```
Acta Mathematica Academiae Paedagogicae Nyíregyháziensis
18 (2002), 13-18
www.emis.de/journals
```


THE FEKETE-SZEGÖ THEOREM FOR CLOSE-TO-CONVEX FUNCTIONS OF THE CLASS $K_{s h}(\alpha, \beta)$

MASLINA DARUS

Abstract. For $0 \leq \alpha<1$ and $0<\beta \leq 1$. Let $K_{s h}(\alpha, \beta)$ be the class of normalized close-to-convex functions defined in the open unit disc D by

$$
\left|\arg \left(\frac{z f^{\prime}(z)}{g(z)}\right)\right| \leq \frac{\pi \alpha}{2}
$$

such that $g \in S^{*}(\beta)$, the class of analytic normalized starlike functions of order β, i.e. for $z \in D$,

$$
\Re\left(\frac{z g^{\prime}(z)}{g(z)}\right)>\beta
$$

For $f \in K_{s h}(\alpha, \beta)$ and given by $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$, some sharp bounds are obtained for the Fekete-Szegő functional $\left|a_{3}-\mu a_{2}^{2}\right|$ when μ is real.

1. Introduction

Let S denote the class of normalized analytic univalent functions f defined by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

for $z \in D=\{z:|z|<1\}$. A classical theorem of Fekete and Szegő [4] states that for $f \in S$ given by (1.1),

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}3-4 \mu, & \text { if } \quad \mu \leq 0 \\ 1+2 \exp \left(\frac{-2 \mu}{1-\mu}\right), & \text { if } 0 \leq \mu \leq 1 \\ 4 \mu-3, & \text { if } \mu \geq 1\end{cases}
$$

and that this is sharp.
Later, several authors attempted the related problems for either μ is complex or μ is real. For the subclasses C, S^{\star} and K of convex, starlike and close-to-convex functions respectively, sharp upper bounds for the functional $\left|a_{3}-\mu a_{2}^{2}\right|$ have been obtained for all real μ [5], [7], [6]. In particular for $f \in K$ and given by (1.1), Keogh and Merkes [5] showed that

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}3-4 \mu, & \text { if } \quad \mu \leq 0 \\ \frac{1}{3}+\frac{4}{9 \mu}, & \text { if } \quad \frac{1}{3} \leq \mu \leq \frac{2}{3} \\ 1, & \text { if } \frac{2}{3} \leq \mu \leq 1 \\ 4 \mu-3, & \text { if } \quad \mu \geq 1\end{cases}
$$

[^0]and that for each μ there is a function in K such that equality holds. In [9], Fekete-Szegő functional is obtained for close-to-convex function defined as follows.

Definition 1. Let $0 \leq \alpha<1,0<\beta \leq 1$ and let f be given by (1.1). Then $f \in K_{h s}(\alpha, \beta)$ if and only if, there exist $g \in S_{s}^{\star}(\beta)$ such that for $z \in D$,

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{g(z)}\right)>\alpha
$$

where $S_{s}^{\star}(\beta)$ denotes the class of starlike functions of order β defined in a sector, i.e. $g \in S_{s}^{\star}(\beta)$ if and only if, g is analytic in D with $g(z)=z+b_{2} z^{2}+b_{3} z^{3}+\cdots$ and

$$
\left|\arg \left(\frac{z g^{\prime}(z)}{g(z)}\right)\right| \leq \frac{\beta \pi}{2}
$$

for $z \in D$.
The authors [9] prove the following:
Theorem 1. Let $f \in K_{h s}(\alpha, \beta)$ and be given by (1.1), then for $0 \leq \alpha<1$, $0<\beta \leq 1$ and μ real,

$$
3\left|a_{3}-\mu a_{2}^{2}\right|=\left\{\begin{array}{c}
3 \beta^{2}(1-\mu)-3 \mu(1-\alpha)^{2}-2(1-\alpha)(\beta(3 \mu-2)-1), \\
\text { if } \mu \leq \frac{2 \beta}{3(1+\beta-\alpha)}, \\
3 \beta^{2}(1-\mu)+2(1-\alpha)+\frac{\beta^{2}}{3 \mu}(2-3 \mu)^{2}, \\
\text { if } \frac{2 \beta}{3(1+\beta-\alpha)} \leq \mu \leq \frac{4 \beta}{3(1+\beta)}, \\
2-2 \alpha+\beta, \\
\text { if } \frac{4 \beta}{3(1+\beta)} \leq \mu \leq \frac{4[\beta(2+\alpha)+1]}{3[\beta(3+\alpha)+1-\alpha]}, \\
3 \beta^{2}(\mu-1)+2(1-\alpha)+\frac{\beta^{2}(1-\alpha)(3 \mu-2)^{2}}{4-3 \mu(1-\alpha)}, \\
\text { if } \frac{4[\beta(2+\alpha)+1]}{3[\beta(3+\alpha)+1-\alpha]} \leq \mu \leq \frac{2(2+\beta)}{3(1+\beta-\alpha)} \\
3 \beta^{2}(\mu-1)+3 \mu(1-\alpha)^{2}+2(1-\alpha)(\beta(3 \mu-2)-1) \\
\text { if } \mu \geq \frac{2(2+\beta)}{3(1+\beta-\alpha)}
\end{array}\right.
$$

