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ON THE FEJÉR KERNEL FUNCTIONS WITH RESPECT TO
THE WALSH–KACZMARZ SYSTEM

GYÖRGY GÁT

Dedicated to Professor Árpád Varecza on the occasion of his 60th birthday

Abstract. Let G be the Walsh group. In this paper we prove that the integral

of the maximal function of the Walsh–Kaczmarz–Fejér kernels is infinite on
every interval. This is a sharp contrast with the Walsh–Paley system.

The Walsh system in the Kaczmarz enumeration was studied by a lot of authors
(see [Sch1], [Sch2], [Sk1], [Sk2], [Bal], [SWS], [Wy]). In [Sne] it has been pointed out
that the behavior of the Dirichlet kernel of the Walsh–Kaczmarz system is worse
than of the kernel of the Walsh–Paley system considered more often. Namely, it
is proved [Sne] that for the Dirichlet kernel Dn(x) of the Walsh-Kaczmarz system
the inequality lim supn→∞

Dn(x)
log n ≥ C > 0 holds a.e. This “spreadness” of this

system makes easier to construct examples of divergent Fourier series [Bal]. A
number of pathological properties is due to this “spreadness” property of the kernel.
For example, for Fourier series with respect to the Walsh–Kaczmarz system it is
impossible to establish any local test for convergence at a point or on an interval,
since the principle of localization does not hold for this system.

On the other hand, the global behavior of the Fourier series with respect to this
system is similar in many aspects to the case of the Walsh–Paley system. Schipp
[Sch2] and Wo-Sang Young [Wy] proved that the Walsh–Kaczmarz system is a
convergence system. Let P denote the set of positive integers, N := P ∪ {0} the
set of nonnegative integers and Z2 the discrete cyclic group of order 2, respectively.
That is, Z2 = {0, 1} the group operation is the mod 2 addition and every subset is
open. Haar measure is given in a way that the measure of a singleton is 1/2. Set

G :=
∞
×

k=0
Z2

complete direct product. Thus, every x ∈ G can be represented by a sequence x =
(xi, i ∈ N), where xi ∈ {0, 1} (i ∈ N). The group operation on G is the coordinate-
wise addition, (which is the so-called logical addition) the measure (denoted by µ)
and the topology are the product measure and topology. The compact Abelian
group G is called the Walsh group. Set ei := (0, 0, . . . , 1, 0, 0, . . .) ∈ G the i-th
coordinate of which is 1, the rest are zeros. A base for the neighborhoods of G can
be given as follows

I0(x) := G, In(x) := {y = (yi, i ∈ N) ∈ G : yi = xi for i < n}
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no. FKFP 0182/2000 and by the Bolyai fellowship of the Hungarian Academy of Sciences, Grant
no. BO/00320/99.

121



122 GYÖRGY GÁT

for x ∈ G, n ∈ P. Let 0 = (0, i ∈ N) ∈ G denote the null element of G, In :=
In(0) (n ∈ N). Let I := {In(x) : x ∈ G, n ∈ N}. The elements of I are called
the dyadic intervals on G. Furthermore, let Lp(G) (1 ≤ p ≤ ∞) denote the usual
Lebesgue spaces (‖.‖p the corresponding norms) on G, An the σ algebra generated
by the sets In(x) (x ∈ Gm) and En the conditional expectation operator with
respect to An (n ∈ N) (f ∈ L1.) Define the Hardy space H1 as follows. Let f∗ :=
supn∈N |Enf | be the maximal function of the integrable function f ∈ L1(G). Then,

H1(G) := {f ∈ L1(G) : f∗ ∈ L1(G)},

moreover H1 is a Banach space endowed with the norm ‖f‖H1 := ‖f∗‖1. Another
definition is come: a ∈ L∞(G) is called an atom, if either a = 1 or a has the
following properties: supp a ⊆ Ia, ‖a‖∞ ≤ 1/µ(Ia),

∫
I
a = 0, for some Ia ∈ I. We

say that the function f belongs to Hardy space H(G), if f can be represented as
f =

∑∞
i=0 λiai, where ai ’s are atoms and for the coefficients λi(i ∈ N)

∑∞
i=0 |λi| <

∞ is true. It is known that H(G) is a Banach space with respect to the norm

‖f‖H := inf
∞∑

i=0

|λi|,

where the infimum is taken over all decompositions f =
∑∞

i=0 λiai ∈ H(G). More-
over, (cf. Theorem 3.6 in [SWS]), H1(G) = H(G) and

‖f‖H1 ∼ ‖f‖H .

Let n ∈ N. Then n =
∑∞

i=0 ni2i, where ni ∈ {0, 1} (n ∈ N), i.e. n is expressed
in the number system based 2. Denote by |n| := max(j ∈ N : nj 6= 0), that is,
2|n| ≤ n < 2|n|+1. The Rademacher functions are defined as:

rn(x) := (−1)xn (x ∈ G, n ∈ N).

The Walsh–Paley system is defined as the set of Walsh–Paley functions:

ωn(x) :=
∞∏

k=0

(rk(x))nk = (−1)
∑|n|

k=0 nkxk , (x ∈ G, n ∈ N).

