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G. PATAKI AND A. SZAZ

ABSTRACT. A unified treatment of some old and new well-chainedness and
connectedness properties of the most basic topological structures (such as clo-
sures, proximities and uniformities, for instance) is offered in the framework
of relators (families of binary relations) and their fundamental refinements.

The results obtained show that the various connectedness properties are
actually particular cases of Cantor’s well-chainedness property neglected by
several authors. Moreover, they show that the hyperconnectedness introduced
by L.A. Steen and J.A. Seebach is a particular case of our paratopological
connectedness.
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INTRODUCTION

A nonvoid family R of binary relations on a nonvoid set X is called a
relator on X, and the ordered pair X (R) = (X, R) is called a relator space.
Relator spaces are straightforward generalizations of ordered sets and uniform
spaces [56].

If R is a relator on X, then the relator R ! = {Rfl : Re R} is called
the inverse of R. And, the relator R = {ROO : R e R}, where R°° is
the smallest preorder (reflexive and transitive) relation containing R, is called the
preorder modification of R.

Moreover, if R is a relator on X, then the relators

R*={Scx?: I ReR: RcCS},

R¥={ScXx?: ¥V ACX: I ReR: R(A)CSA},
RM={ScX?’: VzeX: I ReER: R(z)CS(z)},

R ={ScX’: VzeX: FJyeX: I ReR: R(y)CcS(z)}

are called the uniform, the proximal, the topological, and the paratopological
refinements of R, respectively.

Typeset by AnpS-TEX
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WELL-CHAINEDNESS AND CONNECTEDNESS 103

And, the relators R®* = RV, RA = R2*, and R* = R"Y, where
RY = (R")™! and RY = (R%) !, are called the infinitesimal, the para-
infinitesimal, and the ultimate refinements of R, respectively.

Now, two relators R and & on X may, for instance, be called topologically
(quasi-topologically) equivalent if R" = S" ( R">* = §"°°). Namely, it can be
shown that the relators R and S give rise to the same interiors (open sets) if and
only if they are topologically (quasi-topologically) equivalent.

Analogouosly to the problem of finding a powerful and flexible notion of a
spatial structure, the problem of finding an appropriate notion of connectedness
also has a long history. The three most important definitions were suggested by
K. Weierstrass, G. Cantor and C. Jordan. (See [76] and [72, p. 29].)

According to Cantor, a metric space X (d) may be called well-chained or chain-
connected if for every z,y € X and every e > 0 there exists a finite family
(x;), of points of X such that zg =2, 2, =y and d(z,_1, ;) <e for all
t1=1,...,n.

That is, there exists a natural number n such that, for the e-sized d-surroun-
ding B ={(u,v)€X?: d(u,v)<e}, whichis only a tolerance (reflexive
and symmetric) relation on X, we have (x,y) € (Bed)n, where the nth power
is taken with respect to composition.

Therefore, we may call a relator R on X well-chained, or more precisely
properly well-chained, if for every x,y € X and every R € R we have
(z,y) € Usy R™, where R®=Ax and R"™ = RoR"™ ' That is, if for every
ReR wehave R™® = X?, and thus R>® = { X?}.

Now, according to a general unifying principle of the theory of relators, we
may naturally call a relator R on X uniformly, proximally, topologically, para-
topologically, infinitesimally, parainfinitesimally, and ultimately well-chained if the
relator RY is properly well-chained with O = %, #, A, A, o, A, and ¢,
respectively.

The well-chainedness of metric or uniform spaces is usually neglected by the
authors of the standard textbooks on topology. The only exceptions seem to be
Berge [3, pp. 96-99], Gaal [12, pp. 101 and 142] and Whyburn and Duda
[75, pp. 34-37] .

Several interesting new characterizations of well-chained metric and uniform
spaces were established by Mathews [36], Mréwka and Pervin [37] and Levine
[24]. Moreover, the well-chainedness of nearness spaces has also been studied by
Baboolal and Ori [2].

Some of the results of Levine were extended to reflexive relators by Kurdics
and Szdz in [22]. The latter authors also investigated the uniform, proximal and
topological well-chainednesses of reflexive relators. But, the other well-chainedness
properties have not been considered.

Now, according to the results of [19] and [23], a relator R on X may be
naturally called properly connected if the relator RVR ™! = { RUR™': ReR }
is properly well-chained.

Moreover, analogously to the corresponding well-chainedness properties, the
relator R may be naturally called uniformly, proximally, topologically, paratopo-
logically, infinitesimally, parainfinitesimally, and ultimately connected if the relator
RY is properly connected with =%, #, A, A, o, A, and 4, respectively.
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The appropriateness of the above definitions will already be quite obvious from
the following four basic theorems.

Theorem 1. A relator R on X is proximally (topologically) well-chained if and
only if ) and X are the only proximally (topologically) open subsets of X (R) .

Remark 1. A subset A of the relator space X (R) is called proximally open if
there exists an R € R such that R(A) C A.

Theorem 2. A relator R on X is proximally (topologically) connected if and
only if O and X are the only prozimally (topologically) clopen subsets of X (R) .

Remark 2. A subset A of the relator space X (R) is called proximally clopen if
both A and X \ A are proximally open.

Theorem 3. A relator R on X, with card(X) > 1, is paratopologically
well-chained if and only if X s the only fat subset of X (R), or equivalently
R={X2).

Remark 3. A subset A of the relator space X (R) is called fat if there exist
r€X and R€ R suchthat R(z)C A.

Theorem 4. A relator R on X, with card(X) > 1, is paratopologically
connected if and only if each fat subset of X (R) is dense, or equivalently
R1oR={X?}.

Remark 4. Therefore, the hyperconnectedness of Steen and Seebach [54, p. 29],
studied also by Levine [25] and several other people, is a particular case of our
paratopological connectedness.

1. A FEW BASIC FACTS ON RELATIONS AND RELATORS

A subset F' of a product set XxY is called a relation on X to Y . In particular,
the relations Ax = {(z,2): z€ X} and X2 = XxX are called the identity
and the universal relations on X , respectively.

Namely, if in particular X =Y, then we may simply say that F' is a relation
on X . Note that if F is a relation on X to Y, then F is also a relation on
X UY. Therefore, it is frequently not a severe restriction to assume that X =Y.

If F is a relation on X, and moreover =z € X and A C X, then the sets
F(z)={yeX: (v,y)e F} and F[A]=J,c4 F(x) are called the images
of x and A under F', respectively. Whenever A € X is unlikely, we may write
F (A) in place of F[A].

If F is a relation on X, then the values F (z), where z € X, uniquely
determine F' since we have F =J .y {z}x F (x). Therefore, the inverse F~'
of F can be defined such that F~'(z)={yeX: z€F(y)} foral z€ X.

Moreover, if F and G are relations on X then the composition F'oG and the
box product FoG of F and G can be defined such that (FoG)(z)=F (G (z))
forall z€ X and (FoG)(z,y)=F(z)xG(y) forall z,y € X.

Thus, we have (FoG) ' =G 1oF ! and (FoG) ' = F 'oG~!. Moreover,
(FoG)(A)=F(G(A)) forall ACX, and (FuG)(B)=GoBoF~! for
all B C X?. And hence, in particular, FoG = (G '1oF)(Ax).
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If F is a relation on X, then thesets D, = F!(X) and R, = F(X) are
called the domain and range of F', respectively. Whenever, F' is a relation on X
to Y such that X =D, (and Y = R, ), then we say that F' is a relation of X
into (onto) Y.

A relation F' is said to be a function if for each x € D, there existsa y € R,
such that F (z) ={y}. In this case, by identifying singletons with their elements,
we usually write F (x) =y. Moreover, if f is a function, then sometimes we also
write (fx)xepf = f and {fx}xepf = R,, where f,=f(z).

A relation R on X is called reflexive, symmetric, transitive, and directive if
Ax CR, R=R™', RoRCR, and X? = R~ 'o R, respectively. Moreover, a
reflexive relation is called a preorder (tolerance) if it is transitive (symmetric), and
a directive preorder is called a direction. Note that R = Ro R if R is a preorder.

If R is a relation on X, then we write R™ = Ro R"! forall n € N by
agreeing that RY = Ax. Moreover, we define R> = |J>_, R". Thus, R is
the smallest preorder on X such that R C R*. Therefore, R = R* if and only
if R is a preorder. Moreover, R°° = R°*° and (Roc)f1 = (Rfl)oo.

A nonvoid family R of relations on a nonvoid set X is called a relator on X,
and the ordered pair X (R) = (X, R) is called a relator space. Relator spaces
are straightforward generalizations of ordered sets and uniform spaces [56]. They
deserve to be widely investigated because of the following two facts.

If D is a nonvoid family of certain distance functions on X, then the relator
Rp consisting of all surroundings BY = {(x,y) € X2 : d(x,y) <}, where
d €D and r > 0, is a more convenient mean of defining the basic notions of
analysis in the space X (D) than the family of all open subsets of X (D), or even
the family D itself.

Moreover, all reasonable generalizations of the usual topological structures (such
as proximities, closures, topologies, filters and convergences, for instance) can be
easily derived from relators (according to the results of [62] and [55]), and thus
they need not be studied separately.