For each μ, there is a function $f \in K_{h s}(\alpha, \beta)$ such that equality holds.
In this paper, we look into the class $K_{s h}(\alpha, \beta)$ defined as the following:
Definition 2. Let $0<\alpha \leq 1,0 \leq \beta<1$ and let f be given by (1.1). Then $f \in K_{\text {sh }}(\alpha, \beta)$ if and only if, there exist $g \in S_{h}^{\star}(\beta)$ such that for $z \in D$,

$$
\begin{equation*}
\left|\arg \left(\frac{z f^{\prime}(z)}{g(z)}\right)\right| \leq \frac{\pi \alpha}{2} \tag{1.2}
\end{equation*}
$$

where $S_{h}^{\star}(\beta)$ denotes the class of starlike functions of order β defined in a half plane, i.e. $g \in S_{h}^{\star}(\beta)$ if and only if, g is analytic in D with $g(z)=z+b_{2} z^{2}+b_{3} z^{3}+\cdots$ and

$$
\begin{equation*}
\Re\left(\frac{z g^{\prime}(z)}{g(z)}\right)>\beta \tag{1.3}
\end{equation*}
$$

for $z \in D$.

2. Result

We prove the following:
Theorem 2. Let $f \in K_{s h}(\alpha, \beta)$ and be given by (1.1), then for $0<\alpha \leq 1$, $0 \leq \beta<1$ and μ real,

$$
3\left|a_{3}-\mu a_{2}^{2}\right|=\left\{\begin{array}{c}
1-\beta+(2-3 \mu)(1+\alpha-\beta)^{2} \\
\quad \text { if } \mu \leq \frac{2(\alpha-\beta)}{3(1+\alpha-\beta)} \\
(1-\beta)(3-2 \beta-3 \mu(1-\beta))+2 \alpha+\frac{\alpha(1-\beta)^{2}(2-3 \mu)^{2}}{2-\alpha(2-3 \mu)} \\
\text { if } \frac{2(\alpha-\beta)}{3(1+\alpha-\beta)} \leq \mu \leq \frac{2}{3} \\
1+2 \alpha-\beta \\
\text { if } \frac{2}{3} \leq \mu \leq \frac{2(2+\alpha-\beta)}{3(1+\alpha-\beta)} \\
\beta-1+(3 \mu-2)(1+\alpha-\beta)^{2} \\
\text { if } \mu \geq \frac{2(2+\alpha-\beta)}{3(1+\alpha-\beta)}
\end{array}\right.
$$

For each μ, there is a function $f \in K_{\text {sh }}(\alpha, \beta)$ such that equality holds.
We first state simple lemmas which we shall use throughout the paper.
Lemma 1. ([8, p. 166.]) Let $h \in P$ i.e. h be analytic in D and be given by

$$
h(z)=1+c_{1} z+c_{2} z^{2}+\cdot
$$

and $\Re h(z)>0$ for $z \in D$, then $\left|c_{n}\right| \leq 2$ and

$$
\left|c_{2}-\frac{c_{1}^{2}}{2}\right| \leq\left(2-\frac{\left|c_{1}\right|^{2}}{2}\right)
$$

Lemma 2. ([2]) For $0 \leq \beta<1$, let $g \in S_{h}^{\star}(\beta)$ and

$$
g(z)=z+b_{2} z^{2}+b_{3} z^{3}+\cdots
$$

Then for μ real,

$$
\left|b_{3}-\frac{3}{4} \mu b_{2}^{2}\right| \leq(1-\beta) \max \{1,|3-2 \beta-4 \mu(1-\beta)|\}
$$