That is, ω := (ωn, n ∈ N). The n-th Walsh–Kaczmarz function is

κn(x) := r|n|(x)
|n|−1∏
k=0

(
r|n|−1−k(x)

)nk = r|n|(x)(−1)
∑|n|−1

k=0 nkx|n|−1−k ,

for n ∈ P, κ0(x) := 1, x ∈ G. The Walsh–Kaczmarz system κ := (κn, n ∈ N) can
be obtained from the Walsh–Paley system by renumbering the functions within the
dyadic “block” with indices from the segment [2n, 2n+1 − 1]. That is, {κn : 2k ≤
n < 2k+1} = {ωn : 2k ≤ n < 2k+1} for all k ∈ N, κ0 = ω0. By means of the
transformation τA : G → G

τA(x) := (xA−1, xA−2, . . . , x1, x0, xA, xA+1, . . .) ∈ G,

which is clearly measure-preserving and such that τA(τA(x)) = x we have

κn(x) = r|n|(x)ωn(τ|n|(x)) (n ∈ N).

Let us consider the Dirichlet and the Fejér kernel functions:

Dα
n :=

n−1∑
k=0

αk,

Kα
n :=

1
n

n∑
k=1

Dα
k ,
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Kα
0 = Dα

0 := 0, where α is either κ or ω and n ∈ P. The Fourier coefficients, the
n-th partial sum of the Fourier series and the n-th Fejér mean of the Fourier series
of f ∈ L1(G):

f̂α(n) :=
∫

G

f(x)αn(x)dµ(x) (n ∈ N),

Sα
nf(y) :=

n−1∑
k=0

f̂α(k)αk(y) =
∫

G

f(x + y)Dα
n(x)dµ(x)

σα
nf(y) :=

1
n

n∑
k=1

Skfα(y) =
∫

G

f(x + y)Kα
n (x)dµ(x)

(n ∈ P, Sα
0 f = 0), where α is either κ or ω.

We say that the operator T : L1 → L0 is of type (p, p) if ‖Tf‖p ≤ cp‖f‖p for
some constant cp for all f ∈ Lp(G) (1 ≤ p ≤ ∞). T is said to be of type (H1, L1) if
‖Tf‖1 ≤ c‖f‖H1 for all f ∈ H1(G). Set S∗,αf := supn∈P |Sα

nf | for f ∈ L1, where
α is ω or κ or any piecewise linear rearrangement of the Walsh–Paley system (κ is
of this kind) (for the notion of piecewise linear rearrangement see [SWS]). Then,
S∗,α is of type (p, p) for all p ≥ 2 and for f ∈ Lp (p ≥ 2) it follows Snf → f a.e.
[SWS, Theorem 6.10]. Moreover, if α = κ, f ∈ L1(log+ L)2 (in particular if f ∈ Lp

for any p > 1), then the Walsh–Kaczmarz–Fourier series of f converges to f a.e. on
G (cf. Theorem 6.11 in [SWS]).

Fine [Fin] proved every Walsh–Paley–Fourier series is a.e. (C, β) summable for
β > 0. His argument is an adaptation of the older trigonometric analogue due
to Marcinkiewicz [Mar]. Schipp [Sch3] gave a simpler proof for the case β = 1,
i.e. σnf → f a.e. (f ∈ L1(Gm)). He proved that σ∗ is of weak type (L1, L1).
That σ∗ is of type (L1,H1) was discovered by Fujii [Fuj]. The theorem of Schipp
and Fujii with respect to the character system of the group of 2-adic integers is
proved by the author [Gát2]. The theorem of Schipp are generalized to the p-
series fields by Taibleson [Tai2] and later to bounded Vilenkin systems by Pál and
Simon [PS]. The almost everywhere convergence σnf → f for integrable function
f on noncommutative bounded Vilenkin groups and the (L1,H1) typeness of the
maximal operator is proved by the author [Gát6].

We remark that the “noncommutative case” differs from the “commutative case”
in the view of many aspects. For instance there exsist some bounded noncommu-
tative Vilenkin groups that the partial sums of the Fourier series does not converge
to the function either in norm or a.e. for some f ∈ Lp, p > 1 [Gát6]. This is a sharp
contrast.

Skvorcov proved for continuous functions f , that Fejér means converges uni-
formly to f . Gát proved [Gát4] for integrable functions that the Fejér means (with
respect to the Walsh–Kaczmarz system) converges almost everywhere to the func-
tion. The two-dimensional Walsh–Paley and (bounded) Vilenkin case discussed by
Weisz [W] and the author [Gát1, BG]. The conception of quasi-locality is intro-
duced by F. Schipp [SWS]. Let T : L0 → L0 and f ∈ L1(I), supp f ⊂ Ik(x0) for
some k ∈ N, x0 ∈ I and suppose that the integral of Tf on the set I \ Ik(x0)
is bounded by c‖f‖1. Then we call T quasi-local. Behind most of the proof of
the pereceding results (one and two-dimension) (except the Walsh–Kaczmarz case)
there is the quasi-locality of the maximal function of the Fejér means (i.e. the func-
tion Tf := supn∈P |σnf |). The quasi-locality is the consequence of the following
lemma
Lemma.