For instance, if A is a certain generalized topology or a nonvoid stack (ascend-
ing system) in X, then A can be easily derived (according to the forthcoming
definitions of the families 7,,, 7g and £z ) from the Davis-Pervin relator R 4
consisting of all preorders R4 = A2 U (X \ A) x X, where A€ A.

Note that, in contrast to the preorders R4, the surroundings B¢ are usually
tolerances. Therefore, besides preorder relators, tolerance relators are also impor-
tant particular cases of reflexive relators. Unfortunately, the class of all reflexive
relators proved to be inadequate for several important purposes.

2. SET-VALUED FUNCTIONS AND UNARY OPERATIONS FOR RELATORS

A function § of the family of all relators on X into a family of sets is called
a set-valued function for relators on X . And we write Fr = F(R) for every
relator R on X.

In particular, a function [ of the family of all relators on X into itself is called
a unary operation for relators on X . And we write RY = [O(R) for every relator
R on X.
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The set-valued function § is called increasing (decreasing) if for any two relators
R and § on X with § C R we have §s C §r ( Sr C 8’3) . Note that, in this

case, we have Upcr SR C SR (3R C Nger Sr) -

Therefore, an increasing (decreasing) set-valued function §F for relators
on X may be naturally called normal if for every relator R on X we have

SR = URG’R Sk ( Sr = mRe’R SR) :
If § is an increasing (decreasing) set-valued function for relators on X, then
the operation Uz, defined by

RDSZ{Sch; SSCSR} <RD@:{SCX2: 3RC35}>

for every relator R on X, is called the operation induced by the function §.

Note that if § is an increasing (decreasing) set-valued function for relators on
X , then for any relator R on X we have R C RHY5, and hence Fr C Sr0s

(SRD8 C SR). Moreover, if § is, in addition, normal, then we also have
SRD@ = USGRD% S5 C8r (373 C ﬂSGRDg Ss = SRD&. ) .

Therefore, a monotonic set-valued function § for relators on X may be naturally
called regular if for every relator R on X we have §g = §o; . Namely, thus
every normal set-valued function for relators is, in particular, regular.

A set-valued function § for relators on X is called O-increasing ( O-decrea-
sing), for some unary operation [ for relators on X, if for any two relators R
and S on X wehave SCRY <= FsCFr (FrC3Fs).

In particular, a unary operation [ for relators on X is called self-increasing
if it is [—increasing. That is, for any two relators R and & on X we have
SCcRFY = SYcRF.

A unary operation [ for relators on X is called expansive and idempotent if
for every relator R on X we have R C¢ RY and RY = RPY | respectively. And
the operation [0 is called stable if R =RY whenever R = { X2},

Moreover, an increasing and expansive (idempotent) operation for relators is
called an extension (modification) operation. And an idempotent extension opera-
tion for relators is called a refinement or closure operation.

The appropriateness of the above definitions is apparent from the following
results of [45].

Theorem 2.1. If § is an increasing (decreasing) set-valued function for relators
on X, then

(1) Oz is an extension operation ;
(2) §sCFr implies SCRYs (RcS).

Theorem 2.2. If [0 is a unary operation for relators on X , then the following
assertions are equivalent :

(1) O is a refinement; (2) O is self-increasing;

(8) there exists a O-monotonic set-valued function § for relators on X .
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Theorem 2.3. If O is a unary operation and § is a O—-increasing ( O—decrea-
sing ) set-valued function for relators on X , then

(1) O is a refinement and O = Og ;
(2) § is increasing (decreasing) and regular;

(8) for every relator R on X, RE is the largest relator on X such that
%R - S:RD .

Corollary 2.4. If § is a set-valued function for relators on X , then there exists
at most one unary operation 1 for relators on X such that § is [J—monotonic.

Theorem 2.5. If § is a set-valued function for relators on X , then the following
assertions are equivalent :

1) § s Uz —increasing ( Uz—decreasing ) ;
$ 3

2) § 1is increasing (decreasing) and reqular ;

(

(8) § is O-increasing (O-decreasing ) for some unary oparation O for rela-
tors on X .

Corollary 2.6. If { is a unary operation for relators on X , then { is a refine-
ment if and only if it is increasing and reqular. Moreover, in this case, we have

O = O .

To briefly express some further useful properties of extension and modification
operations for relators, we must also have the following

Definition 2.7. If < and [0 are unary operations for relators on X, then
we say that the operation [0 is <{—dominating, {—invariant, <{)—absorbing, and
&-—compatible if for every relator R on X we have R¢ ¢ RF, RF = RU¢,
RH = ROH | and RUC = ROU | respectively.

Concerning the latter definitions, we shall only quote here the following result
of [45].

Theorem 2.8. If { is an expansive and [ is a {—dominating idempotent
operation for relators on X, then O is <{—invariant. Moreover, if in addition
O is increasing, then [ is also {—absorbing.

Remark 2.9. In this respect, it is also worth noticing that if {» is an expansive
and [0 is a {—dominating operation for relators on X , then [ is also expansive.

Moreover, if <) is an arbitrary (increasing) and [ is an expansive operation for
relators on X such that R¢Y ¢ RH ( RUC ¢ RD) for every relator R on X,
then [0 is {—dominating.

3. SOME IMPORTANT SET-VALUED FUNCTIONS FOR RELATORS

If R is a relator on X, then for any A, BC X and x,y € X we write:

(1) BeIntr(A) (B e Clg(A)) if R(B)CA (R(B)NA#0)
for some (all) ReR;
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(2) T € 1I1tR(A) ( T € CIR(A) ) if {CL’} € IIltR(A) ( {CL’} S CIR(A) ) ;

B) yeop(x) (yepp(z)) if yeintr({z}) (yedr({z});
and moreover

4) Aer, (Aez,) if AcTtr(A) (X\A¢Clr(A));

(5) AeTr (AeFr) if Acintg(A) (cr(A)CA);

6) Acér (AeDr) if intr(A)#0 (cr(4)=X).

The relations Intr, intr and ox are called the proximal, the topological and
the infinitesimal interiors induced on X by R, respectively. While, the members
of the families 7, , 7g and £gx are called the proximally open, the topologically
open and the fat subsets of X (R), respectively.

The fat sets are frequently more important tools than the open sets. For instance,
if < is a preorder on X, then 7 and £ are just the families of all ascending
and residual subsets of the preordered set X (<), respectively. And the latter sets
are certainly more important than the former ones.

In this respect, it is also worth mentioning that if for instance R is a relation on
R such that R(z)=] —oc0,z] U {z+1} forall 2z €R, then Tp = {0, R},
but €r # {R}. Therefore, in contrast to the open sets, the fat sets may be useful
tools even in a topologically indiscrete relator space.

Hence, it is not surprising that if R is a relator on X, then sometimes we shall
also need the sets

Er=()¢r and Dr =J(P(X)\Dr).

A function z of a preordered set I' into a set X is called a I'-net in X .
The T-net x is said to be fatly (densely) in a subset A of X if z 1(A4) is a
fat (dense) subset of I". Therefore, I' could here be an arbitrary relator space,
however preordered nets are usually sufficient.

Now, if R is a relator on X, then for any I'-nets = and y in X and a € X
we write:

(7) y € Limg(z) (y€ Adhg(z)) ifthenet (y,z) is fatly (densely)
ineach ReR;

(8) a€limg(z) (a€adhg(z)) if a. € Limg(z) (a. € Adhg(z)),
where a.=Tx{a}.

Concerning the above basic tools we shall only quote here the following theorems
which have been mostly proved in [62] and [45].

Theorem 3.1. If R is a relator on X and A C X, then

Clr(A) =P(X) \ Intr( X\ A) and clr(A) =X \intg(X \A4).
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Theorem 3.2. If R is a relator on X and R"'={R': ReR}, then
Cl7€1 = Clg - and Intﬁ1 =Cxolntg-10Cx,

where Cx(A)=X\A foral ACX.

Theorem 3.3. If R is a relator on X and A C X, then

dr(A) = (] R7'(4) and pr =R = (ﬂ R>_1.

RER
Theorem 3.4. If R is a relator on X and x € X, then
pglzﬂR:prl and pgl(m):ﬂ{AcX: x € intg (4) }.
Theorem 3.5. If R is a relator on X and x € X, then

or(2) =X \clr (X \{z}) = [ (X \ pa (X \{2})).

ReR

Theorem 3.6. If R is a relator on X, then 7, =T

rR—1’

Fo={ACX: X\Aer,} and Fr={ACX: X\AeTr}.

Theorem 3.7. If R is a relator on X, then

Dr={ACX: X\A¢&r}={ACX: VBeér: ANB#0}.

Theorem 3.8. If R is a relator on X, then

Er= () p;'(2) and D = X \ Ex.

reX

Theorem 3.9. If R is a relator on X, then for any A, B C X we have
B € Clg(A) if and only if there exist nets x and y in A and B, respectively,
such that y € Limg (z) (y € Adhg(z)).

Remark 3.10. Thenets z and y in the above theorem can, in general, be required
to be only partially ordered (directed).

However, if the relator R is uniformly filtered in the sense that forany R, S € R
there exists a 7€ R such that T"C RN S, then the above nets can already be
required to be both partially ordered and directed.