Lemma 3. Let $f \in K_{\text {sh }}(\alpha, \beta)$ and be given by (1.1), then

$$
\left|a_{2}\right| \leq 1+\alpha-\beta,
$$

and

$$
3\left|a_{3}\right| \leq 2 \alpha^{2}+(4 \alpha+3-2 \beta)(1-\beta)
$$

Proof. Since $g \in S_{h}^{\star}(\beta)$, it follows from (1.3) that

$$
\begin{equation*}
z g^{\prime}(z)=g(z)[p(z)(1-\beta)+\beta] \tag{2.4}
\end{equation*}
$$

for $z \in D$, with $p \in P$ given by $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$. Equating coefficients, we obtain,

$$
\begin{equation*}
b_{2}=(1-\beta) p_{1}, \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
2 b_{3}=(1-\beta) p_{2}+(1-\beta) b_{2} p_{1} \tag{2.6}
\end{equation*}
$$

Also it follows from (1.2) that

$$
\begin{equation*}
z f^{\prime}(z)=g(z) h(z)^{\alpha} \tag{2.7}
\end{equation*}
$$

where $h \in P$. Writing $h(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ and equating coefficients in (2.7) we have

$$
\begin{equation*}
2 a_{2}=b_{2}+c_{1} \alpha \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
3 a_{3}=b_{3}+c_{2} \alpha+c_{1} b_{2} \alpha+\frac{\alpha}{2}(\alpha-1) c_{1}^{2} \tag{2.9}
\end{equation*}
$$

The result now follows on using the classical inequalities $\left|c_{1}\right|=\left|c_{2}\right| \leq 2,\left|p_{1}\right|=$ $\left|p_{2}\right| \leq 2$, and the inequalities $\left|b_{2}\right| \leq 2(1-\beta)$ and $\left|b_{3}\right| \leq(1-\beta)(3-2 \beta)$ which follow from (2.5) and (2.6).
Proof. It follows from (2.5),(2.7),(2.8) and (2.9) that
(2.10) $3\left(a_{3}-\mu a_{2}^{2}\right)=\left(b_{3}-\frac{3}{4} \mu b_{2}^{2}\right)+\alpha\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{\alpha^{2}}{4}(2-3 \mu) c_{1}^{2}+\frac{\alpha}{2}(2-3 \mu) c_{1} b_{2}$.

And so equation (2.10) gives
(2.11) $3\left|a_{3}-\mu a_{2}^{2}\right| \leq\left|b_{3}-\frac{3}{4} \mu b_{2}^{2}\right|+\alpha\left|c_{2}-\frac{c_{1}^{2}}{2}\right|+\frac{1}{4} \alpha|2-3 \mu|\left|c_{1}^{2}\right|+\frac{\alpha}{2}|2-3 \mu|\left|c_{1}\right|\left|b_{2}\right|$.

We first consider the case $\frac{2(\alpha-\beta)}{3(1+\alpha-\beta)} \leq \mu \leq \frac{2}{3}$. Equation (2.11) gives

$$
\begin{aligned}
3\left|a_{3}-\mu a_{2}^{2}\right| \leq & (1-\beta)(3-2 \beta-3 \mu(1-\beta))+\alpha\left(2-\frac{c_{1}^{2}}{2}\right)+\frac{1}{4} \alpha^{2}(2-3 \mu)\left|c_{1}^{2}\right| \\
& +\frac{\alpha}{2}(2-3 \mu)\left|c_{1}\right|\left|b_{2}\right| \\
\leq & \left.(1-\beta)(3-2 \beta-3 \mu(1-\beta))+\alpha\left(2-\frac{c_{1}^{2}}{2}\right)+\frac{1}{4} \alpha^{2}(2-3 \mu) \right\rvert\, c_{1}^{2} \\
& +\alpha(1-\beta)(2-3 \mu)\left|c_{1}\right| \\
= & \Upsilon(x) \quad \text { say, with } x=\left|c_{1}\right|
\end{aligned}
$$

where we have used Lemmas 1 and 2 and the fact that $\left|b_{2}\right| \leq 2(1-\beta)$ for $g \in$ $S_{h}^{*}(\beta)$. An elementary argument shows that the function Υ attains a maximum at $x_{0}=\frac{2(1-\beta)(2-3 \mu)}{2-\alpha(2-3 \mu)}$, and so $\left|a_{3}-\mu a_{2}^{2}\right| \leq \Upsilon\left(x_{0}\right)$, which proves the theorem if $\mu \leq \frac{2}{3}$ and $\alpha \geq 0$. Choosing $c_{1}=\frac{2(1-\beta)(2-3 \mu)}{2-\alpha(2-3 \mu)}, c_{2}=2, b_{2}=2(1-\beta)$ and $b_{3}=(1-\beta)(3-2 \beta)$ in (2.10) shows that the result is sharp. We note that $\left|c_{1}\right| \leq 2$, i.e. $\mu \geq \frac{2(\alpha-\beta)}{3(1+\alpha-\beta)}$.