∫
G\Ik

sup|n|≥A |Kω
n (x)|dx ≤ c

√
2k−A, for all A ≥ k ∈ N.

(Consequently,
∫

G\Ik
supn∈N |Kω

n (x)|dx < ∞ for all k ∈ N.) The proof of this
Lemma can be found for the Walsh–Paley system in [Gát3], for the Vilenkin system
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in [Gát5] and for the character system of the group of 2-adic integers in [Gát2]. The
main aim of this paper is to prove that this Lemma does not hold for the Walsh–
Kaczmarz system. We prove even more:

Theorem.
∫

Ik(t)
supn∈N |Kκ

n(x)|dx = ∞ for all k ∈ N and t ∈ I.

Theorem gives that the Lemma does not hold for the Walsh–Kaczmarz system.
This is a very sharp contrast between the Walsh–Paley and the Walsh–Kaczmarz
system. It is surprising a bit because these function systems are rearrangement one
another. This also shows that to prove pointwise and norm convergence theorem
with respect to the the Walsh–Kaczmarz need different techniques often. On the
other hand,
Conjecture. supn∈N |Kκ

n(x)| < ∞ for a.e. x ∈ I. Moreover, for all r < 1 we have∫
G

sup
n∈N

|Kκ
n(x)|rdx < ∞.

Proof of the Theorem. Skvorcov in [Sk1] proved that for n ∈ P, x ∈ G

nKκ
n(x) = 1 +

|n|−1∑
i=0

2iD2i(x) +
|n|−1∑
i=0

2iri(x)Kω
2i(τi(x))

+ (n− 2|n|)(D2|n|(x) + r|n|(x)Kω
n−2|n|(τ|n|(x))).

Let A := |n| and n = 2A + 2A−k−1. Then by the formula of Skvorcov we have

nKκ
n(x) = 1 +

A−1∑
i=0

2iDω
2i(x) +

A−1∑
i=0

2iri(x)Kω
2i(τi(x))

+ 2A−k−1(D2A(x) + rA(x)Kω
2A−k−1(τA(x))).

Set t0 := t0e0 + . . . + tk−1ek−1. Thus, Ik(t) = Ik(t0). The author proved [Gát4,
Corollary 6.] the following. Let B, u ∈ N, B > u. Suppose that x ∈ Iu \ Iu+1.Then

Kω
2B (x) =

{
0 if x− xueu /∈ IB ,

2u−1 if x− xueu ∈ IB .

If x ∈ IB then Kω
2B (x) = 2B−1 + 1

2 . Since it is well-known that

Dω
2B (x) = Dκ

2B (x) =

{
2B if x ∈ IB ,

0 if x /∈ IB .

Thus we have for n = 2A + 2A−k−1

nKκ
n(x) ≥

A−1∑
i=0

2iri(x)Kω
2i(τi(x))

+ 2A−k−1rA(x)Kω
2A−k−1(τA(x))

It is easy to prove

Ik(t) =
∞⋃

s=k

Is(t0) \ Is+1(t0) ∪ {t0}.

Let x ∈ Is(t0) \ Is+1(t0), A = s − 1 and s > 2k + 3 (k is fixed). Set τ := {i ∈ N :
t0i = 1}. Then τ ⊂ {0, 1, . . . , k − 1}. Since for i /∈ τ , i ∈ {0, 1, . . . , A − 1} we have
ri(x) = 1 and consequently

2iri(x)Kω
2i(τi(x)) ≥ 0,
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thus we have the following lower bound for nKκ
n(x).

nKκ
n(x) ≥ −

∑
i∈τ

2iKω
2i(τi(x)) + 2A−k−1rA(x)Kω

2A−k−1(τA(x))

≥ −
k−1∑
i=0

2i(2i−1 +
1
2
) + 2s−k−2rs−1(x)Kω

2s−k−2(τs−1(x))

≥ −4k + 2s−k−2Kω
2s−k−2(τs−1(x)).

Since xk = xk+1 = . . . = xs−1 = 0 then we have (τs−1(x))0 = xs−2 = 0,
(τs−1(x))1 = xs−3 = 0, . . . , (τs−1(x))s−k−2 = xk = 0. This implies

τs−1(x) ∈ Is−k−1.

By this we obtain that

Kω
2s−k−2(τs−1(x)) = 2s−k−3 +

1
2
.

That is,
nKκ

n(x) ≥ −4k + 2s−k−22s−k−3 ≥ 22s−2k−6

2s− 2k − 5 > 2k + 12s− 6 > 4ks− 3 > 2k since s > 2k + 3. This implies∫
Ik(t)

sup
n∈N

|Kκ
n(x)|dx ≥

∞∑
s=2k+4

∫
Is(t0)\Is+1(t0)

sup
n∈N

|Kκ
n(x)|dx

≥
∞∑

s=2k+4

∫
Is(t0)\Is+1(t0)

22s−2k−6/2sdx

≥
∞∑

s=2k+4

2−2k−7 = ∞.

This completes the proof of the Theorem. �
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