Theorem 3.11. If R is a relator on X , then we have Lim7€1 = Limg-1 and
Adhy' = Adhg 1.

Theorem 3.12. If R is a relator on X, then for any a € X and A C X
we have a € clg(A) if and only if there exists a net x in A such that
a € limg (z) (a € adhg(z)).
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Remark 3.13. The net x in the above theorem can, in general, be required to be
only partially ordered (directed).

However, if the relator R is topologically filtered in the sense that for any = € X
and R, S € R there exists a T'€ R such that T'(z) C R(x) NS (z), then the
net x can already be required to be both partially ordered and directed.

Theorem 3.14. If R is a relator on X , then for any I'-net = in X we have

limg (z) = ﬂ cdr(z(A4)) and adhg (z) = ﬂ cr(z(A)).

AeDr Aeér

Remark 3.15. Unfortunately, the relationships between the induced limits and
adherences are not so straightforward even if R is uniformly filtered.

However, it is now more important to note that we also have the following

Theorem 3.16. (1) Int, int, o, 7,7, &, and D are normal increasing set-
valued functions for relators on X ;

(2) Lim, Adh, lim, adh, Cl, cl, p, D, and E are normal decreasing

set-valued functions for relators on X .

Remark 3.17. Unfortunately, the increasing set-valued functions 7 and F are
not, in general, even regular.

Namely, if R is a relator on X, then by [30, Example 5.3] there does not, in
general, exist a largest relator RY on X such that Tz = Tro.

4. SOME IMPORTANT UNARY OPERATIONS FOR RELATORS

If R is a relator on X, then the relators

R* = {ScX?: 3 ReR: RCS},
R*¥={Scx*: VACX: Aelntg(S(4))},
RN={ScX”: V2eeX : zeintgp(S(z))},
Re={ScX*: VzeX : S(z)eér}

are called the uniform, the proximal, the topological, and the paratopological
refinements of R, respectively.

Moreover, the relators
R*={p.'}", R*={p.'}" and RA={XxEgR}

are called the infinitesimal refinement, the ultrainfinitesimal extension and the
parainfinitesimal refinement of R, respectively.

And, the relator R*, defined by

R ={x?} if R={X?} and R®*=P(X*) if R#{X},



WELL-CHAINEDNESS AND CONNECTEDNESS 111

is called the ultimate stable refinement of R.

Unfortunately, thus we only have
RCR*CR¥CcRNCR*NR® and  RAUR®*CR* Cc R*Cc R*.

Namely, by [45, Example 1], the relators R* and R® are, in general, incompa-
rable.

On the other hand, if R is a relator on X, then the relators
R*={R*: ReR} and RO={ScX?: S*eR}

are called the direct and the inverse preorder modifications of R, respectively.
Thus, we have R2® ¢ R € R>®?, and hence R>® = R>®%> and R = RI>9.

Moreover, for instance, the relators R**® and R>* are called the quasi-
uniform and the almost uniform modifications of R, respectively. Thus, we have
R>® C R**° C R*®* C R*, and hence R*>® = R>®*>® and R>* = R*°*,

While, for instance, the relators
RF = R#? and R = RN

are called the superproximal refinement and the supertopological extension of R,
respectively. Thus, we have R# C Rf and R" C R* such that R#> = RiI>®
and R"N>® = R .

And, the relator
R*={ScX?: o,Co,}

is called the o—infinitesimal refinement of R. Thus, we have
R ={ScX?: VzeX: cgr(X\{z}) s (X\{z})}.

The appropriateness of most of the above definitions is apparent from the
following theorem of [45].

Theorem 4.1. If R is a relator on X , then

(1) R* = RULim — RUAan ; (2) R# — RUm: — RO ;
(3) R" = RBum = RDaan ; (4) RN =R = Rl ;
(5) R*=RHe =R ; (6) RA=RHe =RH>;

(7) R¥=R9r =R~ ; (8) R*=RH7 =RP7;

(9) R*=RH-; (10) R*=R"-.

Hence, by Theorems 3.16, 2.5 and 2.3, it is clear that we have the following
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Theorem 4.2. x, #, N, A, A, i, x and e are refinement operations for
relators on X such that for every relator R on X

(1) R* is the largest relator on X such that Limg = Limg«, or equivalently

(2) R¥ is the largest relator on X such that Intg = Intg# , or equivalently
CIR = CIR# 5

(8) R”" is the largest relator on X such that limg = limgns, or equivalently
ath = ath/\ 5

(4) R" is the largest relator on X such that intg = intra, or equivalently
CIR = leRA 5

(5) R’ is the largest relator on X such that Er = Ers, or equivalently
DR = DRA 5

(6) R* is the largest relator on X such that FEr = Ega, or equivalently
D'R = DRA 5

(7) RY is the largest relator on X such that T, = T

ys OT equivalently

Fr = 7:Rﬂ ’

(8) R* and R® are the largest relators on X such that o, = o
Pr = Pre, respectively.

o and

Remark 4.3. Unfortunately, by [45, Examples 7.1 and 7.2], the operations %
and A are not, in general, idempotent.

Therefore, if [0 = % or A, then by [45, Theorem 1.5] there does not, in
general, exist a set-valued function § for relators on X such that, for every relator
R on X, RUY is the largest relator on X such that §r = Fro.

However, in addition to Theorem 4.2, we can also at once state

Theorem 4.4. ¢ is a refinement operation for relators on X such that, for every
relator R on X, R® is the largest relator on X such that R = R* whenever
R=1{Xx2}.

Moreover, by the results of [45, Section 5|, we also have the following

Theorem 4.5. If R is a relator on X, then
R*=R"Y, R* =R, RA =RA* and R*=R"Y,

where RY =R"N1 and RY = R4 1.

Remark 4.6. Unfortunately, the operations #, A and  are not, in general,

stable. That is, they are not, in general, dominated by the operation ¢.
Therefore, even instead of the operation f, it seems more convenient to use the

operation #oo. Namely, according to the results of [35], we have the following

Theorem 4.7. #o00, ANoc and Aoco are modification operations for relators on
X such that for every relator R on X

(1) R#>¥ is the largest preorder relator on X such that TR = Tg#e, OT
equivalently Fr = Fr#oo;
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(2) R > is the largest preorder relator on X such that Tr = Trrs, or
equivalently Fr = Frnce;

(8) RE>® is the largest preorder relator on X such that Er = Erss, or
equivalently Dr = Drax , whenever R 1is total.

Remark 4.8. A relator R on X will be called total if X is the domain of each
member of R.

Finally, we note that the following theorem is also true.

Theorem 4.9. The operations oo, 0, *, # and e are inversion compatible.
While, the operation 4 1is both inversion invariant and inversion absorbing.

Remark 4.10. The map R +— R’, where R’ is the family of all finite intersec-
tions of the members of R, is also an important inversion compatible refinement
operation for relators. Moreover, by Theorem 3.3, we have R’ C R°.

However, unfortunately, the operations A, A and A are not, in general,
inversion compatible. Namely, for instance, by using Theorems 4.5 and 3.3, we

can show that (Ril)/\ C (R’\)fl if and only if R" = R*®. (See also [34]).

5. SOME FURTHER RESULTS ON THE BASIC SET-VALUED FUNCTIONS
AND UNARY OPERATIONS FOR RELATORS

Definition 5.1. If R is a relator on X, then we say that:
(1) R istotalif R(z)#0 forall z € X and R€ER;
(2) R isreflexive if z € R(x) forall x € X and Re R;

(3) R is quasi-topological if z € intg (intg (R(z))) forall z € X and
ReR;

(4) R is topological if for all € X and R € R there exists V € T such
that z € V C R(xz).

Remark 5.2. Quite similarly, a relator R on X may be called proximal if for all
ACX and Re R thereexists Ve, suchthat ACV CR(A).

The appropriateness of Definition 5.1 is already quite obvious from the following
four basic theorems which have been mostly proved in [60].

Theorem 5.3. If R is a relator on X, then the following assertions are equi-
valent :

(1) R istotal; (2) D¢Er (X€E€Dr); (3) Er#P(X) (DPr#0).

Theorem 5.4. If R is a relator on X, then the following assertions are equi-
valent :

(1) R is reflezive; (2) pr is reflezive;
(3) intr(A)C A (ACcg(A)) forall ACX;

(4) B€lntr(A) (BNA#0) implies BCA (Be€Clg(A)) forall
A, BCX.



114 G. PATAKI AND A. S7ZAZ

Theorem 5.5. If R 1is a relator on X, then the following assertions are equi-
valent :

(1) R is quasi-topological ;
(2) intr(R(z)) €Tr forall z€X and RER;
(8) intg(A) € Tr (cr(A) € Fr) forall ACX.

Theorem 5.6. If R is a relator on X, then the following assertions are equi-
valent :

(1) R is topological ;

(2) R is reflexive and quasi-topological ;

(3) intr(A)=U{VeETr: VCA} (dr(Ad)=N{WeFr: ACW})
forall ACX.

Remark 5.7. By Theorem 5.5, a relator R on X may be called weakly (strongly)
quasi-topological if pr(z) € Fg forall z € X (R(z) € Tg foral ze€ X
and ReR ) .

