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Abstract

Given a euclidean vector space V , a linear map η : V ∧ V → V is
called dissident in case v, w, η(v∧w) are linearly independent whenever
so are v, w ∈ V . The problem of classifying all real quadratic division
algebras is reduced to the problem of classifying all eight-dimensional
real quadratic division algebras, and further to the problem of clas-
sifying all dissident maps η : R7 ∧ R7 → R

7. Should all of these
satisfy η = επ for a vector product π on R7 and a positive-definite
endomorphism ε of R7, then the latter problem would be solved. This
strong factorization property however, even though it does hold for all
dissident maps in lower dimensions, is shown to fail in dimension 7.
It is replaced by a weak factorization property for which a proof is
announced. Evidence is given for the conjecture that even weak fac-
torization will suffice to accomplish the complete classification of all
eight-dimensional real quadratic division algebras.
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1 Introduction

By a real algebra we mean a real vector space A, endowed with a bilinear
multiplication A×A→ A, (x, y) 7→ xy. A real division algebra is understood
to be a real algebra A satisfying 0 < dimA <∞ and having no zero divisors
(i.e. xy = 0 only if x = 0 or y = 0). The old and challenging problem of
classifying all real division algebras up to isomorphism has as yet admitted
only partial solutions, the most significant of which we proceed to indicate.

The real numbers R, the complex numbers C, the quaternions H (Hamil-
ton 1843) and the octonions O (Graves 1843, Cayley 1845) constitute the ol-
dest known examples of real division algebras. Classical results of Frobenius
[7] and Zorn [11] assert that {R,C,H} classifies all associative real division
algebras, whereas {R,C,H,O} classifies all alternative real division algebras.
Adams’ celebrated formula for the span of a sphere [1] implies that each real
division algebra has dimension 1,2,4 or 8.
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A real algebra A is called quadratic in case 0 < dimA, there exists
an identity element 1 ∈ A and each x ∈ A satisfies an equation x2 =
αx + β1 with real coefficients α, β. Every alternative real division algebra
is quadratic. The classification of all quadratic real division algebras seems
to be within reach. It is based on their intimate relationship with dissi-
dent triples which we proceed to recall. A dissident triple (V, ξ, η) consists
of a finite-dimensional euclidean vector space V = (V, 〈 〉), a linear form
ξ : V ∧ V → R and a dissident map η : V ∧ V → V . The category D
of all dissident triples and the category Q of all quadratic real division al-
gebras are related by a functor G : D → Q which is defined on objects by
G(V, ξ, η) = R×V , with multiplication (α, v)(β,w) = (αβ−〈v, w〉+ξ(v∧w),
αw+βv+η(v∧w)), and on morphisms by G(σ) = IR×σ. ‘Frobenius Lemma’
[7],[8] and ‘Osborns Theorem’ [10] are predecessors of the following result.

Proposition 1.1 [3, pp. 15, 17], [5]. The functor G : D → Q is an equiva-
lence of categories.

Intending to exploit this equivalence, let n ∈ {1, 2, 4, 8} and denote by Qn
the full subcategory of Q which is formed by all objects of dimension n.
Likewise, set m = n− 1 and denote by Dm the full subcategory of D which
is formed by all objects of dimension m. The (1,2,4,8)-Theorem and Propo-
sition 1.1 reduce the classification problem for Q to the classification prob-
lem for Dm, where m ∈ {0, 1, 3, 7}. Clearly {(0, o, o)} classifies D0 and
{(R, o, o)} classifies D1, so {R} classifies Q1 and {C} classifies Q2. In case
m ∈ {3, 7} we are faced with the key subproblem of classifying all dissident
maps Rm ∧ Rm → R

m up to O(Rm)-action. It is partially solved by the
following result, taking into account that the set of all vector products on
R
m forms one orbit under this group action.

Proposition 1.2 [3, p. 19], [5]. Let V be a euclidean vector space of di-
mension m ∈ {3, 7}.
(i) If π : V ∧ V → V is a vector product and ε : V → V is a definite endo-
morphism, then επ : V ∧ V → V is a dissident map.
(ii) If π, π′ : V ∧ V → V are vector products and ε, ε′ : V → V are definite
endomorphisms, then επ = ε′π′ iff (ε, π) = (ε′, π′) or (ε, π) = (−ε′,−π′).
(iii) If m = 3 and π : V ∧ V → V is a fixed vector product, then ε 7→ επ is
a bijection between the set of all definite endomorphisms ε : V → V and the
set of all dissident maps V ∧ V → V .

If m = 3, choose your favourite vector product π : R3 ∧ R3 → R
3. For each

x ∈ R3, denote by Ax the antisymmetric matrix representing the endomor-
phism π(x∧?) : R3 → R

3 in the standard basis. Let K3 = R
3 × R3 × T ,

where T = {d ∈ R3 | 0 < d1 ≤ d2 ≤ d3}. For each d ∈ T , denote by
Dd the diagonal matrix with diagonal sequence d. Define an equivalence
relation on K3 by (x, y, d) ∼ (x′, y′, d′) iff d = d′ and (Sx, Sy) = (x′, y′) for
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some S ∈ SO3(R) satisfying SDdS
T = Dd. Now we can formulate a first

consequence of Propositions 1.1 and 1.2, providing a complete description
of the isoclasses of Q4 in terms of equivalence classes of configurations in
R

3, formed by a pair of points and an ellipsoid in normal position.

Proposition 1.3 [4, p. 944]. The map Φ3 : K3 → Q4, (x, y, d) 7→ R× R3,
(α, v)(β,w) = (αβ−vTw+vTAxw , αw+βv+(Ay +Dd)π(v∧w)), induces
a bijection Φ3 : K3/∼ →̃ Q4/' .

