CHARACTERIZATIONS OF z-LINDELÖF SPACES

Ahmad Al-Omari and Takashi Noiri

ABSTRACT. A topological space (X, τ) is said to be z-Lindelöf [1] if every cover of X by cozero sets of (X, τ) admits a countable subcover. In this paper, we obtain new characterizations and preservation theorems of z-Lindelöf spaces.

1. INTRODUCTION

A subset H of a topological space (X, τ) is called a cozero set if there is a continuous real-valued function g on X such that $H = \{x \in X : g(x) \neq 0\}$. The complement of a cozero set is called a zero set. Recently papers [2, 3, 4, 5, 8, 9] have introduced some new classes of functions via cozero sets. It is well known [6] that the countable union of cozero sets is a cozero set and the intersection of two cozero sets is a cozero set, so the collection of all cozero subsets of (X, τ) is a base for a topology τ_z on X, called the complete regularization of τ . It is clear that $\tau_z \subseteq \tau$ in general. Furthermore, the space (X, τ) is completely regular if and only if $\tau_z = \tau$. In general for any topological space τ , we note that (X, τ_z) is completely regular.

Throughout this paper, (X, τ) and (Y, σ) stand for topological spaces on which no separation axiom is assumed, unless otherwise stated. For a subset A of X, the closure of A and the interior of A will be denoted by Cl(A) and Int(A), respectively. A point $x \in X$ is called a condensation point of A if for each $U \in \tau$ with $x \in U$, the set $U \cap A$ is uncountable. A is said to be ω -closed [7] if it contains all its condensation points. The complement of an ω -closed set is said to be ω -open. It is well known that a subset W of a space (X, τ) is ω -open if and only if for each $x \in W$, there exists $U \in \tau$ such that $x \in U$ and U - W is countable.

2. ω -cozero sets

In this section we introduce the following notion:

Definition 2.1. A subset A of (X, τ) is said to be ω -cozero if for each $x \in A$ there exists a cozero set U_x containing x such that $U_x - A$ is a countable set. The complement of an ω -cozero is said to be ω -zero.

²⁰¹⁰ Mathematics Subject Classification: primary 54C05; secondary 54C08, 54C10.

Key words and phrases: cozero set, ω -open set, Lindelöf, z-Lindelöf.

Received June 28, 2016. Editor A. Pultr.

DOI: 10.5817/AM2017-2-93

The family of all ω -cozero (resp. cozero, zero) subsets of a space (X, τ) is denoted by $\omega ZO(X)$ (resp. ZO(X), ZC(X)).

Lemma 2.1. For a subset of a topological space (X, τ) , every cozero set is ω -cozero and every ω -cozero set is ω -open.

Proof. (1) Let A be a cozero set. For each $x \in A$, there exists a cozero set $U_x = A$ such that $x \in U_x$ and $U_x - A = \phi$. Therefore, A is ω -cozero.

(2) Assume A is an ω -cozero set. Then for each $x \in A$, there is a cozero set U_x containing x such that $U_x - A$ is a countable set. Since every cozero set is open, A is ω -open.

For a subset of a topological space, the following implications hold and none of these implications is reversible.

Example 2.1. Let \mathbb{R} be the set of all real numbers with the usual topology and \mathbb{Q} the set of all rational numbers. Then $A = \mathbb{R} - \mathbb{Q}$ is an ω -cozero set but it is not open.

Example 2.2. Let X be a set and A be a subset of X such that A and X - A are uncountable. Let $\tau = \{\phi, X, A\}$. Then $\{A\}$ is an open set but it is not ω -cozero set.

Theorem 2.1. Let (X, τ) be a topological space. Then $(X, \omega ZO(X))$ is a topological space.

Proof.