Moreover, by Theorem 5.6, the relator R may be called weakly (strongly) topo-
logical if it is reflexive and weakly (strongly) quasi-topological.

Also by Theorems 5.5 and 5.6, it is clear that in particular we have the following

Theorem 5.8. If R is a topological relator on X , then

Er={ACX: 3VeTz: 0#VCA}.

Remark 5.9. Unfortunately, if the above equality holds, then we can only state
that intg (intg (R (z))) # 0, and hence intg (R (z)) € g forall z € X and
ReR.

Definition 5.10. If [ is a unary operation on relators on X, then two relators
R and S on X are called O—equivalent if RH = SU.

In particular, the relator R is called (J—simple if it is [J—equivalent to a singleton
relator. Moreover, the relator R is called O-fine if R = RY.

Remark 5.11. In this respect, it is worth noticing that the relator R is al-
ways proximally fine and topologically simple. Moreover, every relator is already
infinitesimally simple [44].

Now, in addition to Theorem 5.6, we can also state the following theorem of
[60].

Theorem 5.12. If R is a relator on X, then the following assertions are equi-
valent :

(1) R is topological;
(2) R is topologically equivalent to R, ( RAOO) ;
(8) R is topologically equivalent to a preorder (topological) relator on X .
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Remark 5.13. Moreover, it is also worth mentioning that a unary operation [ for
relators on X is a refinement (modification) if and only if there exists a topological
(quasi-topological) relator 98 on P (X?) such that RY = cly (R) for every
relator R on X.

In addition to the results of Section 4, we shall also need the following theorems.

Theorem 5.14. If R is a relator on X and A C X, then

Intra (A) =P (intr(A))  and  Clga(A) =P (X)\ P (X \clr(A)).

Corollary 5.15. If R is a relator on X, then 7,, =Tz and *,. = Fr.
Theorem 5.16. If R is a relator on X and A C X, then

(1) IntRA(A):{@} if A§§5R and IntRA(A):P(X) if A€e&pr;
(2) Clgs(A)=0 if A¢Dr and Clgs(A)=P(X)\{0} if A€ Dx.

Corollary 5.17. If R is a relator on X, then 71, = Er U {0} and
Fro = (P(X)\Dr) U{X}.

RA

Theorem 5.18. If R is a relator on X and A C X, then

Intge (A) =P (X \pr (X \A4)) and  Clge (A)=P(X)\P(X\pr(A4)).

Corollary 5.19. If R is a relator on X, then

T ={ACX: ANp(X\A)=0}
and F.={ACX: (X\A)Npr(A)=0}.
Theorem 5.20. If R s a relator on X and A C X, then

(1) Intrx(A) =0 if X =p (X\A) and Intgx(A)=P(X) if
X #pe(X\A);

(2) Clrx(A) =0 if X # pr(A) and  Clga(A) = P(X)\{0} if
X:pR(A)'

Corollary 5.21. If R is a relator on X , then
Tw={ACX: X+#p (X\A)}u{0}

and =, ={ACX: X#pr(A)}JU{X}.

Theorem 5.22. If R is a relator on X and A C X, then
(1) Tntra(A)={0} if Ex¢ A and Intra(A)=P(X) if Er C A;
(2) Clra(A)=0 if AC Dr and Clga(A)=P(X)\{0} if A¢ Dg.
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Corollary 5.23. If R 1is a relator on X, then

Toa={ACX: ErxCcA}U{0} and Foa = P(Dr)U{X}.

R

Theorem 5.24. If R s a relator on X and A C X, then

(1) Intre(A)={0} if A#X and R={X?} and Intze(A)=7P(X)
if A=X or R#{X?%};

(2) Clre(A)=0 if A=0 or R#{X?} and Clge(A)=P(X)\{0}
if A£0 and R={X?}.

Corollary 5.25. If R is a relator on X, then 7, = {0, X} if R={X?}
and 7, =P(X) if R # { X2}, and moreover T =T

Re "

6. SOME IMPORTANT BINARY OPERATIONS FOR RELATORS
Definition 6.1. If R and S are relators on X, then we define
ROS:{ROS: RGR,SES}, RDS:{RDS: RER,SES},

RAS={RNS: RER, SeS}, RVS={RUS: ReER, SeS}.

Remark 6.2. By the corresponding definitions, it is clear that RNS C RA S
and RNS CRVS.

Moreover, concerning the binary operations o and V, we can easily prove the
following

Theorem 6.3. If R and S are reflexive relators on X , then

(RoS) c (RVS)".

Proof. In this case, forany R€ R and S €S, wehave Ax CR and Ax C S.
Hence, it follows that R=RoAx C RoS and S=Ax oS C Ro S, and thus
RUS C RoS. Therefore, RoS C (R VS ) " and hence by the monotonicity
and the idempotency of = it is clear that the required inclusion is also true.

Remark 6.4. Note that in the above theorem we may write any increasing
x-absorbing operation [J in place of .

Therefore, it is also of some interest to prove the following

Theorem 6.5. If R and S are relators on X and O € {x, #}, then
(RoS)” = (RTos)"

Hint. Since R C R* and S C 8%, we evidently have RoS C R* o S#. And
hence, by the monotonicity of #, it is clear that (R o 8)# C (R# o 8#)#.

On the other hand, if W € (’R# o S#)#, then for each A C X there exist
UecR?* and V € 8# such that (UoV)(A) C W(A). Moreover, there
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exists S € § such that S(A) C V(A), and there exists R € R such that
R(S(A))CcU(S(A)). Hence, it is clear that
(RoS)(A)=R(S(A))CU(S(A))CU(V(A))=(UoV)(A)C W (A).

Therefore, W € (ROS)#, and thus (R#OS#)# C (ROS)# also holds.

By using a similar argument, concerning the unary operation A, we can only
prove the following

Theorem 6.6. If R and S are relators on X, then
(RoS)" = (R*o5")"
Hence, by writing R” in place of R, we can immediately get
Corollary 6.7. If R and S are relators on X , then
(RA o S)A = (RA o S/\)A.
Moreover, analogously to Theorem 6.5, we can also easily prove the following

Theorem 6.8. If R and S are relators on X and O € {x, A}, then
(RAS)” = (REAST".
The binary operation V has some more satisfactory properties than o and A

since we have the following

Theorem 6.9. If R and S are relators on X and O € {*, #, A}, then

(RvS)” =Rn sE.

Hint. If 'V € (R\/S)#, then for each A C X thereexist R€R and S €S8
such that (RUS)(A)C V(A). Hence, since (RUS)(A)=R(A)US(A),
it follows that R(A) CV (A) and S(A) CV (A). Therefore, V € R¥ and
V € 8#, and hence V € R* NS*.

On the other hand, if V € R* N S#, then V € R¥ and V € 8#. Therefore,
for each A C X, there exist R€ R and S €S such that R(A)CV (A) and
S(A)CV(A). Hence, it follows that (RUS)(A)=R(A)US(A)CV(A),
and thus V € (RVS)¥.

Now, as a close analogue of Theorem 6.5, we can also easily establish

Corollary 6.10. If R and S are relators on X and O € {x, #, AN}, then
(RvS)” = (RPvsH" and  RINST=(RPnsY)"
Proof. By using Theorem 6.9, we can see that
(RvS) =RINST=RUTA sH0 = (REv sH)"

and RONST=(RvS) = (RvS)" = (RPnsO)".

In this respect, it is also worth proving the following
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Theorem 6.11. If R and S are relators on X and O € {x, #, N}, then the
following assertions are equivalent :

(1) RVS c (RNS); 2) (RvS) = (RnS)";
(3) RINSTc (RNS)"; (4) ROnsST=(rRns)".

Proof. By the self-increasingness of [, it is clear the assertion (1) is equivalent to

the inclusion (’R\/S ) H C (R nsS ) D. Moreover, from Remark 6.2 we can at once
see that the converse inclusion is always true. Therefore, the assertions (1) and (2)
are equivalent. On the other hand, by Theorem 6.9, it is clear that the equivalences
(1) <= (3) and (2) <= (4) are also true.

The importance of the binary operation V lies mainly in the following

Theorem 6.12. If R and S are relators on X, then

Intrys = Intg NIntg and Clrys = Clgr UCls.

Proof. f A C X and B € Intrys(A), then there exist R€ R and S €S
such that (RUS)(B) C A. Hence, since (RUS)(B)=R(B)US(B),
it follows that R(B) C A and S(B) C A. Therefore, B € Intg(A) and
B € Ints(A), and hence B € Intg(A) NInts(A) = (Intg NInts)(A). There-
fore, Intrys C Intg NInts.

The converse inclusion can be proved quite similarly. Moreover, the second
assertion of the theorem can be derived from the first one by using Theorem 3.1.

Now, as an immediate consequence of Theorem 6.12, we can also state

Corollary 6.13. If R s a relator on X, then T1,,5 = T, NTg, and thus

Frys = Fr [ Fs.

Moreover, combining Theorems 6.11 and 6.12, we can also easily establish the
following

Theorem 6.14. If R and S are relators on X , then the following assertions
are equivalent :

(1) RvS c (RNS)"; (2) R*¥nS*c (RNS)”
(8) Intrns = Intgr NInts; (4) Clgrns = ClgU Cls.

