A HARDY-LITTLEWOOD-LIKE INEQUALITY ON TWO-DIMENSIONAL COMPACT TOTALLY DISCONNECTED SPACES

K. NAGY

Abstract. We prove a Hardy-Littlewood type inequality with respect to a system called Vilenkin-like system (which is a common generalisation of several well-known systems) in the two-dimensional case.

1. Introduction

Let \mathbf{P} denote the set of positiv integers, $\mathbf{N}:=\mathbf{P} \cup\{0\}$. For any set E let E^{2} the cartesian product $E \times E$. Thus \mathbf{N}^{2} is the set of integral lattice points in the first quadrant.

Let $m=\left(m_{0}, m_{1}, \ldots, m_{k}, \ldots\right) \quad\left(2 \leq m_{k} \in \mathbf{N}, k \in \mathbf{N}\right)$ be a sequence of natural numbers and denote by $G_{m_{k}}$ a set of which the number of elements is m_{k}. A measure on $G_{m_{k}}$ is given in the way that $\mu_{k}(\{j\}):=\frac{1}{m_{k}}\left(j \in G_{m_{k}}, k \in \mathbf{N}\right)$. Let the topology be the discrete topology on the set $G_{m_{k}}$. Let G_{m} be the complete direct product of the compact spaces $G_{m_{k}}(k \in \mathbf{N})$ with the product of the topologies and measures (μ). The elements of G_{m} are of the form $x=\left(x_{0}, x_{1}, \ldots, x_{k}, \ldots\right)$ with $x_{k} \in G_{m_{k}}(k \in \mathbf{N}) . G_{m}$ is called a Vilenkin space. The Vilenkin space G_{m} is said to be bounded Vilenkin space if the generating sequence m is a bounded one. In this paper the boundedness of G_{m} is supposed. A base of the neighborhoods can be given in the following way:

$$
I_{0}(x):=G_{m}, \quad I_{n}(x):=\left\{y \in G_{m}: y=\left(x_{0}, \ldots, x_{n-1}, y_{n}, \ldots\right)\right\} \quad\left(x \in G_{m}, n \in \mathbf{P}\right)
$$

$I_{n}:=I_{n}(0)$ for $n \in \mathbf{N}$. Denote by $L^{p}\left(G_{m}\right)$ the usual Lebesgue spaces $\left(\|.\|_{p}\right.$ the coresponding norms) $(1 \leq p \leq \infty), \mathcal{A}_{n}$ the σ-algebra generated by the sets $I_{n}(x)\left(x \in G_{m}\right)$ and E_{n} the conditional expectation operator with respect to $\mathcal{A}_{n}(n \in \mathbf{N})$.

If we define the sequence $\left(M_{k}: k \in \mathbf{N}\right)$ by $M_{0}:=1$ and $M_{k}:=m_{0} m_{1} \ldots m_{k-1}(k \in \mathbf{P})$ then each $n \in \mathbf{N}$ has a uniqe representation of the form $n=\sum_{k=0}^{\infty} n_{k} M_{k}$, where $0 \leq n_{k}<m_{k}\left(n_{k} \in \mathbf{N}\right)$. Let $|n|:=\max \left\{k \in \mathbf{N}: n_{k} \neq 0\right\}$ (that is $M_{|n|} \leq n<M_{|n|+1}$) and $n^{(k)}:=\sum_{j=k}^{\infty} n_{k} M_{k}$.

[^0]Now, introduce an orthonormal system on G_{m} called Vilenkin-like system (see [G]). The complex valued functions $r_{k}^{n}: G_{m} \rightarrow \mathcal{C}$ are called generalised Rademacher functions if the following properties holds:
i. r_{k}^{n} is \mathcal{A}_{k+1} measurable, $r_{k}^{0}=1$ for all $k, n \in \mathbf{N}$.
ii. If M_{k} is a divisor of n, l and $n^{k+1}=l^{k+1}(n, l k \in \mathbf{N})$, then

$$
E_{k}\left(r_{k}^{n} \overline{r_{k}^{l}}\right)=\left\{\begin{array}{lll}
1 & \text { if } & n_{k}=l_{k} \\
0 & \text { if } & n_{k} \neq l_{k}
\end{array}\right.
$$