- (1) We have $\phi, X \in \omega ZO(X)$.
- (2) Let $U, V \in \omega ZO(X)$ and $x \in U \cap V$. Then there exist cozero sets G, H of X containing x such that $G \setminus U$ and $H \setminus V$ are countable. And $(G \cap H) \setminus (U \cap V) = (G \cap H) \cap ((X \setminus U) \cup (X \setminus V)) \subseteq (G \cap (X \setminus U)) \cup (H \cap (X \setminus V))$. Thus $(G \cap H) \setminus (U \cap V)$ is countable. Since the intersection of two cozero sets is cozero, $U \cap V \in \omega ZO(X)$.
- (3) Let $\{U_i : i \in I\}$ be a family of ω -cozero sets of X and $x \in \bigcup_{i \in I} U_i$. Then $x \in U_j$ for some $j \in I$. This implies that there exists a cozero set V of X containing x such that $V \setminus U_j$ is countable. Since $V \setminus \bigcup_{i \in I} U_i \subseteq V \setminus U_j$, then

$$V \setminus \bigcup_{i \in I} U_i$$
 is countable. Thus $\bigcup_{i \in I} U_i \in \omega ZO(X)$.

Lemma 2.2. A subset A of a space X is ω -cozero if and only if for every $x \in A$, there exist a cozero set U_x containing x and a countable subset C such that $U_x - C \subseteq A$.

Proof. Let A be ω -cozero and $x \in A$, then there exists a cozero set U_x containing x such that $U_x - A$ is countable. Let $C = U_x - A = U_x \cap (X - A)$. Then $U_x - C \subseteq A$. Conversely, let $x \in A$. Then there exist a cozero set U_x containing x and a countable subset C such that $U_x - C \subseteq A$. Thus $U_x - A \subseteq C$ and $U_x - A$ is a countable set. \Box

Theorem 2.2. Let X be a space and $F \subseteq X$. If F is an ω -zero set, then $F \subseteq K \cup C$ for some zero subset K and a countable subset C.

Proof. If F is an ω -zero set, then X - F is an ω -cozero set and hence for each $x \in X - F$, there exist a cozero set U_x containing x and a countable set C_x such that $U_x - C_x \subseteq X - F$. Thus $F \subseteq X - (U_x - C_x) = X - (U_x \cap (X - C_x)) = (X - U_x) \cup C_x$. Let $K = X - U_x$. Then K is a zero set such that $F \subseteq K \cup C_x$.

3. z-Lindelöf spaces

Definition 3.1.

- (1) A topological space X is said to be z-Lindelöf [1] if every cover of X by cozero sets admits a countable subcover.
- (2) A subset A of a space X is said to be z-Lindelöf relative to X if every cover of A by cozero sets of X admits a countable subcover.

Theorem 3.1. For any space X, the following properties are equivalent:

- (1) X is z-Lindelöf;
- (2) Every cover of X by ω -cozero sets of X admits a countable subcover.

Proof. (1) \Rightarrow (2): Let $\{U_{\alpha} : \alpha \in \Lambda\}$ be any cover of X by ω -cozero sets of X. For each $x \in X$, there exists $\alpha(x) \in \Lambda$ such that $x \in U_{\alpha(x)}$. Since $U_{\alpha(x)}$ is ω -cozero, there exists a cozero set $V_{\alpha(x)}$ such that $x \in V_{\alpha(x)}$ and $V_{\alpha(x)} \setminus U_{\alpha(x)}$ is countable. The family $\{V_{\alpha(x)} : x \in X\}$ is a cover of X by cozero sets of X. Since X is z-Lindelöf, there exist $\{x_i : i < \omega\} \subseteq X$ such that $X = \bigcup\{V_{\alpha(x_i)} : i < \omega\}$. Now, we have

$$X = \bigcup_{i < \omega} \left((V_{\alpha(x_i)} \setminus U_{\alpha(x_i)}) \cup U_{\alpha(x_i)} \right)$$
$$= \left(\bigcup_{i < \omega} (V_{\alpha(x_i)} \setminus U_{\alpha(x_i)}) \right) \cup \left(\bigcup_{i < \omega} U_{\alpha(x_i)} \right)$$