A cross-section C for K3/∼ is given in [2, pp. 17-18]. From Proposition 1.3
we infer that Φ3(C) classifies Q4.

If m = 7, choose any vector product π : R7 ∧ R7 → R
7. Let K7 be the

set of all matrix pairs (X,E) ∈ R7×7 × R7×7 such that X is antisymmetric
and E is positive-definite. Define an equivalence relation on K7 by (X,E) ∼
(X ′, E′) iff (SXST , SEST ) = (X ′, E′) for some S ∈ O7(R) stabilizing π.
Imitating as far as possible the reasoning applied for m = 3, one obtains the
following construction of isoclasses of Q8.

Proposition 1.4 [3, p. 20],[5]. The map Φ7 : K7 → Q8, (X,E) 7→ R×R7,
(α, v)(β,w) = (αβ − vTw + vTXw , αw + βv + Eπ(v ∧ w)), induces an
injection Φ7 : K7/∼ ↪→ Q8/' .

2 On the factorization of dissident maps

The last piece that is missing to make Propositions 1.3 and 1.4 a complete
classification of Q is the surjectivity of Φ7. Although the argument for the
surjectivity of Φ3, namely the bijectivity of π : R3 ∧ R3 → R

3, does not
generalize to Φ7, one still might hope that Φ7 is surjective for other reasons.
In what follows we shall outline an argument proving that this hope fails
to be true. And we shall indicate a first step in closing the gap that is left
open by the non-surjectivity of Φ7.

Given a finite-dimensional euclidean vector space V = (V, 〈 〉), we denote
by E(V ) the set of all two-dimensional subspaces of V . Each linear map
ϕ : V ∧ V → V induces a map

ϕE : E(V )→ R≥0 , ϕE(P ) = 〈ϕ(v ∧ w), ϕ(v ∧ w)〉 ,

where (v, w) is any orthonormal basis for P ∈ E(V ). Apart from being
dissident, or even a vector product, we now introduce two more properties for
linear maps ϕ : V ∧V → V . We call ϕ plane-constant iff ϕE is constant with
positive value. We call ϕ a weak vector product iff it satisfies 〈ϕ(u∧ v), w〉 =
〈u, ϕ(v∧w)〉 for all (u, v, w) ∈ V 3 and ϕ(v∧w) 6= 0 for all non-proportional
pairs (v, w) ∈ V 2. Note that each vector product is a plane-constant weak
vector product, and each weak vector product is dissident.
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Whereas the map Φ7 depends on a chosen vector product on R7, the set
of isoclasses Φ7(K7/∼) no longer does it. The surjectivity of Φ7 can now be
characterized as follows.

Proposition 2.1 [6]. The following assertions are equivalent:
(i) The injective map Φ7 : K7/∼ ↪→ Q8/' is surjective.
(ii) Every dissident map η : R7 ∧ R7 → R

7 admits strong factorization.
(iii) Every weak vector product % : R7 ∧ R7 → R

7 is plane-constant.

The group GL(R7) acts on the set Wec(R7) of all weak vector products on
R

7 by
Wec(R7)×GL(R7)→Wec(R7), % · ε = ε∗%(ε ∧ ε),

where ε∗ denotes the adjoint of ε. Restricting this group action to the set
Vec(R7) of all vector products on R7, we obtain the map

Vec(R7)×GL(R7)→Wec(R7), π · ε = ε∗π(ε ∧ ε)

which we view as a means to construct weak vector products out of a given
vector product. Now we apply this construction to the ‘standard’ vector
product π induced from O on its purely imaginary hyperplane (cf. [9]) and,
accordingly, having the multiplication table

π e1 e2 e3 e4 e5 e6 e7

e1 0 e3 −e2 e5 −e4 −e7 e6

e2 −e3 0 e1 e6 e7 −e4 −e5

e3 e2 −e1 0 e7 −e6 e5 −e4

e4 −e5 −e6 −e7 0 e1 e2 e3

e5 e4 −e7 e6 −e1 0 −e3 e2

e6 e7 e4 −e5 −e2 e3 0 −e1

e7 −e6 e5 e4 −e3 −e2 e1 0

in the standard basis e1, . . . , e7 of R7. Defining ε ∈ GL(R7) by ε(ei) = εiei
for all i ∈ {1, . . . , 7}, where 0 < ε1 < . . . < ε7 is any chosen positive
ascending septuple, we obtain the weak vector product % = π ·ε. Its induced
map %E satisfies strict inequalities such as e.g.

%E(Re1 ⊕ Re2) = (ε1ε2ε3)2 < (ε1ε4ε5)2 = %E(Re1 ⊕ Re4) .

Hence % is not plane-constant. From Proposition 2.1 we infer that Φ7 is
not surjective. Moreover, not every dissident map on R

7 admits strong
factorization. However, combining ideas from real algebraic geometry with
matrix formulae drawn from linear statistical inference theory, we are able
to prove that each dissident map on R

7 does admit weak factorization, in
the following sense.
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Proposition 2.2 [6]. For each dissident map η : R7∧R7 → R
7 there exist a

weak vector product % : R7 ∧ R7 → R
7 and a positive-definite endomorphism

ε : R7 → R
7 such that η = ε%.

Weak factorization reduces the problem of classifying Q8 essentially to the
problem of classifying all weak vector products on R7 up to O(R7)-action.
The very same map Vec(R7)×GL(R7)→Wec(R7) which just destroyed our
hope that Φ7 might completely classify Q8 will be an important tool for the
solution of this remaining problem.
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