where \bar{z} is the complex conjugate of z.
iii. If M_{k} is a divisor of n (that is $n=n_{k} M_{k}+n_{k+1} M_{k+1}+\ldots+n_{|n|} M_{|n|}$), then

$$
\sum_{n_{k}=0}^{m_{k}-1}\left|r_{k}^{n}(x)\right|^{2}=m_{k}
$$

for all $x \in G_{m}$.
iv. There exists a $\delta>1$ for which $\left\|r_{k}^{n}\right\|_{\infty} \leq \sqrt{\frac{m_{k}}{\delta}}$.

Now we define the Vilenkin-like system $\psi=\left\{\psi_{n}: n \in \mathbf{N}\right\}$ by

$$
\psi_{n}:=\prod_{k=0}^{\infty}\left(r_{k}\right)^{n^{(k)}} \quad(n \in \mathbf{N})
$$

The notation of Vilenkin-like systems is due to Gát [G]. We remark that ψ is an orthonormal system and some well-known systems are Vilenkin-like systems (e.g. the Vilenkin system, the Walsh system and the UDMD product system) (see [G], [SWS], [V], [SW], [GT]).

Suppose that the sequences $m=\left(m_{0}, m_{1}, \ldots, m_{k}, \ldots\right)$ and $\tilde{m}=\left(\tilde{m}_{0}, \tilde{m}_{1}, \ldots, \tilde{m}_{k}, \ldots\right)$ are bounded.

The Kronecker product $\left\{\psi_{n, m}: n, m \in \mathbf{N}\right\}$ of two Vilenkin-like systems $\left\{\psi_{n}: n \in \mathbf{N}\right\}$ and $\left\{\tilde{\psi}_{n}: n \in \mathbf{N}\right\}$ is said to be the two-dimensional Vilenkin-like system. Thus

$$
\psi_{n, m}(x, y):=\psi_{n}(x) \tilde{\psi}_{m}(y),
$$

where $x \in G_{m}, y \in G_{\tilde{m}}$.
For a function f in $L^{1}\left(G_{m}\right)$ the Fourier coefficients, the partial sums of the Fourier series, the Diriclet kernels are defined as follows.

$$
\begin{gathered}
\hat{f}(n):=\int_{G_{m}} f \overline{\psi_{n}} d \mu, S_{n} f:=\sum_{k=0}^{n-1} \hat{f}(k) \psi_{k}, \quad\left(n \in \mathbf{P}, S_{0} f:=0\right) \\
D_{n}(y, x):=\sum_{k=0}^{n-1} \psi_{k}(y) \overline{\psi_{k}(x)} \quad\left(n \in \mathbf{P}, D_{0}:=0\right)
\end{gathered}
$$

It is well known that

$$
S_{n} f(y)=\int_{G_{m}} f(x) D_{n}(y, x) d \mu(x) \quad\left(x \in G_{m}, n \in \mathbf{N}\right)
$$

If $f \in L^{1}\left(G_{m} \times G_{\tilde{m}}\right)$ then the (n, k)-th Fourier coefficients, the (n, k)-th partial sum of double Fourier series are the following.

$$
\hat{f}(n, k):=\int_{G_{m} \times G_{\bar{m}}} f \overline{\psi_{n, k}}, S_{n, k} f:=\sum_{j=0}^{n-1} \sum_{l=0}^{k-1} \hat{f}(j, l) \psi_{j, l},
$$

It is simple to show that, in case $f \in L^{1}\left(G_{m} \times G_{\tilde{m}}\right)$,

$$
S_{n, k} f(x, y)=\int_{G_{m}} \int_{G_{\tilde{m}}} f(t, u) D_{n}(x, t) \tilde{D}_{k}(y, u) d \mu(t) d \mu(u)
$$

