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1. Introduction and terminology

In this paper K will be a commutative ring, which will become an alge-
braically closed field in section 2. All algebras will be associative K-algebras with
identity and it will be assumed that if M is a bimodule over two K-algebras,
then the action of K on M is the same on the left and on the right. For a given
algebra A, the category of (left) A-modules will be denoted by A−Mod, while
A−mod will stand for its full subcategory of finitely generated (f.g.) A-modules.
All functors between module categories are K-linear, i.e., they induce K-linear
maps between the corresponding Hom K-vector spaces. Likewise, all automor-
phisms of algebras are K-automorphisms. For a given K-algebra A, we shall
denote by Aut(A) the group of K-linear automorphisms of A and by Out(A)
the quotient of Aut(A) by the normal subgroup Inn(A) of inner automorphisms.
We shall denote by J(A) the Jacobson radical of A and the normal subgroup
of Aut(A) given by the inner automorphisms induced by elements of the form
1− x, with x ∈ J(A), will be denoted by Inn∗(A). In the particular case when
K is an algebraically closed field and A is finite dimensional over K, all these
automorphism groups are algebraic groups.

The Picard group of A over K will be denoted by Pic(A). It is classically de-
fined as the one having as elements the isoclasses of invertible A−A−bimodules,
with the tensor product as operation. Due to Morita’s theorem, it can be re-
defined as the one having as elements the natural isoclasses of K-linear Morita
equivalences A−Mod

∼=−→ A−Mod, with the composition of functors as opera-
tion. In both interpretations we shall abuse of notation and identify a bimodule
or a Morita equivalence with its isoclass. When ϕ ∈ Aut(A), we will denote
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by 1Aϕ the invertible A − A−bimodule coinciding with AA as a left module,
but with the right A-module structure given by x · a = xϕ(a), for all x, a ∈ A.
Also, for a left A-module M , we shall denote by ϕM the left A-module having
the same undelying K-module structure as M , but with external multiplication
by elements of A defined by a · x = ϕ(a)x, for all a ∈ A, x ∈ M . For all the
remaining concepts not explicitly defined in the paper, the reader is referred
to references [1], [13] and [9], on what concerns rings, algebras and algebraic
groups, respectively.

The goal of this paper is twofold. On one side, we present a brief history of the
(recent) known results about invariance properties of groups of automorphisms
of finite dimensional algebras over an algebraically closed field. That is the
content of section 2. The second goal, which is the content of the last section, is
to present a list of new results on the Morita invariance of some automorphism
groups of algebras over an arbitrary commutative ring. The results of the first
section are given without proofs, referring the reader to the original references.
The proofs of the results in the last section are just sketched, referring the reader
to a forthcoming paper for complete proofs.

2. A brief history of known results

All through this section, unless especifically stated otherwise, K will be an
algebraically closed field and A will be a finite dimensional algebra.

By taking the simple example A = K, B =Mn×n(K) (n > 1), one clearly
sees that the group of automorphisms Aut(A) is not a Morita invariant of the
algebra A. Intuitively speaking, the group Aut(A) is of a very arithmetic nature
and has not much categorical information. The following result, which is essen-
tially included in [3], seems to say that things could be rather different with the
group Out(A).

Theorem 1 Let K be a commutative ring and A a K-algebra. The assignment
ϕ −→1 Aϕ defines a group homomorphism Ω : Aut(A) −→ Pic(A) with kernel
Inn(A) and image {P ∈ Pic(A) : AP ∼=A A} or, equivalently, {F :A Mod −→A

Mod : F is a Morita equivalence and F (AA) ∼=A A}

In spite of the above theorem, the following examples show that Out(A) is
not Morita invariant either.

Examples 1 1. If A = K ×K and B = Mm(K) ×Mn(K), with m 6= n,
then the commutative condition of A gives that Out(A) = Aut(A) ∼= C2

is cyclic of order 2 while Aut(B) ∼= Aut(Mm(K))×Aut(Mn(K)), which
coincides with Inn(Mm(K)) × Inn(Mn(K)) = Inn(B) due to Skoler-
Noether’s theorem (cf. [7][Theorem 4.3.1]). Hence Out(B) is trivial.



2. Suppose now that A = [

 K K K
0 K 0
0 0 K

],

B = [


K K K K
0 K 0 0
0 0 K K
0 0 K K

]

The algebra A is basic and if e1, e2, e3 are the canonical primitive idempo-
tents of A, then B is isomorphic to EndA(P1⊕P2⊕P