For each $\alpha(x_i)$, $V_{\alpha(x_i)} \setminus U_{\alpha(x_i)}$ is a countable set and there exists a countable subset $\Lambda_{\alpha(x_i)}$ of Λ such that $V_{\alpha(x_i)} \setminus U_{\alpha(x_i)} \subseteq \bigcup \{U_{\alpha} : \alpha \in \Lambda_{\alpha(x_i)}\}$. Therefore, we have

$$X \subseteq \left(\bigcup_{i < \omega} \left(\cup \{ U_{\alpha} : \alpha \in \Lambda_{\alpha(x_i)} \} \right) \right) \cup \left(\bigcup_{i < \omega} U_{\alpha(x_i)} \right)$$

(2) \Rightarrow (1): Since every cozero set is ω -cozero, the proof is obvious.

We state the following proposition without proof.

Proposition 3.1. A topological space X is z-Lindelöf if and only if for every family of ω -zero sets $\{F_{\alpha} : \alpha \in \Lambda\}$ of X, $\bigcap_{\alpha \in \Lambda} F_{\alpha} = \phi$ implies that there exists a countable subset $\Lambda_0 \subseteq \Lambda$ such that $\bigcap_{\alpha \in \Lambda_0} F_{\alpha} = \phi$.

 \square

Proposition 3.2. A topological space X is z-Lindelöf if and only if for every family $\{F_{\alpha} : \alpha \in \Lambda\}$ of ω -zero sets with countable intersection property, $\bigcap_{\alpha \in \Lambda} F_{\alpha} \neq \phi$.

Proof. Necessity. Let X be a z-Lindelöf space and suppose that $\{F_{\alpha} : \alpha \in \Lambda\}$ be a family of ω -zero subsets of X with countable intersection property such that $\cap_{\alpha \in \Lambda} F_{\alpha} = \phi$. Let us consider the ω -cozero sets $U_{\alpha} = X \setminus F_{\alpha}$, the family $\{U_{\alpha} : \alpha \in \Lambda\}$ is a cover of X by ω -cozero sets of X. Since X is z-Lindelöf, the cover $\{U_{\alpha} : \alpha \in \Lambda\}$ has a countable subcover $\{U_{\alpha_i} : \alpha_i \in \mathbb{N}\}$. Therefore $X = \cup \{U_{\alpha_i} : \alpha_i \in \mathbb{N}\} = \cup \{(X \setminus F_{\alpha_i}) : \alpha_i \in \mathbb{N}\} = X \setminus \cap \{F_{\alpha_i} : \alpha_i \in \mathbb{N}\}$ and hence $\cap \{F_{\alpha_i} : \alpha_i \in \mathbb{N}\} = \phi$. Thus, if the family $\{F_{\alpha} : \alpha \in \Lambda\}$ of ω -zero sets with countable intersection property, then $\cap_{\alpha \in \Lambda} F_{\alpha} \neq \phi$.

Sufficiency. Let $\{U_{\alpha} : \alpha \in \Lambda\}$ be a cover of X by ω -cozero sets of X and suppose that for every family $\{F_{\alpha} : \alpha \in \Lambda\}$ of ω -zero sets with countable intersection property, $\bigcap_{\alpha \in \Lambda} F_{\alpha} \neq \phi$. Then $X = \bigcup \{U_{\alpha} : \alpha \in \Lambda\}$. Therefore, $\phi = X \setminus X = \bigcap \{(X \setminus U_{\alpha}) : \alpha \in \Lambda\}$ and $\{X \setminus U_{\alpha} : \alpha \in \Lambda\}$ is a family of ω -zero sets with an empty intersection. By the hypothesis, there exists a countable subset $\{(X \setminus U_{\alpha_i}) : i \in \mathbb{N}\}$ such that $\cap \{(X \setminus U_{\alpha_i}) : i \in \mathbb{N}\} = \phi$; hence $X \setminus \cap \{(X \setminus U_{\alpha_i}) : i \in \mathbb{N}\} = X = \bigcup \{U_{\alpha_i} : i \in \mathbb{N}\}$. Thus, X is z-Lindelöf. \Box

Theorem 3.2. Every ω -zero set of a z-Lindelöf space X is z-Lindelöf relative to X.