Proof. Note that if the assertion (1) holds, then by Theorem 6.11 we also
have (R N 8)# = (RV 8)#. Hence, by Theorem 4.3(2), it follows that
Intgns = Intgys. Therefore, by Theorem 6.12, the assertion (3) also holds.

On the other hand, if the assertion (3) holds, then by Theorem 6.12 we also
have Intgrns = Intrys. Hence, again by Theorem 4.3(2), it follows that
(R ns ) # (R Vv 8)#. Therefore, in particular, the assertion (1) also holds.

Finally, to complete the proof, we note that the equivalences (1) <= (2) and
(3) <= (4) are immediate from Theorems 6.11 and 3.1, respectively.
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7. SOME FURTHER IMPORTANT BINARY OPERATIONS FOR RELATORS

Definition 7.1. If R ={ R;};c;r and S ={S;}ier arerelators on X, then by
trusting to the reader’s good sense to avoid confusions we also define

ReS={R;jo0S;: iel}, RoS={RinS;: iel},
RAS={R;,NS;: iel}, RvS={R;US;: iel}.

Remark 7.2. Note that thus, in particular, we have ReS C R oS and
RVSCRVS.

Moreover, if R is a relator on X, then by considering R = { R}rer and
R ={R '} rer we have

ReR '={RoR': ReR} and RVR '={RUR': ReR}.

Concerning the latter relators, we can easily prove the following

Theorem 7.3. If R is a uniformly filtered relator on X, then

(ReR™') = (RoR™)" and (RYR™Y) " =(RVR™)".

Hint. In this case, for any R, S € R there existsa T'€ R such that T"C RNS.
Hence, it follows that T C R and T ' c S !, and thus ToT ! Cc RoS L
Therefore, R o R~ C (R@R‘l)*, and hence (RoR‘l)* C (’R@R‘l)*.
Moreover, since RoR~™' C RoR™!, it is clear that the converse inclusion is
always true.

Now, by writing R~! in place of R in the assertions of Theorem 7.3, we can
immediately get

Corollary 7.4. If R is a uniformly filtered relator on X , then

*

(R'eR) = (R 'oR) and (R'WR) = (R 'VR)".

Moreover, in addition to Theorem 7.3, we can also easily establish the following
Theorem 7.5. If R is a reflexive relator on X , then
(ReR™Y)" c(RVR™)" and (RoR™Y) c (RVR™)".
Hence, it is clear that we also have

Corollary 7.6. If R is a reflexive relator on X , then

(R7'eR)" ¢ (RVR™Y)" and (R'oR) c (RVR™Y.

Remark 7.7. Note that in Theorems 7.3 and 7.5 and their corollaries, we may
again write any increasing x-absorbing operation [ in place of .

In addition to Theorem 6.12, it is also worth proving the following
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Theorem 7.8. If § is a normal increasing (decreasing) set-valued function for
relators on X , and moreover R, S and U are relators on X , then the following
assertions are equivalent :

(1) Fu=3rUFs (Su=38rNFs);

O
2) u = (RUS)™; (3 uTs = (RDSUSDS) i
(4) Uc VT —= RUSc VIs for every relator V on X.

Proof. Define W = RUS. Then, by the increasingness and the normality of § it
is clear that §y = §r UJFs. Moreover, by Theorems 2.5 and 2.3, it is clear that
Fu=38w ifand only if U5 = WUEs . Therefore, the first part of the assertion
(1) is equivalent to the assertion (2). Hence, since §r = §,0, and Fs= Fgo;,
is is clear that the assertions (2) and (3) are also equivalent.

On the other hand, if the assertion (2) holds and V is a relator on X, then by
using Theorem 2.2 we can easily see that
UCVT = UTsc Vv = W c v = wcyts.

Therefore, the assertion (4) also holds. Finally, if the assertion (4) holds, then by
putting & and W in place of V in the inclusions of (4) we can immediately see
that W c U595 and ¢« ¢ WUs | and hence YU = WHs . Therefore, the
assertion (2) also holds.

Remark 7.9. From Theorem 7.8, by using Corollary 2.6, we can at once see that
if ¢ is a refinement operation for relators on X, and moreover R and S are
relators on X, then

(RUS) = (ROUS?)°.
Unfortunately, most of the basic unary operations for relators are not normal.

However, for instance, it can be easily seen that the refinement operations * and
¢ and the modification operations oo and 9 are normal.

As an immediate consequence of Theorem 7.8 we can also state the following

Corollary 7.10. If § is a normal increasing (decreasing) set-valued function for
relators on X , and moreover R and S are relators on X, then the following
assertions are equivalent :

(1) Fs=FrUFr1 (Fs=FrNFr1);

) s% = (RURNT7; (3 s% = (RIsu (R

(4) ScvHs «— R cVvUsn (VD@)i1 for every relator V on X.

Proof. By Theorem 7.8, for every relator V on X, we have
ScV"s = RUR'c VD = RcVIs, RIcVT —=
RcvPs, Rc (V95)™ —= RcyUsn (vUs)7h

From Theorem 7.8, by Theorem 3.16, it is clear that in particular we also have
the following
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Theorem 7.11. If R, S and U are relators on X, then the following assertions
are equivalent :

(1) Inty = Intg Ulnts (CluZCIRﬂ013);
2) u*=(rus)*; (3 u*=(rR*us*)";

(4) UCV# = RUS CV* for every relator V on X.

Hence, it is clear that in particular we also have

Corollary 7.12. If R and S are relators on X, then the following assertions
are equivalent :
(1) Ints = Intg U Intg-1 (Cls = Clg N Clg-1 ) ;
#
() $*= (RURYH; (3 s*= (R*U (R,
(4) SCV# < R CV#nN (V#)_l for every relator V on X.

Remark 7.13. Note that, because of Theorem 6.12, we may naturally write
RAR or RAR™! in place of S in Corollary 7.12.

Moreover, it is also worth noticing that some of the results of Sections 6 and 7
can be naturally extended to arbitrary families of relators.

8. SYMMETRIC, TRANSITIVE, FILTERED AND COMPACT RELATORS

Definition 8.1. A relator R on X is called weakly (strongly) symmetric if p,
(each member of R) is a symmetric relation.

Moreover, the relator R is called properly symmetric if R = R~!. Andif O is
a unary operation for relators on X, then R is called [J-symmetric if the relator
RY is properly symmetric.

Remark 8.2. We note that the relator R is properly symmetric if and only if
R C R, or equivalently R™' C R.

Moreover, the relator R is, for instance, to be called proximally (quasi-proxi-
mally) symmetric if it is #-symmetric (#oo—symmetric).

Concerning the latter notions, we shall only quote here the following two theo-
rems which have been mostly established in [60].

Theorem 8.3. If R is a relator on X, then the following assertions are equi-
valent :

(1) R is quasi—proximally symmetric ;
(2) (Re)"'c R¥; (3 (R#®)7' c R®#;
(4) R is t—symmetric; (5) R is oco# —symmetric.
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Remark 8.4. In addition to this theorem, we can also state that the relator R is
quasi-proximally symmetric if and only if the relator R is proximally symmetric.

Moreover, by calling a relator quasi-properly (pseudo-properly) symmetric if it
is oco—symmetric (0—symmetric), we can also state that R is quasi-proximally
symmetric if and only if R# is quasi-properly (pseudo-properly) symmetric.

Theorem 8.5. If R is a relator on X, then the following assertions are equi-
valent :

(1) R is quasi—proximally symmetric ;

(2) R and R~' are quasi—prozimally equivalent ;
(3) T =T, 1 (T—R:'r—Ril); (4) Tp = "Tg.

Remark 8.6. Note that, in contrast to the proximal symmetry, the topological
symmetry is already a rather restrictive property.

Namely, by Theorem 4.5, a relator R is topologically symmetric if and only if
RN = { Pr }/\ , that is, R is topologically simple and weakly symmetric.

Therefore, a relator R has, in addition, to be called topologically semi-symmetric
if R=1CR", or equivalently (R™)" c R".

The importance of the binary operation o lies mainly in the following

Definition 8.7. A relator R on X is called weakly (strongly) transitive if p,
(each member of R ) is transitive.

Moreover, if [ is a unary operation for relators on X, then the relator
R is called O-transitive (strictly [O-transitive) if RPZ (RD o RD)D
(ROF c (REeRT)T).

Remark 8.8. Thus, the relator R is, for instance, to be called topologically tran-
sitive if RN C (RN o RM)™.

Moreover, the relator R may, for instance, be called strongly topologically tran-
sitive if RN C (R#*oRMN)".

By using Theorems 2.2 and 6.6 and Corollary 6.7, we can easily establish the
following
Theorem 8.9. If R is a relator on X, then

(1) R is topologically transitive if and only if R C (RA o R)A;

(2) R is strongly topologically transitive if and only if R C (’R o R)A.
Remark 8.10. If R is a reflexive relator on X and O € {*, #, A}, then by
Theorems 6.3 and 6.9, we have (RoR)" c (RVR)” =RPn RE = RC.

