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UNIQUE SOLVABILITY OF FRACTIONAL FUNCTIONAL
DIFFERENTIAL EQUATION ON THE BASIS
OF VALLEE-POUSSIN THEOREM

SATYAM NARAYAN SRIVASTAVA, ALEXANDER DOMOSHNITSKY,
SESHADEV PADHI, AND VLADIMIR RAICHIK

ABSTRACT. We propose explicit tests of unique solvability of two-point and
focal boundary value problems for fractional functional differential equations
with Riemann-Liouville derivative.

1. INTRODUCTION

In this paper we consider the fractional functional differential equation
(1.1) (Dg, =) (t +ZT9£ = f(t), te[0,1], m<n—-2, n>2,

where Df, is the Riemann-Liouville fractional derivative of the order n—1 < a <n
(see [11], [14]), n is integer, the operators T;: C' — Lo, are linear continuous
operators acting from the space of the continuous functions C to the space of
essentially bounded functions Ly, ¢ =0,...,m, and f € Ly

We consider also the auxiliary equation

(12)  (Dg )t +Z|T\a;<1 =ft), te[0,1], m<n—-2,n>2,

where the positive operator |T;| is such that the following inequalities hold:

(1.3) — (D) < (L)) < (T:1)(@E),  te[0,1].

Of course, it will be clear below, that we are interested in the operators |T;| with
the minimal norms in the space of continuous functions C.

The operators T;: C — Lo and |T;|: C — Lo can be, for example, of the
following forms:
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1) Operators with deviations

(1.4) qu t—T”(t))

(\T|x() Z|qu |x() t_Tw( ))

where 7;;: [0,1] — R, ¢;;:[0,1] — R, are measurable bounded functions, R =
(=00, +00). To complete the description of these operators, we have to define
what has to be substituted into instead of z(V)(t — 7;;(¢)) in the case of
t —7i;(t) ¢ [0,1]. Let us assume that

(1.5) D) =0 for £¢[0,1], i=0,...,m,

that allows us to preserve the n-dimensional fundamental system for the homoge-
neous equation

(1.6) (Dg 2)(t +qu )& (t —7;;(t)) = 0.

2) Integral operators

1
(1.7) (T2 9)( /K s)ds,
0

(T2 O)(0) = / (e, )l (s) s
0
under the standard assumptions on the kernels K;(¢, s) implementing that T;: C' —

Lo, for example, K;(t, s) is a continuous function [0, 1] x [0,1] — R (see, [12]).

3) Linear combinations and superpositions of the deviations and integral opera-
tors, for example, the operators

(1.8) (Tyz D) (t) = /Z Kij(t, s)z® (s —7i5(s)) ds.

o J=1

We consider the boundary value problem consisting of equation (|1.1) and the
boundary conditions

(1.9) @0)=0 for i=0,1,...,n—2, 2M(1) =0,
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where k is an integer which is between 0 and n — 1. In the case of k = 0, we have
the classical two-point (n — 1,1)- problem. In the case of K < n — 1, we have the
sort of focal problems. We assume below that m < k.

We consider equation in the space D of functions z: [0,1] — R such that
("1 is absolutely continuous on every interval [e,1], where € > 0 and summable
on [0,1] and a: (") such that tz(™ is summable. The norm in the space D define

1
as || p = z e [+0(0)] +
space D looks naturally when fractional equations with the Riemann-Liouville
derivatives and the boundary conditions are considered. We say that x € D
is a solution of if it satisfies this equation for almost every t € [0,1]. If the

x“”*l) ‘dt + ft’ (") ‘dt Considering this

problem consisting of the homogeneous equation (Dg, x)(t) + Z(Tx )( )=0

and condition ) has only the trivial solution, then problem (1), (T.9) has a
unique solution Wthh can be represented in the form [2]

1
(1.10) :U(t):/o G(t,s)f(s)ds

For applications of fractional differential equations in various field of science and
engineering one can refer the classical books [11] [14].

The main reason for the study of fractional functional differential equations
could be, in our opinion, around the following idea for the study of systems of
fractional equations. Consider a boundary value problem consisting, for example,
of a system of two “ordinary fractional differential equations". For its analysis, we
can use the integral representations of solutions of the first equation and obtain
x1(t) through x5(¢). Then we substitute this representation instead of x1(t) into
the second equation and obtain a scalar fractional functional differential equation.
In the simplest case of a system of “ordinary” fractional equations, the equation,
we get, includes the integral operator of type 2). If we start with a system of delay
fractional differential equations, the equation, we get after the substitution into
the second equation, is a fractional functional differential equation that includes
the superpositions of deviation and integral operators. Thus, operators of type 3)
appear. Examples of such systems can be found in [7, [8 [9].

Positivity of solutions is one of the most important properties in applications
(see, for example, the book by Henderson and Luca [7]). Concerning problem
,, in the case of so called ordinary linear equations, (i.e. 7;;(t) = 0,

€[0,1], j=0,...,m;,i=1,...,min (L.4)) and its nonlinear generalizations,
we can note the following papers [3, [8, 9] 10} 13}, [15].

One of the motivations for our research is Lyapunov’s inequalities for fractional
differential equations which have been presented in Chapter 5 of the recent book
by Agarwal, Bohner, and Ozbekler [I]. Note the following assertion was presented
for the first time in [5]. Actually, the result in [5] is more general than Theorem
as the solution need not be assumed to be different from zero on (0, 1).
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@ In inequality (1.13) | In inequality (|1.15)
1.6 2.052759111 4.120246548
1.5999 2.05244883 4.119533208
1.5998 2.052138367 4.11819636
1.597 2.043474592 4.098884212
1.58 1.991943084 3.97506386
1.5 1.7724538 3.45372767
TaB. 1

Theorem 1.1 ([1L 5]). Let 1 < o <2 and x be a solution of the boundary value
problem

(1.11) {(D8+fv)(t) +q)z(t)=0 on [0,1],
z(0) = z(1) = 0.