Proof. Let A be an ω -zero set of X. Let $\{U_{\alpha} : \alpha \in \Lambda\}$ be a cover of A by cozero sets of X. Now for each $x \in X - A$, there is a cozero set V_x such that $V_x \cap A$ is countable. Since X is z-Lindelöf and the collection $\{U_{\alpha} : \alpha \in \Lambda\} \cup \{V_x : x \in X - A\}$ is a cover of X by cozero sets of X, there exists a countable subcover $\{U_{\alpha_i} : i \in \mathbb{N}\} \cup \{V_{x_i} : i \in \mathbb{N}\}$. Since $\bigcup_{i \in N} (V_{x_i} \cap A)$ is countable, so for each $x_j \in \cup (V_{x_i} \cap A)$, there is $U_{\alpha(x_j)} \in \{U_{\alpha} : \alpha \in \Lambda\}$ such that $x_j \in U_{\alpha(x_j)}$ and $j \in \mathbb{N}$. Hence $\{U_{\alpha_i} : i \in \mathbb{N}\} \cup \{U_{\alpha(x_j)} : j \in \mathbb{N}\}$ is a countable subcover of $\{U_{\alpha} : \alpha \in \Lambda\}$ and it covers A. Therefore, A is z-Lindelöf relative to X.

Corollary 3.1. Every zero set of a z-Lindelöf space X is z-Lindelöf relative to X.

The topology generated by the cozero sets of the space X is denoted by τ_z .

Definition 3.2. A topological space (X, τ) is said to be completely ω -regular if for each $x \in X$ and each open set U_x containing x, there exists an ω -cozero set H_x such that $x \in H_x \subseteq U_x$.

Proposition 3.3. A completely ω -regular is z-Lindelöf if and only if it is Lindelöf.

Proof. Let X be completely ω -regular. Suppose that X is a z-Lindelöf space and let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Lambda\}$ be any open cover of X. For each $x \in X$, there exists $\alpha(x) \in \Lambda$ such that $x \in U_{\alpha(x)}$. Since X is completely ω -regular, there exists an ω -cozero set $H_{\alpha(x)}$ such that $x \in H_{\alpha(x)} \subseteq U_{\alpha(x)}$. Then $\{H_{\alpha(x)} : x \in X\}$ is a cover of X by ω -cozero sets of X. By Theorem 3.1, there exists a countable subcover $\{H_{\alpha(x_i)} : i \in \mathbb{N}\}$. Therefore, $\{U_{\alpha(x_i)} : i \in \mathbb{N}\}$ is a countable subcover of \mathcal{U} . Hence X is Lindelöf. The converse is obvious.

Definition 3.3. A topological space (X, τ) is said to be almost ω -regular if for each $x \in X$ and each ω -cozero set U_x containing x, there exists a cozero set V_x such that $x \in V_x \subseteq \operatorname{Cl}(V_x) \subseteq U_x$.

Theorem 3.3. Let X be an almost ω -regular and z-Lindelöf space. Then for every disjoint ω -zero sets C_1 and C_2 , there exist two open sets U and V such that $C_1 \subseteq U$, $C_2 \subseteq V$ and $U \cap V = \phi$.

Proof. Since X is an almost ω -regular space, for each $x \in C_1$ there exists a cozero set U_x containing x such that $\operatorname{Cl}(U_x) \cap C_2 = \phi$. Then the family $\{U_x : x \in U_x \in U_x\}$ $C_1 \cup \{X - C_1\}$ is an ω -cozero cover of X. Since X is z-Lindelöf, by Theorem 3.1 there exists $\{x_i : i < \omega\} \subseteq X$ such that $X = \left(\bigcup_{i \leq \omega} U_{x_i}\right) \cup (X - C_1)$. It follows that for each $i < \omega$, $C_1 \subseteq \left(\bigcup_{i < \omega} U_{x_i}\right)$ and $\operatorname{Cl}(U_{x_i}) \cap C_2 = \phi$. Analogously there exists