Therefore, in addition to Theorem 8.9, we can also state the following
Theorem 8.11. If R is a reflexive relator on X, then

(1) R is topologically transitive if and only if R" = (R"o R)A;

(2) R is strongly topologically transitive if and only if R" = (R o R)A.

Moreover, to let the reader feel the appropriateness of the above concepts, we
can also state the following theorem of [60].
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Theorem 8.12. If R is a reflexive relator on X , then the following assertions
are equivalent :

(1) R is quasi-topological ; (2) R is topologically transitive ;
(8) R is quasi-topological ; (4) R" is strictly proximally transitive .

Remark 8.13. In [60], it was also proved that a relator R is topological if and
only if the relator R” is proximal.

The importance of the binary operation A lies mainly in the following

Definition 8.14. A relator R on X is called properly filtered if R=RAR.
Moreover, if [0 is a unary operation on relators on X, then the relator R
called O-filtered if the relator RY is properly filtered.
Remark 8.15. Note that, by Remark 6.2, we always have R C RAR . Therefore,
the relator R is properly filtered if and only if RAR C R.
Moreover, the relator R is, for instance, to be called uniformly, proximally and
topologically filtered if it is [-filtered with O =%, # and A, respectively.

Concerning the latter notions, we shall only quote here the following two theo-
rems of [60].

Theorem 8.16. If R is a relator on X, then the following assertions are equi-
valent :

(1) R is uniformly filtered ; (2) RAR CR*; (3) R*=(RAR)".

Theorem 8.17. If R s a relator on X , then the following assertions are equi-
valent :

(1) R is topologically filtered;  (2) RAR CR"; (3) R"= (R/\R)A.

Remark 8.18. Unfortunately, an analogue of the above theorems fails to hold for
the proximal filteredness taken in the sense of Definition 8.14.

Therefore, a relator R has, in addition, to be called weakly proximally filtered
if RAR C R#, or equivalently R# = (R/\ R)* (IntR = IntR/\R) .

Moreover, a relator R has to be called properly proximally filtered if for any
ACX and R,S € R there exists T € R such that T (A) C R(A)NS(A),
or equivalently Intgx (ANB)=Intg(A) NIntg(B) forall A, B C X.

The importance of the various unary operations for relators can also be well
illustrated by the following

Definition 8.19. A relator R on X is called properly compact if for each R € R
there exists a finite subset A of X such that X = R(A).

Moreover, if [0 is a unary operation for relators on X, then the relator R is
called O-compact if the relator R™ is properly compact.
Remark 8.20. In particular, the relator R is called topologically compact ( quasi-

topologically compact) if it is A—compact ( Aco—compact ).

The appropriateness of the above definitions is apparent from the following two
theorems of [69].
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Theorem 8.21. If R is a relator on X, then the following assertions are equi-
valent :

(1) R is properly compact.
(2) each directed net in X (R) is adherence Cauchy;

(8) each directed universal net in X (R) is convergence Cauchy.

Remark 8.22. A net z in arelator space X (R) is called convergence (adherence)
Cauchy if it is convergent (adherent) in each of the spaces X (R), where Re€ R.

In [63], it was proved that a net x in the relator space X (R) is convergent
(adherent) if and only if it is convergence (adherence) Cauchy in the space X (R").

Therefore, the following theorem is actually an immediate consequence of the
above theorem.

Theorem 8.23. If R is a relator on X, then the following assertions are equi-
valent :

(1) R is topologically compact.

(2) each directed net in X (R) is adherent;

(8) each directed universal net in X (R) is convergent.

Hence, by using Theorems 3.14 and Theorem 5.6, it can be easily shown that
the following more familiar theorem is also true.

Theorem 8.24. If R is a topological relator on X, then the following assertions
are equivalent :

(1) R is topologically compact;

(2) each open cover of X (R) has a finite subcover;

(8) each centered family of closed subsets of X (R) has a nonvoid intersection.

The topologically compact relators are closely related to the Lebesgue ones [59].

Definition 8.25. If R and S are relators on X, then the relator S is said to
be properly refined by R if for each S € & there exists a function f on X to X
such that So f e R.

Moreover, if [ is a unary operation for relators on X, then the relator § is
said to be O-refined by R if it is properly refined by R .
Remark 8.26. In particular, the relator S is said to be uniformly refined by R
if it is x—refined by R.

Moreover, the relator R is called a Lebesgue relator if its topological refinene-

ment R” is uniformly refined by R.

The appropriateness of the latter defintions is apparent from the following
generalization of Lebesgue’s covering theorem [59].

Theorem 8.27. If R is a uniformly filtered, strongly topologically transitive and
topologically compact relator on X, then R is a Lebesque relator.
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Remark 8.28. The importance of Lebesgue relators lies mainly in the fact that
they are both convergence and adherence complete.

Namely, the topologically compact relators are, in general, only directedly
convergence-adherence complete in the sense that each directed convergence Cauchy
net in X (R) is adherent.

9. MILD CONTINUITIES OF RELATIONS IN RELATOR SPACES

Definition 9.1. If F is a relation on one relator space X (R) to another Y (S)
and [ is a unary operation for relators on X, then the relation F' is said to be
O—continuous, or more precisely mildly C—continuous [71] if

O
<F’10350F) c RYH,

Remark 9.2. Now, the relation F' may be naturally called properly continuous if
it is O—continuous with [ being the identity operation for relators.

Moreover, the relation F' may, for instance, be called uniformly and paratopo-
logically continuous if it is [J—continuous with [J =% and [ =A, respectively.

By Theorem 2.2, we evidently have the following specialization of Definition 9.1.

Theorem 9.3. If F is a relation on one relator space X (R) to another Y (S)
and [ is refinement operation for relators on X, then the following assertions are
equivalent :

(1) F is O-continuous; (2) F7'oSHoF cRY.

Remark 9.4. Therefore, in this case, F' is [d—continuous if and only if F is a
properly continuous as a relation on X (RD) to Y(S D) )

Moreover, as some further specializations of Definition 9.1, we can also prove the
following theorems.

Theorem 9.5. If F is a relation on one relator space X (R) to another Y (S)
and OO € {x*, #}, then the following assertions are equivalent :

(1) F is O-continuous; (2) F7loSoF Cc RY.

Hint. If 'V € S#, then for each A C X there exists an S € S such that
S(F(A)) c V(F(A)). Hence, F7'(S(F(A))) c F"Y(V(F(A))), and
thus (F 'oSoF)(A)C (F 'oVoF)(A). Moreover, if the assertion (2) holds
with 0= #, then F~'oSoF € R*. Therefore, there exists an R € R such that
R(A) C (F~'oSoF)(A). Consequently, we also have R(A) C (F~*oVoF )(A).
Hence, it is clear that F~'oV o F € R#, and thus F~1oS# o F C R#. Thus,
by Theorem 9.3, the assertion (1) also holds with [ = #.
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Theorem 9.6. If f is a function on one relator space X (R) to another Y (S)
and O € {AN, o}, then the following assertions are equivalent :

(1) f is O-continuous; (2) f~loSofcRU.

Hint. If the assertion (2) holds with [ = e, then for each S € & we have
floSof € R* Hence, since R® = {p;l}* = {ﬂR}*, it follows that
AR C f~toSof. Therefore, we also have (YR C (Ngeg [ roSo f.
Hence, by using that (g floSof = f"lo (ﬂ S) o f, we can infer that
NR C f'o(NS)of. Therefore, we also have f lo (N S)ofe (NR)".
Hence, by Theorem 9.5, it is clear that f~lo { S }*o fc(n R)* Therefore,

we also have f~1oS8®o f C R*®. Thus, by Theorem 9.3, the assertion (1) also
holds with [0 =e.

Theorem 9.7. If f is a function on one relator space X (R) onto another Y (S)
and O e{A, A, &}, then the following assertions are equivalent :

(1) f is O-continuous; (2) floSofcR".

Hint. If § = {Y2}, then S¢ = {YQ}. Hence, by Theorem 9.3, it is clear that
the implication (2) = (1) holds true with [0 = 4.

While, if § # { Y2} , then there exists an S € S such that S # Y2. Therefore,
there exist y, z € Y such that (y, z) ¢ S, and hence z ¢ S (y). Moreover, since
Y = f(X), thereexist u, v € X suchthat y = f(u) and z = f(v). Therefore,
we also have f(v) ¢ S(f(u)). Hence, it follows that v ¢ f~1(S(f(u))),
and thus v ¢ (f~'oSo f)(u). Therefore, (u,v) ¢ f~'oSof, and thus
f~loSof# X?%. On the other hand, if the assertion (2) holds with [1= 4, then
f~'oSof e R*. Therefore, we necessarily have R* =P (XQ) . And thus, the
assertion (1) also holds with = 4.

Remark 9.8. Note that if, for instance, X = {0,1} and f = X x {0},
then f'loAxof = X2 ¢ {AX}A, but f is not a A—continuous function
of X(AX) into itself. Namely, if V = X2\ Ax, then V € {AX}A, but
fﬁloVof:(Z)gé {AX}A.

Moreover, it is also worth noticing that an analogue of Theorem 9.7 does not

hold for the operation s since it is not idempotent by [45, Example 7.1].