(2)
3 ), where Pi = Aei

for i = 1, 2, 3. Hence, A and B are Morita equivalent and, after the suitable
identifications using Theorem 1, Pic(B) ∼= Pic(A) = Out(A). The alge-
bra A is isomorphic to the path algebra of the quiver 2←− 1 −→ 3, which
has an outer automorphism obtained by permuting the vertices 2 and 3 and
the corresponding arrows arriving at them (see, e.g., [5][Corollary 4.9(b)]).
The element F of the Picard group represented by that automorphism per-
mutes the isoclasses of simples left A-modules via the trasposition (23),
i.e. F (S1) ∼= S1, F (S2) ∼= S3 and F (S3) ∼= S2. We claim that no outer
automorphism of B can induce such a permutation of the simple modules
when viewed as an element of Pic(B). Indeed, if ϕ ∈ Aut(B) it induces
an automorphism of the semisimple algebra B/J(B) ∼= K ×K ×M2(K)
which cannot induce the transposition (23) when permuting the blocks of
B/J(B). That means that the element ϕ̄ ∈ Out(B) ⊆ Pic(B) cannot
induce the trasposition (23) when permuting the simple modules. Hence,
F /∈ Out(B) and Out(B)  Pic(B). Then a Morita equivalence H :A
Mod −→B Mod induces an isomorphism Pic(A) ∼= Pic(B) and not an
isomorphism Out(A) ∼= Out(B).

These examples tend to indicate that, in case A and B are Morita equivalent
algebras, the groups Out(A) and Out(B) are isomorphic ’up to a discrete part’.
The first result stating rigorously what that means is the following one. It is
attributed to Brauer and a proof of (a generalization of) it can be found in
[14][Theorem 2.1]

Theorem 2 The identity component O(A) of the algebraic group Out(A) is
Morita invariant.

After this result, it was natural to ask whether the group O(A) was a tighter
invariant, namely, if it was invariant under generalizations of Morita equivalence.
The following result, appeared in [6] (cf. Theorem 2.5), gave support to that idea.
We state it with the same terminology of that paper.

Theorem 3 Let A and B be two finite dimensional algebras which are tilting-
cotilting equivalent. There is an algebraic group G together with two morphisms
of algebraic groups G −→ Out(A) and G→ Out(B), such that their restrictions
to the identity component G0 induce isomorphisms G0 ∼= O(A) and G0 ∼= O(B)



Tilting-cotilting equivalences are a particular instance of derived equiva-
lences. Recall that the derived category of A (or, more properly, of its category
of modules), here denoted D(A −Mod), is the category whose objects are the
chain complexes of A-modules, and where the morphisms are obtained by for-
mally inverting the quasi-isomorphisms of chain complexes. Two algebras A and
B are said to be derived equivalent when there is a triangulated equivalence
D(A−Mod)

∼=−→ D(B−Mod). The following step in the natural process was to
question about the invariance of O(A) under derived equivalence. The following
result is an affirmative answer to the question, which was first given in [8] and
slightly later, but independently, in [16].

Theorem 4 If A and B are finite dimensional derived equivalent algebras, then
there is an isomorphism of algebraic groups O(A) ∼= O(B)

Remark 1 For a beautiful conceptual interpretation of the above invariance
property of O(A), we refer the reader to [10].

Recall that the projectively (resp. injectively) stable category of A is the
category A−mod (resp.A−mod ), where the objects are the finitely generated
A-modules and the morphisms are obtained from those in A−mod by killing the
A-homomorphisms which factor through projectives (resp. injectives). In case
A is selfinjective, A −mod = A −mod is a triangulated factor of the bounded
derived category Db(A − mod) (cf. [15][Theorem 2.1]). A stable equivalence
between two selfinjective algebras A and B is just an equivalence of triangulated
categories A − mod

∼=−→ B − mod. It is then natural to ask whether O(A) is
invariant under stable equivalences. To the best of our knowledge, the general
answer is not known yet, but the following is a partial positive answer given by
Rouquier (cf. [16][Théorème 4.3]). We need to introduce some terminology. A
particular instance of stable equivalences are those induced by exact functors
M ⊗B − : B −mod −→ A−mod and N ⊗A − : A−mod −→ B −mod, where
AMB and BNA are bimodules which are projective on both sides and have the
property that, as bimodules, M ⊗B N ∼= A ⊕ P and N ⊗A M ∼= B ⊕ Q, with
APA and BQB projective bimodules. Two selfinjective algebras A and B are
called stably equivalent of Morita type when there is a stable equivalence
between them induced by such exact functors.

Theorem 5 Let A and B be two selfinjective algebras which are stably equiva-
lent of Morita type. Then O(A) and O(B) are isomorphic algebraic groups.

3. New results

In this section we come back to the general situation in which K is an
arbitrary commutative ring. Although the algebraic geometric approach to the
groups of automorphisms does not go on anymore, some of the isomorphisms



for finite dimensional algebras over a field can be extended, as isomorphisms of
abstract groups, to much more general situations. For a given K-algebra, we
shall always view Out(A) as a subgroup of Pic(A) via Theorem 1. We define
the subgroup of Pic(A) given by NA = {F ∈ Pic(A) : F (P ) ∼= P , for all f.g.
projectives AP}