a family of cozero sets V_{y_i} such that $C_2 \subseteq \left(\bigcup_{i \leq \omega} V_{y_i}\right)$ and $\operatorname{Cl}(V_{y_i}) \cap C_1 = \phi$. Let $G_k = U_{x_k} \setminus \left(\bigcup_{i=1}^k \operatorname{Cl}(V_{y_i})\right), H_k = V_{y_k} \setminus \left(\bigcup_{i=1}^k \operatorname{Cl}(U_{x_i})\right) \text{ and } U = \bigcup_{i < \omega} G_i, V = \bigcup_{i < \omega} H_i$ such that U and V are open, $U \cap V = \phi$ and $C_1 \subseteq U, C_2 \subseteq V.$

4. Preservation theorems

Definition 4.1. A function $f: X \to Y$ is said to be cozero-irresolute if for each $x \in X$ and each cozero set V of Y containing f(x), there exists a cozero set U of X containing x such that $f(U) \subseteq V$.

Definition 4.2. A function $f: X \to Y$ is said to be ω -cozero-continuous if for each $x \in X$ and each cozero set V of Y containing f(x), there exists an ω -cozero set U of X containing x such that $f(U) \subseteq V$.

It is clear that every cozero-irresolute function is ω -cozero-continuous.

Theorem 4.1. Let $f: X \to Y$ be a ω -cozero-continuous surjection. If X is z-Lindelöf, then Y is z-Lindelöf.

Proof. Let $\{V_{\alpha} : \alpha \in \Lambda\}$ be a cover of Y by cozero sets of Y. For each $x \in X$, there exists $\alpha(x) \in \Lambda$ such that $f(x) \in V_{\alpha(x)}$. Since f is ω -cozero-continuous, there exists an ω -cozero set $U_{\alpha(x)}$ of X containing x such that $f(U_{\alpha(x)}) \subseteq V_{\alpha(x)}$. So $\{U_{\alpha(x)}: x \in X\}$ is a cover of the z-Lindelöf space X by ω -cozero sets of X, by Theorem 3.1 there exists a countable subset $\{x_k : k < \omega\} \subseteq X$ such that X = $\bigcup_{k < \omega} U_{\alpha(x_k)}. \text{ Therefore } Y = f(X) = f(\bigcup_{k < \omega} U_{\alpha(x_k)}) = \bigcup_{k < \omega} f(U_{\alpha(x_k)}) \subseteq \bigcup_{k < \omega} V_{\alpha(x_k)}.$ This shows that Y is z-Lindelöf. \square

Corollary 4.1. Let $f: X \to Y$ be a cozero-irresolute surjection. If X is z-Lindelöf, then Y is z-Lindelöf.

Definition 4.3. A function $f: X \to Y$ is said to be almost cozero, if the image of each cozero set U of X is an open set in Y.

Proposition 4.1. If $f: X \to Y$ is almost cozero, then the image of an ω -cozero set of X is ω -open in Y.

Proof. Let $f: X \to Y$ be almost cozero and W an ω -cozero set of X. Let $y \in f(W)$, there exists $x \in W$ such that f(x) = y. Since W is an ω -cozero set, there exists a cozero set U such that $x \in U$ and U - W = C is countable. Since f is almost cozero, f(U) is an open set in Y such that $y = f(x) \in f(U)$ and $f(U) - f(W) \subseteq f(U - W) = f(C)$. Moreover, f(C) is countable. Therefore, f(W) is ω -open in Y.

Definition 4.4. A function $f: X \to Y$ is said to be ω^* -cozero-continuous if $f^{-1}(V)$ is ω -cozero in X for each open set V in Y.

Theorem 4.2. Let $f: X \to Y$ be an ω^* -cozero-continuous surjection. If X is z-Lindelöf, then Y is Lindelöf.