Next consider the case $\mu \leq \frac{2(\alpha-\beta)}{3(1+\alpha-\beta)}$. Then

$$
\begin{aligned}
\left|a_{3}-\mu a_{2}^{2}\right| & \leq\left|a_{3}-\frac{2(\alpha-\beta)}{3(1+\alpha-\beta)} a_{2}^{2}\right|+\left(\frac{2(\alpha-\beta)}{3(1+\alpha-\beta)}-\mu\right)\left|a_{2}\right|^{2} \\
& \leq \frac{3+2 \alpha-3 \beta}{3}+\left(\frac{2(\alpha-\beta)}{3(1+\alpha-\beta)}-\mu\right)(1+\alpha-\beta)^{2} \\
& =\frac{1-\beta}{3}+\frac{(2-3 \mu)}{3}(1+\alpha-\beta)^{2}
\end{aligned}
$$

for $\alpha \geq 0$, where we have used the result already proved in the case $\mu=\frac{2(\alpha-\beta)}{3(1+\alpha-\beta)}$, and the fact that for $f \in K_{s h}(\alpha, \beta)$, the inequality $\left|a_{2}\right| \leq 1+\alpha-\beta$ holds. Equality is attained on choosing $c_{1}=c_{2}=2, b_{2}=2(1-\beta)$ and $b_{3}=(1-\beta)(3-2 \beta)$ in (2.10).

Suppose now that $\frac{2}{3} \leq \mu \leq \frac{2(2+\alpha-\beta)}{3(1+\alpha-\beta)}$. Since $g \in S_{h}^{*}(\beta)$ we can write $z g^{\prime}(z)=$ $g(z)[\beta+(1-\beta) p(z)]$ for $p \in P$, with $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$, and so equating coefficients we have that $b_{2}=p_{1}(1-\beta)$ and $2 b_{3}=(1-\beta) p_{2}+(1-\beta)^{2} p_{1}^{2}$.

We deal first with the case $\mu=\frac{2(2+\alpha-\beta)}{3(1+\alpha-\beta)}$. Thus (2.10) gives

$$
\begin{aligned}
a_{3}-\frac{2(2+\alpha-\beta)}{3(1+\alpha-\beta)} a_{2}^{2}= & \frac{1}{6}(1-\beta)\left(p_{2}-\frac{p_{1}^{2}}{2}\right)+\frac{\alpha}{3}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{(1-\beta)(\alpha-1+\beta)}{12(1+\alpha-\beta)} p_{1}^{2} \\
& -\frac{\alpha(1-\beta)}{3(1+\alpha-\beta)} p_{1} c_{1}-\frac{\alpha^{2}}{6(1+\alpha-\beta)} c_{1}^{2}
\end{aligned}
$$

and so if $\alpha+\beta \leq 1$,

$$
\begin{aligned}
\left|a_{3}-\frac{2(2+\alpha-\beta)}{3(1+\alpha-\beta)} a_{2}^{2}\right| \leq & \frac{1}{6}(1-\beta)\left|p_{2}-\frac{p_{1}^{2}}{2}\right|+\frac{\alpha}{3}\left|c_{2}-\frac{c_{1}^{2}}{2}\right|+\frac{(1-\beta)(1-\alpha-\beta)}{12(1+\alpha-\beta)}\left|p_{1}\right|^{2} \\
& +\frac{\alpha(1-\beta)}{3(1+\alpha-\beta)}\left|p_{1}\right|\left|c_{1}\right|+\frac{\alpha^{2}}{6(1+\alpha-\beta)}\left|c_{1}\right|^{2} \\
\leq & \frac{1}{6}(1-\beta)\left(2-\frac{p_{1}^{2}}{2}\right)+\frac{\alpha}{3}\left(2-\frac{c_{1}^{2}}{2}\right)+\frac{(1-\beta)(1-\alpha-\beta)}{12(1+\alpha-\beta)}\left|p_{1}\right|^{2} \\
& +\frac{\alpha(1-\beta)}{3(1+\alpha-\beta)}\left|p_{1}\right|\left|c_{1}\right|+\frac{\alpha^{2}}{6(1+\alpha-\beta)}\left|c_{1}\right|^{2} \\
= & \frac{1+2 \alpha-\beta}{3}-\frac{\alpha(1-\beta)}{6(1+\alpha-\beta)}\left(\left|p_{1}\right|-\left|c_{1}\right|\right)^{2} \\
\leq & \frac{1+2 \alpha-\beta}{3}
\end{aligned}
$$