Let $\tilde{I}_{n}(x)\left(x \in G_{\tilde{m}}\right)$ denote the n-th intervals generated by \tilde{m}, that is

$$
\tilde{I}_{0}(x):=G_{\tilde{m}}, \tilde{I}_{n}(x):=\left\{y \in G_{\tilde{m}}: y=\left(x_{0}, \ldots, x_{n-1}, y_{n}, \ldots\right)\right\}\left(x \in G_{\tilde{m}}, n \in \mathbf{P}\right)
$$

Define $\tilde{n}=\tilde{n}(n):=\min \left(l \in \mathbf{N}: M_{n} \leq \tilde{M}_{l}\right)$. Then there exists a constant c for which $M_{n} \leq \tilde{M}_{\tilde{n}}<c M_{n}$ for all $n \in \mathbf{N}$ (c does not depend on n, but do depends on $\max _{j \in \mathbf{N}} m_{j}$ and $\max _{n \in \mathbf{N}} \tilde{m}_{j}$). The atomic decomposition is a useful characterisation of Hardy spaces, to show this let us introduce the concept of an atom.

A function $a \in L^{\infty}\left(G_{m} \times G_{\tilde{m}}\right)$ is said to be an atom if there exit a rectangle $I_{k}\left(x^{1}\right) \times \tilde{I}_{\tilde{k}}\left(x^{2}\right) \quad\left(\mathbf{x}:=\left(x^{1}, x^{2}\right) \in G_{m} \times G_{\tilde{m}}, k \in \mathbf{N}\right)$ such that
(i.) $\operatorname{supp} a \subset I_{k}\left(x^{1}\right) \times \tilde{I}_{\tilde{k}}\left(x^{2}\right)$
(ii.) $\|a\|_{\infty} \leq M_{k} \tilde{M}_{\tilde{k}}$
(iii.) $\int_{I_{k}\left(x^{1}\right) \times \tilde{I}_{\hat{k}}\left(x^{2}\right)} a=0$.

We say that $f \in L^{1}\left(G_{m} \times G_{\tilde{m}}\right)$ is an element of the Hardy space $H\left(G_{m} \times G_{\tilde{m}}\right)$ (or in brief $H)$, if there exists $\lambda_{j} \in \mathcal{C}(j \in \mathbf{P})$ constants and $a_{j}(j \in \mathbf{P})$ atoms that $\sum_{j=1}^{\infty}\left|\lambda_{j}\right|<\infty$ and $f=\sum_{j=1}^{\infty} \lambda_{j} a_{j}$. Moreover, H is a Banach space with the norm $\|f\|_{H}:=\inf \left(\sum_{j=0}^{\infty}\left|\lambda_{j}\right|\right)$ where the infimum is taken over all decompositions of f.

2. The Main result and the proof

Theorem. Let $\beta>1$ be a constant, for all $f \in H\left(G_{m} \times G_{\tilde{m}}\right)$ there exists a $C>0$ constant that

$$
\sum_{n=1}^{\infty} \sum_{\substack{m=1 \\ \frac{1}{\beta} \leq \frac{n}{m} \leq \beta}}^{\infty} \frac{|\hat{f}(n, m)|}{n m} \leq C\|f\|_{H}
$$

Proof of Theorem. Throughout this paper C will denote a constant which may vary at different occurances and may depend only on $\beta, \sup m_{n}$ and $\sup \tilde{m}_{n}$.

Since $f \in H\left(G_{m} \times G_{\tilde{m}}\right), f$ can be written in the form $f=\sum_{j=1}^{\infty} \lambda_{j} a_{j}$, where a_{j} are atoms and $\sum_{j=1}^{\infty}\left|\lambda_{j}\right|<\infty$.

$$
\sum_{n=1}^{\infty} \sum_{\substack{m=1 \\ \frac{1}{\beta} \leq \frac{n}{m} \leq \beta}}^{\infty} \frac{|\hat{f}(n, m)|}{n m}=\sum_{n=1}^{\infty} \sum_{\substack{m=1 \\ \frac{1}{\beta} \leq \frac{n}{m} \leq \beta}}^{\infty} \frac{\left|\sum_{j=1}^{\infty} \lambda_{j} \hat{a}_{j}(n, m)\right|}{n m} \leq \sum_{j=1}^{\infty}\left|\lambda_{j}\right| \sum_{n=1}^{\infty} \sum_{\substack{m=1 \\ \frac{1}{\beta} \leq \frac{n}{m} \leq \beta}}^{\infty} \frac{\left|\hat{a}_{j}(n, m)\right|}{n m}
$$