The appropriateness of Definition 9.1 is apparent from the following particular
cases of the results of [56], [60] and [71].

Theorem 9.9. If f is a function on one relator space X (R) to another Y (S),
then the following assertions are equivalent :

(1) f is uniformly continuous ;
(2) x € Limg(y) implies fox € Lims(foy);
(8) x € Adhgr(y) implies fox € Adhs(foy).
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Theorem 9.10. If F is a relation on one relator space X (R) to another Y (S),
then the following assertions are equivalent :

(1) F is proximally continuous ;
(2) A€ Clg(B) implies F(A) e Cls(F(B));
(8) F(A) €Ints(B) implies A€ Intg (F~1(B)).

Theorem 9.11. If f is a function on one relator space X (R) to another Y (S),
then the following assertions are equivalent :

(1) f is topologically continuous ;
(2) x €limg(y) implies f(z) € lims(foy);
(3) z € adhg (y) implies f(x) € adhs(foy).

Theorem 9.12. If f is a function of one relator space X (R) into another
Y (S), then the following assertions are equivalent :

(1) f is topologically continuous ;
(2) a€clg(B) implies f(a)€cls(f(B)):
(8) f(a)€ints(B) implies a € intr (f~'(B)).

Corollary 9.13. If f is a function of an arbitrary relator space X (R) into a
topological one Y (S), then the following assertions are equivalent :

(1) f is topologically continuous ;
(2) U eTs implies f~1(U) € Tr; (3) V€ Fs implies f~1(V) € Fr.

Remark 9.14. If f is a function of an arbitrary relator space X (R) into a
proximal one Y (S), then we can also state that f is proximally continuous if and
only if U ety (Ver,) implies f~HU) e, (f7H(V)eEr,).

Theorem 9.15. If f is a function of one relator space X (R) onto another
Y (S), then the following assertions are equivalent :
(1) f is paratopologically continuous ;

(2) A€ Dgr implies f(A) € Ds; (3) Be&s implies f~1(B) € Ex.

Remark 9.16. By using Theorem 3.7, it can be easily seen that the assertions (2)
and (3) are equivalent for any relation f on X (R) to Y (S).

However, the implications (1) = (2) and (2) = (1) are not, in general, true.
Therefore, it is of some importance to point out that the following theorem is true.

Theorem 9.17. If F is a paratopologically continuous relation on a total relator
space X (R) to an arbitrary one Y (S), then F(A) € Ds forall A€ Dg.

Proof. If this not the case, then there exists A € Dr such that F(A) ¢ Ds.
Then, by Theorem 3.7, we necesarily have Y \ F'(A) € £s. Hence, by defining
V=Yx(Y\F(A)) and U=F"'oVoF, we can at once see that V € §*,
and thus U € R%. Moreover, we can also at once see that

U(z)=F Y(V(F(z))=F (Y \F(A4))
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for all z € X with F(z)# (). Therefore, if u € U (x) for some z € X, then
we necessarily have F (u) N (Y \F(A)) #0. Thus, there exists w € F (u) such
that w ¢ F(A), i.e., w¢ F(a) forall a € A. This shows that U (z)NA=10,
and hence A ¢ Dx , which is a contradiction. Therefore, we actually have U = (),
and hence () € R*. Thus, by Theorem 5.3, the relator R cannot be total, which
is again a contradiction.

Now, as an immediate consequence of Theorems 5.3 and 9.17, we can also state

Corollary 9.18. If F' s a paratopologically continuous relation on a total relator
space X (R) to an arbitrary one Y (S), then F(X) € Ds, and thus in particular
Y (S) is also total.

Hence, it is clear that in particular we also have

Corollary 9.19. If F is a paratopologically continuous relation on a total relator
space X (R) to an arbitrary one Y (S) such that F(X) € Fs, then Y = F (X).

Moreover, by noticing that Fs = P(Y) whenever Ay € 8", and moreover
card (X) < card (Y) whenever there is a function of X onto Y, we can also state

Corollary 9.20. If card(X) < card(Y), and R and S are relators on X
and Y, respectively, such that R is total and Ay € 8", then there is no para-
topologically continuous function of X (R) into Y (S) )

10. SOME BASIC PROPERTIES OF THE DAVIS-PERVIN RELATIONS

Definition 10.1. For each A C X, the relation
Ry=A*U(X\A)x X

is called the Davis—Pervin relation on X generated by A.

Remark 10.2. Namely, the relations R4 were first used by Davis [7] and Pervin
[47] in their uniformization procedures of topological spaces.

In the sequel, we shall often need the following simple propositions about the
inverses, complements and images of the relations R 4.

Proposition 10.3. If A C X, then R4 is a preorder on X such that

Ri'=Rx\a and R{=Ax(X\A).

Proposition 10.4. If A, BC X, then Ra(B)=0 if B=10,

Ra(B)=A if 0#£BCA and RA(B)=X if B¢A.

Remark 10.5. The relations R4 are important particular cases of the relations
Ra.py=AXBU(X\A)xX considered first by Csaszar [6, pp. 42] and
Hunsaker and Lindgren [14] for some A C B C X.

Moreover, the following theorem is an important particular case of [60),
Theorems 2.6.1 and 2.9.1]. However, since we are now not interested in the rela-
tions R 4, ), it seems appropriate to provide here a direct proof.
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Theorem 10.6. If R is a relator on X and A C X, then the following assertions
are equivalent :

(1) Ra € R*; (2) AerT,.

Proof. 1f the assertion (1) holds, then there exists R € R such that R C Ra4.
Hence, it follows that R(A) C Ra(A) = A. Therefore, the assertion (2) also
holds.

While, if the assertion (2) holds, then there exists R € R such that
R(A) C A. Hence, it follows that R(z) C R(A) C A = Ra(z) for all
x € A. Moreover, it is clear that R(z) C X = Ra(z) forall z € X\ A.
Therefore, R C R4, and thus the assertion (1) also holds.

Corollary 10.7. If R is a relator on X and A C X, then the following asser-
tions are equivalent :

(1) RieR*; (2) RacR¥.
Proof. By Theorems 10.6, 4.2 (7) and 2.8, it is clear that

RyeER* < Aecr, « Act, < RicR*™ = RjcR”.

#

From Theorem 10.6, we can also easily get the following more particular theo-
rems.

Theorem 10.8. If R is a relator on X and A C X, then the following assertions
are equivalent :

(1) Ra€R"; (2) AeTg.
Proof. By Theorems 2.8 and 10.6 and Corollary 5.15, it is clear that

RAieR" < RoeR" = Aecr, — AcTi.

Theorem 10.9. If R is a relator on X and A C X such that A # 0, then the
following assertions are equivalent :

(1) Ra€ R%; (2) A€ég.
Proof. By Theorems 2.8 and 10.6 and Corollary 5.17, it is clear that

Ri€R® < RueR™ <— Aer1, — Acéx.

Theorem 10.10. If R is a relator on X and A C X, then the following asser-
tions are equivalent :

(1) Ra€R®; (2) ANpr(X\A)=10.
Proof. By Theorems 2.8 and 10.6 and Corollary 5.19, it is clear that

RyeR® <= RA€ER* = Act,., < ANp,(X\A)=0.
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Theorem 10.11. If R is a relator on X and A C X such that A # (), then
the following assertions are equivalent :

(1) RaeR*; () X #pe(X\A).
Proof. By Theorems 2.8 and 10.6 and Corollary 5.21, it is clear that

RyER* <= RAeR* = Act, < X#p(X\A).

Theorem 10.12. If R is a relator on X and A C X such that A # (), then
the following assertions are equivalent :

(1) Ra€R*; (2) Er C A.
Proof. By Theorems 2.8 and 10.6 and Corollary 5.22, it is clear that

RyeR* <= Ry eR" < Aecr,, < ErcCA.

Remark 10.13. Since R* = R*% and RA = R2°, Theorems 10.11 and 10.12
can also be proved with the help of Theorems 10.9 and 10.10.

For this, it is enough to note only that
5R°:5{p7;1}*:g{p7§1}:{ACX: X%pR(X\A)}

a‘nd pRA = pRA. = pRA = p{XxER}* = p{XxER} = ER X X‘

Theorem 10.14. If R is a relator on X and A C X such that 0 # A # X,
then the following assertions are equivalent :

(1) Ra€R*; (2) R#{X?}.

Proof. If the assertion (2) does not hold, then we have R* = { X2}. Hence,
since R4 # X?, it is clear that the assertion (1) does not also holds.

On the other hand, if the assertion (2) holds, then we have R* = P (X?).
Therefore, the assertion (1) also holds.

Finally, we note that, in contrast to Theorem 10.10, we can also prove the
following

Theorem 10.15. If R is a relator on X and A C X, then the following asser-
tions are equivalent :

(1) Ra€R*; (2) card(A)#1 or Aer, (A€eTr).

Proof. By a reformulation of the definition of R*, and Proposition 10.3, it is clear
that R4 € R* if and only if

CIR(X\{x}) C RZI(X\{x}) = RX\A(X\{x})
for all x € X. Hence, by noticing that

0 it X = {2},
Reva(X\ (o)) =4 X\A4 it Ac{s}#£X,
X it  A\{z}#0,

it is not hard to check that the required assertions are also equivalent.
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Remark 10.16. In this respect, it is also worth noticing that R4 € R? if and
only if Ra € R. Thus, in particular, R4 € R! (RA € R*) if and only if
Ry € R# (RA S RA).