Proof. Let $\{V_{\alpha} : \alpha \in \Lambda\}$ be an open cover of Y. Then $\{f^{-1}(V_{\alpha}) : \alpha \in \Lambda\}$ is a cover of X by ω -cozero sets of X. Since X is z-Lindelöf, by Theorem 3.1, X has a countable subcover, say $\{f^{-1}(V_{\alpha}) : \alpha \in \Lambda_0\}$, where Λ_0 is a countable subset of Λ . Hence $\{V_{\alpha} : \alpha \in \Lambda_0\}$ is a countable subcover of Y. Hence Y is Lindelöf. \Box

Definition 4.5. A function $f: X \to Y$ is said to be ω -zero if f(A) is ω -zero in Y for each zero set A of X.

Theorem 4.3. If $f: X \to Y$ is an ω -zero surjection such that $f^{-1}(y)$ is z-Lindelöf relative to X for each $y \in Y$, and Y is z-Lindelöf, then X is z-Lindelöf.

Proof. Let $\{U_{\alpha} : \alpha \in \Lambda\}$ be any cover of X by cozero sets of X. For each $y \in Y$, $f^{-1}(y)$ is z-Lindelöf relative to X and there exists a countable subset $\Lambda(y)$ of Λ such that $f^{-1}(y) \subset \cup \{U_{\alpha} : \alpha \in \Lambda(y)\}$. Now we put $U(y) = \cup \{U_{\alpha} : \alpha \in \Lambda(y)\}$ which is a cozero set and V(y) = Y - f(X - U(y)). Then, since f is ω -zero, V(y) is an ω -cozero set in Y containing y such that $f^{-1}(V(y)) \subset U(y)$. Since $\{V(y) : y \in Y\}$ is a cover of Y by ω -cozero sets of Y, by Theorem 3.1 there exists a countable set $\{y_k : k < \omega\} \subseteq Y$ such that $Y = \cup \{V(y_k) : k < \omega\}$. Therefore, $X = f^{-1}(Y) = \cup \{f^{-1}(V(y_k)) : k < \omega\} \subseteq \cup \{U(y_k) : k < \omega\} = \cup \{U_{\alpha} : \alpha \in \Lambda(y_k), k < \omega\}$. This shows that X is z-Lindelöf.

References

- Al-Ani, A.T., z-compact spaces, Journal of University of Anbar for Pure Science 3 (1) (2009), 118–121.
- [2] Al-Omari, A., On ideal topological spaces via cozero sets, Questions Answers Gen. Topology 34 (2) (2016), 83–91.
- [3] Al-Omari, A., Some operators in ideal topological spaces via cozero sets, Acta Univ. Apulensis 36 (4) (2016), 1–12.
- [4] Al-Omari, A., Noiri, T., On quasi compact spaces and some functions, accepted in Bol. Soc. Paran. Mat. 36 (4) (2018), 121–130.
- [5] Bayhan, S., Kanibir, A., McCluskey, A., Reilly, I.L., On almost z-supercontinuity, Filomat 27 (6) (2013), 965–969.

- [6] Gillman, L., Jerison, M., Rings of Continuous Functions, Van Nostrand Co., Inc., Princeton, N. J., 1960.
- [7] Hdeib, H.Z., ω-closed mappings, Rev. Colombiana Mat. 16 (1-2) (1982), 65-78.
- [8] Kohli, J.K., Singh, D., Kumar, R., Generalizations of Z-supercontinuous functions and D_{δ} -supercontinuous functions, Appl. Gen. Topology 9 (2) (2008), 239–251.
- [9] Singal, M.K., Niemse, S.B., z-continuous mappings, Math. Student 66 (1997), 193-210.

AL AL-BAYT UNIVERSITY, FACULTY OF SCIENCES, DEPARTMENT OF MATHEMATICS, P.O. BOX 130095, MAFRAQ 25113, JORDAN *E-mail*: omarimutah1@yahoo.com

2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 Japan *E-mail*: t.noiri@nifty.com