where we have used Lemma 1.
Now write

$$
\begin{aligned}
a_{3}-\mu a_{2}^{2}= & \frac{(1+\alpha-\beta)(3 \mu-2)}{2}\left(a_{3}-\frac{2(2+\alpha-\beta)}{3(1+\alpha-\beta)} a_{2}^{2}\right) \\
& +\frac{3(1+\alpha-\beta)}{2}\left(\frac{2(2+\alpha-\beta)}{3(1+\alpha-\beta)}-\mu\right)\left(a_{3}-\frac{2}{3} a_{2}^{2}\right)
\end{aligned}
$$

and the result follows at once on using the theorem already proved in the cases $\mu=\frac{2(2+\alpha-\beta)}{3(1+\alpha-\beta)}$ and $\mu=\frac{2}{3}$ for $\alpha+\beta \leq 1$. Equality is attained when f is given by

$$
f^{\prime}(z)=\frac{\left(1+z^{2}\right)^{\alpha}}{\left(1-z^{2}\right)^{1+\alpha-\beta}}
$$

We finally assume that $\mu \geq \frac{2(2+\alpha-\beta)}{3(1+\alpha-\beta)}$. Write

$$
a_{3}-\mu a_{2}^{2}=\left(a_{3}-\frac{2(2+\alpha-\beta)}{3(1+\alpha-\beta)} a_{2}^{2}\right)+\left(\frac{2(2+\alpha-\beta)}{3(1+\alpha-\beta)}-\mu\right) a_{2}^{2}
$$

and the result follows at once on choosing the theorem already proved for $\mu=$ $\frac{2(2+\alpha-\beta)}{3(1+\alpha-\beta)}$ and the inequality $\left|a_{2}\right| \leq 1+\alpha-\beta$, which was proved in Lemma 3. Equality is attained on choosing $c_{1}=2 i, c_{2}=-2, b_{2}=2 i(1-\beta)$ and $b_{3}=$ $-(1-\beta)(3-2 \beta)$ in (2.10).

We remark that whenever $\beta=0$ the theorem reduces to [1]. We also note that [3] and [2] give a complete result for both $\frac{z f^{\prime}(z)}{g(z)}$ and $\frac{z g^{\prime}(z)}{g(z)}$ defined in a sector and both defined in a half plane respectively.

References

[1] H.R. Abdel-Gawad and D.K. Thomas. On the Fekete-Szego theorem for strongly close-toconvex functions. Proc. Amer. Math. Soc., 114(2):345-349, 1992.
[2] M. Darus and D.K. Thomas. On the Fekete-Szego theorem for close-to-convex functions. Math. Japonica, 44(3), 1996.
[3] M. Darus and D.K. Thomas. he Fekete-Szego theorem for strongly close-to-convex functions. Scientiae Mathematicae, 3:201-212, 2000.
[4] M. Fekete and G. Szego. Eine Bermerkung ber ungerade schlichte Funktionen. J. Lond. Math. Soc., 8:85-89, 1933.
[5] F.R. Keogh and E.P. Merkes. A coefficient inequality for certain classes of analytic functions. Proc. Amer. Math. Soc., 20:8-12, 1969.
[6] W. Koepf. On the Fekete-Szego problem for close-to-convex functions. Proc. Amer. Math. Soc., 101:89-95, 1987.
[7] W. Koepf. On the Fekete-Szego problem for close-to-convex functions ii. Arch. Math., 49:490533, 1987.
[8] Ch. Pommerenke. Univalent functions. Vandenhoeck and Ruprecht, Göttingen, 1975.
[9] K.A. Rahman and M. Darus. The Fekete-Szego theorem for close-to-convex functions of the class $k_{h s}(\alpha, \beta)$. Inst. Jour. Math E Comp Sci (Math Ser), 14(3):171-177, 2001.

Received November 05, 2001.

School of Mathematical Sciences,
Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, Bangi 43600
Selangor Darul Ehsan, Malaysia
E-mail address: maslina@pkrisc.cc.ukm.my

[^0]: 2000 Mathematics Subject Classification. 30C45.
 Key words and phrases. Fekete-Szegő theorem, close-to-convex functions, starlike, convex.