Recall that an algebra A is called Von Neumann regular when its finitely
generated left (resp. right) ideals are direct summands of AA (respectively AA).
It is called semiregular (resp. semiperfect) when A/J(A) is Von Neumann
regular (resp. semisimple) and idempotents lift modulo J(A). If, in addition,
A/J(A) is a finite direct product of division algebras, then A is called basic.
It is well-known that every semiperfect algebra is Morita equivalent to a basic
semiperfect algebra, which is uniquely determined up to isomorphism. When A
is semiperfect, we shall say that an automorphism ϕ ∈ Aut(A) preserves the
block decomposition of A/J(A) when so does the induced automorphism ϕ̄ of
A/J(A)

Proposition 1 The subgroup NA is always contained in Out(A) and is Morita
invariant. In case A is semiregular, NA = H/Inn(A), where H is the subgroup
of Aut(A) consisting of those automorphisms ϕ which satisfy one (or both) of
the following equivalent conditions:

1. Ae ∼= Aϕ(e) (as left A-modules), for every idempotent e ∈ A

2. For every idempotent e ∈ A, there exist a ∈ eAϕ(e) and b ∈ ϕ(e)Ae such
that ab = e and ba = ϕ(e)

Moreover, in case A is semiperfect, one has H = {ϕ ∈ Aut(A) : ϕ preserves
the block decomposition of A/J(A)}

Sketch of proof: Since the class of f.g. projective modules is invariant under
Morita equivalences, the group NA is Morita invariant. Moreover, by Theorem 1,
it is contained in Out(A). Then, from the description of f.g. projective modules
over semiregular rings given in [12][Corollary 1.13] the equality NA = H/Inn(A)
follows, with H as in the statement of the proposicion. For the last statement,
one should notice that semiperfect rings are characterized as the rings for which
every simple module has a projective cover. Then, in that case, NA gets identified
with the subgroup of Out(A) given by those ϕ̄ such that ϕS ∼= S, for every simple
module S. That is equivalent to say that ϕ preserves the block decomposition.

We next denote by Aut(A)1 the (normal) subgroup of Aut(A) consisting of
those ϕ ∈ Aut(A) which induce the identity on A/J(A), and Out(A)1 will be the
image of Aut(A)1 by the canonical projection Aut(A) −→ Out(A). The next
result deeply generalizes [14][Theorem 2.1], except in its algebraic geometric
part.

Theorem 6 Let A be any K-algebra. The group Out(A)1 is Morita invariant.



Sketch of proof: Every Morita equivalence F : A −Mod
∼=−→ B −Mod

induces another one F̄ : A/J −Mod
∼=−→ B/J −Mod, where J is the Jacobson

radical. From that one derives that the group homomorphism pA : NA −→ NA/J

is Morita invariant, i.e., the isomorphism : F̃ : NA
∼= NB induced by F and the

isomorphism F̂ : NA/J
∼= NB/J induced by F̄ satisfy that F̂ ◦pA = pB ◦ F̃ . Then

one proves that the kernel of pA is precisely Out(A)1 and the result follows.

In [4][Corollary 19], it was proved that, in case A is a finite dimensional split
algebra over a field, then the group Aut(A)1/Inn∗(A) is Morita invariant. The
next result extends that to much more general situations. For any K-algebra R,
we denote by U(R) the group of multiplicatively invertible elements of R and
by Z(R) the center of R.

Theorem 7 Let A be a K-algebra satisfying one of the following conditions:

1. J(A) is nilpotent and A/J(A) is a separable K-algebra which is projective
as a K-module

2. The canonical group homomorphism U(Z(A)) −→ U(Z(A/J(A))) is sur-
jective

Then the group Aut(A)1/Inn∗(A) is Morita invariant

Sketch of proof: . As in the proof Theorem 6, by taking a pair of associated
Morita equivalences F : A−Mod

∼=−→ B−Mod and F̄ : A/J −Mod
∼=−→ B/J −

Mod, one sees that the canonical algebra homomorphism pA : Z(A) −→ Z(A/J)
is Morita invariant and taking the groups of multiplicatively invertible elements,
we see that the hypothesis 2 is Morita invariant. Then one derives from that
hypothesis that Aut(A)1 ∩ Inn(A) = Inn∗(A), so that Aut(A)1/Inn∗(A) ∼=
Out(A)1 is Morita invariant. That proves the theorem under hypothesis 2.

On the other hand, under the hypothesis 1, he Principal Wedderburn-Malcev
Theorem yields a decomposition A = B ⊕ J(A), where B is a semisimple sub-
algebra of A. The point here is that Aut(A)1/Inn∗(A) is canonically isomor-
phic to HA/HA ∩ Inn∗(A), where HA = {ϕ ∈ Aut(A) : ϕ(B) = B and ϕ
induces the identity on B}. By taking a suitable idempotent e ∈ B, one has
that eAe is the basic algebra of A. Now, by restricting automorphisms, we get a
group homomorphism HA/HA ∩ Inn∗(A) −→ HeAe/HeAe ∩ Inn∗(eAe), which
one proves is an isomorphism using the existence of an exact sequence of groups
1 → Coker(pA) −→ HA/HA ∩ Inn∗(A) −→ Out(A)1 → 1, where the extreme
nontrivial terms are Morita invariant.
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