangle$ . Let  $f \in \operatorname{Aut}(\Gamma_n)$ . We will show that  $f = g^{\alpha}$  for some  $\alpha$ . There are two subcases  $n \neq 2$  and n = 2.

For any  $n \ge 1$  the vertices m + 5 and m + 6 are the only vertices having eccentricity 3, so they must form an orbit.

Let  $n \neq 2$ . Suppose f(1) = k. Since  $n \neq 2$ , we have that  $\deg(1) = 5$ ,  $\deg(v) = \frac{m}{2} + 1 \neq 5$  for any  $v \in O_2$ , therefore  $f(1) \in O_1$ . Moreover, f stabilizes setwise both  $O_1$  and  $O_2$ . Consider the f-image of the edge (1, m+5). (f(1), f(m+5)) = (k, f(m+5)) must be an edge, therefore

- (1) if  $k \equiv 1 \pmod{2}$ , then f(m+5) = m+5,
- (2) if  $k \equiv 0 \pmod{2}$ , then f(m+5) = m+6.

It follows that  $f|_{O_3} = g^{k-1}$ .

Consider the *f*-image of  $\Gamma_n[1, 2, m + 1, m + 5]$ , denote its isomorphism type by  $\Gamma_0$ , see Fig. 5.



Fig. 5.  $-\Gamma_0 \simeq \Gamma_n [1, 2, m+1, m+5]$ 

Vertex 2 must be mapped to a  $\Gamma_n[O_1]$ -neighbour of k. For any  $k \in O_1$  there are two triangles containing the vertex k and a vertex adjacent to k in  $\Gamma_n[O_1]$ . Taking into account that  $f(m+5) \in O_3$  we check that there is only one suitable induced  $\Gamma_n$ -subgraph – containing k, another vertex in  $O_1$  adjacent to k and a vertex in  $O_3$ – which is isomorphic to  $\Gamma_n[1, 2, m+1, m+5]$ .

It follows that in each case we must have  $f(2) \equiv k + 1 \pmod{m}$ . By similar arguments for all  $j \in \{1, 2, ..., m\}$  it is proved that  $f(j) \equiv (k-1) + j \pmod{m}$ , thus  $f|_{O_1} = g^{k-1}$ .

Finally we describe  $f|_{O_2}$ . It can also be found considering  $\Gamma_n$ -subgraphs isomorphic to  $\Gamma_0$ , but we will use edge inspection. Consider the *f*-images of the edges (1, m + 1) and (1, m + 4). Vertex pairs (f(1), f(m + 1)) = (k, f(m + 1)) and (f(1), f(m + 4)) must be edges, therefore we can deduce images of all  $O_2$  vertices.

If  $n \neq 2$  and f(1) = k, then  $f = g^{k-1}$ , therefore  $f \in \langle g \rangle$ .

In the special case n = 2 we also consider f-images of  $\Gamma_1[1, 2, 9, 13]$  and find suitable  $\Gamma_1$ -subgraphs isomorphic to  $\Gamma_0$ . It is shown similarly to the above argument that f can be expressed as a power of g and hence  $f \in \langle g \rangle$ .

## 2.4. Abelian 2-groups.

It is known that  $\mu(\mathbb{Z}/2^k\mathbb{Z}) = 2^k + 6$ , it was proved in [1]. We note that it can be proved using the following steps. First notice that  $\Gamma$  with Aut  $(\Gamma) \simeq \mathbb{Z}/2^k\mathbb{Z}$ must have a least one orbit of size  $2^k$ , thus  $|V(\Gamma)| \ge 2^k$ . Eliminate possibilities  $2^k \le |V(\Gamma)| < 2^k + 6$  by considering orbits of size 1, 2 or 4, which can be removed, or which cause Aut  $(\Gamma)$  to contain a dihedral subgroup  $D_{2\cdot 2^k}$ .

We also give an implication – a bound for  $\mu(G)$  if G is an abelian 2-group.

**Proposition 2.4.** Let G be an abelian 2-group:  $G \simeq \prod_{i=1}^{k} (\mathbb{Z}/2^{i}\mathbb{Z})^{n_{i}}, n_{i} \in \mathbb{N} \cap \{0\}.$ Then  $\mu(G) \leq 2n_{1} + \sum_{i=2}^{k} n_{i}(2^{i} + 6).$ 

**Proof.** Denote  $(\mathbb{Z}/2^i\mathbb{Z})^{n_i}$  by  $G_i, G \simeq \prod_{i=1}^k G_i$ . We can construct a sequence of graphs  $\Delta_{i,n}, i \in \mathbb{N}, n \in \mathbb{N}$ , inductively using complements and unions as follows. For i > 1 define  $\Delta_{i,1} = \Gamma_{2^{i-2}}$  and define  $\Delta_{1,1} = K_2$ . Define inductively  $\Delta_{i,n}$ :