Because of this the only thing we need to prove is that for an arbitrary atom a one has

$$
\sum_{n=1}^{\infty} \sum_{\substack{m=1 \\ \frac{1}{\beta} \leq \frac{n}{m} \leq \beta}}^{\infty} \frac{|\hat{a}(n, m)|}{n m} \leq C .
$$

Let $I_{k}\left(x^{1}\right) \times \tilde{I}_{\tilde{k}}\left(x^{2}\right)$ be an interval for which (i), (ii) and (iii) hold. Thus

$$
\hat{a}(n, m)=\int_{I_{k}\left(x^{1}\right) \times \tilde{I}_{\hat{k}}\left(x^{2}\right)} a(x, y) \overline{\psi_{n, m}(x, y)} .
$$

If $0 \leq n<M_{k}$ and $0 \leq m<\tilde{M}_{\tilde{k}}$ then $\psi_{n, m}(x, y)=\psi_{n}(x) \tilde{\psi}_{m}(y)$ is constant on the set $I_{k}\left(x^{1}\right) \times \tilde{I}_{\tilde{k}}\left(x^{2}\right)$. Consequently, $\hat{a}(n, m)=0$ and

$$
\begin{aligned}
\sum_{n=1}^{\infty} \sum_{\substack{m=1 \\
\frac{1}{\beta} \leq \frac{n}{m} \leq \beta}}^{\infty} \frac{|\hat{a}(n, m)|}{n m} & \leq \sum_{n=1}^{M_{k}-1} \sum_{m=1}^{\tilde{M}_{\hat{k}}-1} \frac{|\hat{a}(n, m)|}{n m}+\sum_{n=M_{k}}^{\infty} \sum_{m=\tilde{M}_{\bar{k}}}^{\infty} \frac{|\hat{a}(n, m)|}{n m} \\
& +\sum_{n=1}^{M_{k}-1} \sum_{\substack{m=\tilde{M}_{\tilde{k}} \\
\frac{1}{\beta} \leq \frac{n}{m} \leq \beta}}^{\infty} \frac{|\hat{a}(n, m)|}{n m}+\sum_{n=M_{k}}^{\infty} \sum_{\substack{m=1 \\
\frac{1}{\beta} \leq \frac{n}{m} \leq \beta}}^{\tilde{M}_{\hat{k}}-1} \frac{|\hat{a}(n, m)|}{n m} \\
& =: 0+\sum_{1}+\sum_{2}+\sum_{3} .
\end{aligned}
$$

By the Cauchy-Buniakovski-Schwarz inequality and Bessel's inequality,

$$
\sum_{1} \leq \sqrt{\sum_{n=M_{k}}^{\infty} \sum_{m=\tilde{M}_{\tilde{k}}}^{\infty}|\hat{a}(n, m)|^{2}} \sqrt{\sum_{n=M_{k}}^{\infty} \sum_{m=\tilde{M}_{\tilde{k}}}^{\infty} \frac{1}{(n m)^{2}}} \leq\|a\|_{2} \sqrt{\sum_{n=M_{k}}^{\infty} \sum_{m=\tilde{M}_{\tilde{k}}}^{\infty} \frac{1}{(n m)^{2}}} .
$$

Using the properties of the atoms we have

$$
\|a\|_{2}=\sqrt{\int_{I_{k}\left(x^{1}\right) \times \tilde{I}_{\tilde{k}}\left(x^{2}\right)}|a|^{2}} \leq \sqrt{M_{k}^{2} \tilde{M}_{\tilde{k}}^{2} \mu\left(I_{k}\left(x^{1}\right) \times \tilde{I}_{\tilde{k}}\left(x^{2}\right)\right)}=\sqrt{M_{k} \tilde{M}_{\tilde{k}}}
$$