If x(t) # 0 for all t € (0,1), then the inequality

1
(1.12) / lgo(t)] dt > T'(a)4**
0
holds.

Note that in [5], it was not assumed that x(t) # 0 for t € (0,1). For (1.11) with
a constant coefficient ¢o(t) = go, we have (1.12)) in the form

(1.13) go| > D)4

Using Corollary (one can refer [4] for proof), we get that the inequality

aO(
1.14 < ——T 1
( ) ‘q0| (Oé — 1)(1—1 (OZ + )
guarantees that the problem ([1.11)) has only the trivial solution. Note that the
part on unique solvability coincides with the known result of [6]. Inequality (|1.14))
means that in the case of zeros of solution z(t) at the points 0 and 1, we obtain
that

«

(1.15) l0(t)] = ————T(a+1)

(a—1)*

since in the case of the coefficient ¢¢ satisfying inequality (1.11) we exclude the
existence of zero at the point 1, i.e. (1) # 0. Let us compare and ,
computing the right-hand sides in them, we have values in Table [I]

Table [I] demonstrates the advances of our results if we compare the results of
[T, 5] and ours.
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2. MAIN RESULTS

Lemma 2.1. Using the technique of [13], one can obtain the uniqueness of solution
to the problem

Dgyx(t) = f(1),
(2.1) z(0) =2/(0) = ... = 2("=2(0) =0,
z®(1 )—0,

where k is an integer number which is between 0 and n — 1, in the form
1
(2.2) o) = [ Gult.s)f(s)ds.
0
where Gi(t, s) is Green’s function of problem (2.1)) defined by

(2.3) k(L s) —toe=1(1 — g)a—1i-k 0<t<s<1

1 [Jt—s) =t 1 —s)v 17k 0<s<t<1,
[(a)

and its j-th derivative is defined by

o’ (a—1)(@—2)-(a—j)

(24)  Z5Gi(t,s) = o)
(t—s)2d=l —pai=l(1 —g)al7k  0<s<t<1,
—tvmIT (1 = g)ar ik 0<t<s<l.

Let us define the operator K: Lo, — Lo and |K|: Lo — Lo by the equalities

m 1 ai

5 w0 =3[ Fesem] 0=,

(1K]2) Z i [ [ Gute =) as] (0= 10

We use the notation T;[y(¢)], (|T;|[y(t)]) meaning that the operator T; and |T;| acts
on the continuous function (t), i.e. T;[v(¢)] = (T37) (), |T:|[v(t)] = (|Ti|y) ().

Theorem 2.2. Assume that there exist a function v € D such that v(t) > 0, v'(t) >
0, -, v®(t) >0 fort € (0,1), v(0) = v'(0) = --- = v»=2(0) = 0 and

(2.6) (Dgyv)(t +Z\T|U() =¢t)<—e<0 for te(0,1);

then the problem (|1.1] , 1s uniquely solvable for any essentially bounded f and
the spectral radius of |K|: LOO — Lo s less than one.

Proof. Consider the auxiliary problem

(Dgy2)(t) = 2(t)
(2.7) {x(l%) =0@(0), 2 (1) =v® (1), i=0,1,...,n—2,
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where z(t) is a function in L., and such that there exists a positive number § such
that z(t) < —4§ for ¢ € [0,1]. It is clear that

= Jy Gi(t.5)2(s) ds + ug(t).
x’(t) o, k(1 8)2(s) ds + (1),
(2.8) 2"(t) = [y Sz Gt s)z(s) ds +ufl(t),

2 () = [F 2 Gyt 5)2(s) ds + ul™ (8),

where u(t) is a solution of the homogeneous equation Df, u(t) = 0 satisfying the
conditions u((0) = v(¥(0), i =0,...,n — 2, u® (1) = v*)(1). Let us substitute
these representations instead of v(t) and its derivatives into inequality (2.6):

m 1 9 m .
(2.9) z(t) + ZTi [/ @Gk(t, s)z(s) ds] + Z(Tzul)(t)) =(t).
i=0 0 i=0

It is clear that |T;|: C' — Lo, are positive operators for ¢ = 0,1,...,m, and this
imply that the operator |K|: Lo, — Lo, defined by equality (2.5)) is positive.
Thus, we have the equation

(2.10) 2(t) = (|K|2)(t) = (1), tel0,1],

where

(2.11)

i (|T; |u( i)
=0

It is clear that (Y (¢) > 0 for t € (0, 1]. This implies that ¥ () < —e < 0. The
function w(t) = —z(t) satisfies the inequality w(t) — (|K|w)(t) = —¥(¢) > 0 for
t € [0,1]. From equality (2.10)), according to [12, Theorem 5.3 on page 76] it follows
that p(]K|) < 1. This completes the proof of the theorem. O

Corollary 2.3. If n — 1 < a < n and the following inequality is fulfilled

(2.12) |Tol {t“—l (afk —tﬂ

“ , a—1
—D(a—i+ DT |7 ——= —¢t)| <T 1), te[0,1],
#Yoale = fai DT (2 ) <T@, e o
then problem (1.1), (L.9]) is uniquely solvable for any f € L
Proof. The proof follows from Corollary 4 of [4]. O
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