 $\Delta_{i,n} = \overline{\Delta}_{i,n-1} \cup \Delta_{i,1}. \text{ Since } \overline{\Delta}_{i,n-1} \not\simeq \Delta_{i,1} \text{ and } \overline{\Delta}_{i,j} \text{ is connected for all constructed graphs, we have inductively that } \operatorname{Aut} (\Delta_{i,n}) \simeq \operatorname{Aut} (\Delta_{i,n-1}) \times (\mathbb{Z}/2\mathbb{Z}) \simeq (\mathbb{Z}/2^i\mathbb{Z})^n.$ 

Define  $\Gamma = \bigcup_{i=1}^{k} \Delta_{i,n_{i}}$ . For different values of i the  $\Delta_{i,n_{i}}$  are nonisomorphic therefore Aut  $(\Gamma) \simeq \prod_{i=1}^{k} G_{i} \simeq G$ . Thus  $\mu(G) \leq |V(\Gamma)| = \sum_{i=1}^{k} |V(\Delta_{i,n_{i}})| = 2n_{1} + \sum_{i=2}^{k} n_{i}(2^{i}+6)$ .  $\Box$ 

## 2.5. Other graphs and developments.

We briefly describe without proofs graphs  $\Gamma_{m,n}$  having  $m^n + m$  vertices and cyclic automorphism group of order  $m^n$ ,  $m \ge 6$ ,  $n \ge 2$ . Existence of such graphs is mentioned in [9], see also [1]. We use the construction of graphs with 2mvertices having cyclic automorphism group of order m ( $m \ge 6$ ) given in [11]. Let  $V(\Gamma_{m,n}) = W \cup W'$ , where  $W = \{0, 1, \ldots, m^n - 1\}$ ,  $W' = \{0', 1', \ldots, (m-1)'\}$ . The edges of  $\Gamma_{m,n}$  are defined as follows: 1)  $\Gamma_{m,n}[W]$  and  $\Gamma_{m,n}[W']$  are natural cycles of order  $m^n$  and m, respectively, with edges (i, i + 1), 2) for any vertex  $i' \in W'$ there are  $3m^{n-1}$  edges of type  $(i', jm + i(\mod m^n)), (i', jm + i + 1(\mod m^n))$  and  $(i', jm + i - 2(\mod m^n)), 0 \le i' \le m - 1, 0 \le j \le m^{n-1} - 1$ . It can be checked that Aut  $(\Gamma_{m,n}) \simeq \mathbb{Z}/m^n\mathbb{Z}$ , there are 2 orbits – W and W'.

Acknowledgement. Computations were performed using the computational algebra system MAGMA, see Bosma et al. [4], and the program *nauty*, available at http://cs.anu.edu.au/~bdm/data/, see McKay and Piperno [10].

#### References

- Arlinghaus, W.C., The classification of minimal graphs with given abelian automorphism group, Mem. Amer. Math. Soc. 57 (1985), no. 330, viii+86 pp.
- [2] Babai, L., On the minimum order of graphs with given group, Canad. Math. Bull. 17 (1974), 467–470.
- [3] Babai, L., In Graham R.L.; Grotschel M.; Lovasz L., Handbook of Combinatorics I, ch. Automorphism groups, isomorphism, reconstruction, pp. 1447–1540, North-Holland, 1995.
- Bosma, W., Cannon, J., Playoust, C., The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235–265.
- [5] Bouwer, I.Z., Frucht, R., In Jagdish N. Srivastava, A survey of combinatorial the, ch. Line-minimal graphs with cyclic group, pp. 53–69, North-Holland, 1973.
- [6] Daugulis, P., 10-vertex graphs with cyclic automorphism group of order 4, 2014, http: //arxiv.org/abs/1410.1163.
- [7] Diestel, R., Graph Theory, Graduate Texts in Mathematics, vol. 173, Springer-Verlag, Heidelberg, 2010.
- [8] Frucht, R., Herstellung von Graphen mit vorgegebener abstrakter Gruppe, Compositio Math. (in German) 6 (1939), 239–250.

## P. DAUGULIS

- [9] Harary, F., Graph Theory, Addison-Wesley, Reading, MA, 1969.
- [10] McKay, B.D., Piperno, A., Practical Graph Isomorphism, II, J. Symbolic Comput. 60 (2013), 94–112.
- Sabidussi, G., On the minimum order of graphs with given automorphism group, Monatsh. Math. 63 (2) (1959), 124–127.

Institute of Life Sciences and Technologies, Daugavpils University, Daugavpils, LV-5400, Latvia *E-mail*: peteris.daugulis@du.lv