Notice that $\sum_{k=n}^{m} \frac{1}{k^{2}} \leq \frac{2}{n}-\frac{2}{m}$. From this

$$
\sum_{1} \leq \sqrt{M_{k} \tilde{M}_{\tilde{k}}} \sqrt{\frac{2}{M_{k} \tilde{M}_{\tilde{k}}}} \leq C
$$

Discuss \sum_{2}.
If $M_{k}<\frac{\tilde{M}_{\bar{k}}}{\beta}$ then $\sum_{2}=0$. Consequently we have $M_{k} \geq \frac{\tilde{M}_{\bar{k}}}{\beta}$. From Cauchy-BuniakovskiSchwarz inequality and Bessel's inequality we have

$$
\begin{gathered}
\sum_{2} \leq \sqrt{M_{k} \tilde{M}_{\tilde{k}}} \sqrt{\sum_{n=1}^{M_{k}-1} \sum_{\substack{m=\tilde{M}_{\tilde{k}} \\
\frac{1}{\beta} \leq \frac{n}{m} \leq \beta}}^{\infty} \frac{1}{(n m)^{2}}} \\
\sum_{n=1}^{M_{k}-1} \sum_{\substack{m=\tilde{M}_{\tilde{k}} \\
\frac{1}{\beta} \leq \frac{n}{m} \leq \beta}}^{\infty} \frac{1}{(n m)^{2}} \leq \sum_{\left[\frac{\tilde{M}_{\tilde{k}}}{\beta}\right]}^{\sum_{m=\tilde{M}_{\tilde{k}}}^{M_{k}-1} \frac{1}{(n m)^{2}} \leq C \sum_{l=\left[\frac{\tilde{M}_{\tilde{k}}}{\beta}\right] \tilde{M}_{\tilde{k}}}^{\left[\beta M_{k}\right]} \frac{1}{l^{2}} \leq \frac{C}{\tilde{M}_{\tilde{k}}^{2}} .} .
\end{gathered}
$$

The definition of \tilde{k} implies $\sum_{2} \leq C$.
$\sum_{3} \leq C$ can be proved in the similar way as we have done in case \sum_{2}.
This completes the proof.

Thanks to Professor György Gát for his professional advice.

References

[SWS]. F. Schipp, W. R. Wade, P. Simon and J. Pál, Walsh series: an introduction to dyadic harmonic analysis, Akadémiai Kiadó, Budapest, and Adam Hilger, Bristol and New York, 1990.
[G]. G. Gát, On ($C, 1$) summability of integrable functions on compact totally disconnected spaces, (to appear).
[FS]. S. Fridli, P. Simon, On the Dirichlet kernels and a Hardy space with respect to the Vilenkin system, Acta Mathemetika Hungarica 45 (1-2) (1985), 223-234.
[SW]. F. Schipp, W. R. Wade, Norm convergence and summability of Fourier series with respect to certain product systems in Pure and AAppl. Math. Approx. Theory, Marcel Dekker, New York-Basel-Hong Kong.
[GT]. G. Gát, R. Toledo, L^{p}-norm convergence of series in compact totally disconnected groups, Analysis Math. 22 (1996), 13-24.
[HR]. E. Hewitt, K. Ross, Abstract Harmonic Analysis, Springer-Verlag, Heidelberg, 1963.
[W]. Weisz, F., The boundedness of the two-parameter Sunouchi operators on Hardy spaces, Acta Math. Hung., (to appear).
[V]. N. Ja. Vilenkin, On a class of complete orthonormal systems (in Russian), Izv. Akad. Nauk. SSSr,Ser. Math. 11 (1947), 363-400.

Bessenyei College, Dept. of Math., Nyíregyháza, P.O.Box 166., H-4400, Hungary
E-mail: nagyk@ ny1.bgytf.hu

[^0]: 1980 Mathematics Subject Classification (1985 Revision). primary: 42C10, secondary: 42C15, 43A75, 40G05.

 Research supported by the Hungarian National Foundation for Sientific Research (OTKA), grant no. F015765, F020334 the foundation "Pro Regione" grant no 1538-I/13/1997, by the Hungarian "Művelődési és Közoktatási Minisztérium ", grant no. PFP 5306/1997 and FKFP 0710/1997. .