Moreover, in addition to Corollary 10.7, we can also prove the following

Theorem 10.17. If R is a relator on X, AC X and O € {x, #}, then the
following assertions are equivalent :

(1) RpcRY; (2) RpcRU>; (8) RyeR>*D.

Proof. By Proposition 10.3, is clear that (1) = (2). Moreover, by the inclusions
RH> c R>*H ¢ RY, is clear that implications (2) = (3) = (1) are also true.

Remark 10.18. Note that in Remark 10.16 and Theorem 10.17 we may write any
preorder relation in place of R 4.

11. SYMMETRIZATIONS OF THE DAVIS-PERVIN RELATIONS
Definition 11.1. For each A C X, the relation

SA:RAﬂRgl

is called the symmetrization of the Davis—Pervin relation R 4.
Concerning the relations S, , we can easily establish the following propositions.

Proposition 11.2. If A C X, then Sj is an equivalence on X such that

Sa=A%U (X\A)? and SG=Ax(X\A)U(X\A)xA.

Proposition 11.3. If A, B C X, then
Sa(B)=0 if B=10, Sa(B)=X\A if 0#£#BCX\A,
Sa(B)y=A if 0#£ABCA, Sa(B)=X if BZA and BZ X\ A.
Proposition 11.4. If A C X, then

IntSA:IntRAUInthl and ClSA:CIRAﬂCIRgl.

Proof. By the corresponding definitions and Propositions 11.3 and and 10.3, it is
clear that for any B, C' C X we have

Belntg, (C) <= Sa(B) CC <= Ra(B)CC or Rx\a(B) C C <

B elIntg, (C) or BGInthl(C) = BE(IntRAUInthl)(C).

Therefore, the first assertion of the theorem is true. The second assertion of the
theorem can be easily derived from the first one by using Theorem 3.1.

Moreover, concerning the relations S4, we can also easily prove the following
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Theorem 11.5. If R is a relator on X and A C X, then the following assertions
are equivalent :

(1) Si€R*; (2) Rac (RVR™')".

Proof. If the assertion (1) holds, then there exists R € R such that R C Sa.
Hence, it follows that RUR™' C S4 U S;l =S4 C R4 . Therefore, the assertion
(2) also holds.

While, if the assertion (2) holds, then there exists R € R such that
RUR' ¢ Ra. Hence, it follows that R C Ra N Rzl = Sa. Therefore,
the assertion (1) also holds.

From Theorem 11.5, by Theorem 7.3, it is clear that we also have

Corollary 11.6. If R is a uniformly filtered relator on X and A C X, then the
following assertions are equivalent :

(1) Si€eR*; (2) Rac (RVR™Y)".

Moreover, analogously to Theorem 11.5, we can also easily prove the following

Theorem 11.7. If R is a reflexive relator on X and A C X, then the following
assertions are equivalent :

(1) S4€R*; (2) Rae (ReR™Y)7; (3) Rae (R1eR)"

Proof. If the assertion (1) holds, then there exists R € R such that R C Sa.
Hence, by Proposition 11.2, it is clear that Ro R™! C S4 o S;l =54 C Ry and
R 'oR C S;'084 =S4 C Ra. Therefore, the assertions (2) and (3) also hold.

While if the assertion (2) or (3) hold, then by Theorem 7.5 and Corollary 7.6,

we have Ry € (RVR_l)*. Therefore, by Theorem 11.5, the assertion (1) also
holds.

Remark 11.8. Note that the implications (1) = (2) and (1) = (3) do not
require the relator R to be reflexive.

Therefore, the inclusion Ry € (RVR_l)* implies Ry € (R@R‘l)* and
R, € (R‘loR)* even if the relator R is not reflexive.

From Theorem 11.7, by Theorem 7.3 and Corollary 7.4, it is clear that we also
have

Corollary 11.9. If R is a uniformly filtered reflexive relator on X and A C X,
then the following assertions are equivalent :

* *

(1) S4€R*; (2) Rae (RoR™Y)"; (8) Rae (R7'oR)".

On the other hand from Proposition 11.4, by Corollaries 7.12 and 10.7, it is clear
that we also have the following

Theorem 11.10. If R is a relator on X and A C X, then the following asser-
tions are equivalent :

(1) SaeR*;  (2) RacR*N(R*)"'; (3 RacR¥n(R*).
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Remark 11.11. Note that if X = {0,1}, A= {0} and R = {Ra, R,'},
then R4 € R*N (R*)_l, but S4 ¢ R*. Therefore, an analogue of Theorem
11.10 does not, in general, hold for the operation .

However, as an immediate consequence of Theorem 11.10, we can also state that
if O is a #—invariant operation for relators on X, then for any set A C X and

any relator R on X we have Sy € RY ifand onlyif R4 € REN (RD)_I.

From Theorem 11.10, by using Theorem 10.6, we can also quite easily get the
following

Theorem 11.12. If R is a relator on X and A C X, then the following asser-
tions are equivalent :

(1) Sa€R¥*; (2) Act, Nry,.

Proof. If S4 € R#, then by Theorem 11.10 we also have R4 € R* N (R*)_l.
This implies that R4 € R* and R4 € (R*)fl, ie., Rx\a € R*. Hence, by
Theorem 10.6, it follows that A € 7, and X\ A € 7, i.e., A€ F,. Therefore,
the implication (1) = (2) is true. The converse implication can be proved quite
similarly, by reversing the above argument.

In addition to Theorem 11.12, it is also worth proving the following

Theorem 11.13. If R is a relator on X and A C X, then the following asser-
tions are equivalent :

(1) SAER#; (2) RAE('R\/Rfl)*.

Proof. 1f the assertion (1) holds, then by Theorem 11.12 we have A € 7, and
A€ 7y, and hence A €7, . Hence, by Theorem 10.6, it follows that R4 € R*
and Rg4 € (Ril)*. Therefore, by Theorem 6.9, we have R4 € (R Vv Ril)*.
That is, the assertion (2) also holds.

The converse implication (2) = (1) can be proved quite similarly, by reversing
the above argument.

Now, as an immediate consequence of Theorem 11.13 and Corollary 11.6, we can
also state

Corollary 11.14. If R is a uniformly filtered relator on X and A C X, then
the following assertions are equivalent :

(1) Sa€R*; (2) S4e€R¥.

Moreover, analogously to the Theorem 11.13, we can also prove the following

Theorem 11.15. If R is a reflexive relator on X and A C X, then the following
assertions are equivalent :

*

(1) Sy € R#; (2) Rac€(RoR™1); (3) Ryc (R 'oR)"
Proof. If the assertion (1) holds, then as in the proof of Theorem 11.9 we have
RpeR* and R4 € (R’l)*. Hence, by Proposition 10.3 and Theorem 6.5, it is

clear that

*

Ry=RaoRy€ R'o(R7) C (R0 (R7Y)") = (RoRTY)
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and

Ry=RaoRse (R oR C ((R1)eR) = (R 'oR)"
That is, the assertions (2) and (3) also hold.

While if the assertion (2) or (3) holds, then by Theorem 7.5 and Corollary 7.6
we have Ry € (R V R_l)*. Therefore, by Theorem 11.13, the assertion (1) also
holds.

Remark 11.16. Note that the implications (1) = (2) and (1) = (3) do not
require the relator R to be reflexive.

Therefore, the inclusion Rq € (R V R_l)* implies R4 € (Ro R_l)* and
Ry € (R_lo R)* even if the relator R is not reflexive.

From Theorem 11.12, we can also easily get the following more particular
theorems.

Theorem 11.17. If R is a relator on X and A C X, then the following asser-
tions are equivalent :

(1) Sa€R"; (2) AeTprnNFr.
Proof. By Theorems 2.8 and 11.12 and Corollary 5.15, it is clear that

SAER" <= SueRM «— Aer , NF, < AcTrxnFx.

Theorem 11.18. If R is a relator on X and A C X such that ) # A # X,
then the following assertions are equivalent :

(1) Sa€R%; (2) Ae€ér\Dr.
Proof. By Theorems 2.8 and 11.12, and Corollary 5.17, it is clear that

SA1ER <= SAeR™ = Act , N7, =
AegRﬂ(P(X)\DR) <~ AESR\DR.

Theorem 11.19. If R is a relator on X and A C X, then the following asser-
tions are equivalent :

(1) Sa€R®; (2) ANp(X\A)=0 and (X\A)Np(A)=0.
Proof. By Theorems 2.8 and 11.12 and Corollary 5.19, it is clear that

S4i€R® = SaeR? <= Acrt,, AcF,
ANpe (X\NA)=0, (X\A)Np(A)=0.
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Theorem 11.20. If R is a relator on X and A C X such that ) # A # X,
then the following assertions are equivalent :

(1) Sa€R*; (2) X#pr(A) and X #p(X\A).
Proof. By Theorems 2.8 and 11.12 and Corollary 5.21, it is clear that

SAER* = S eR* «— Aer,, Acr , <
X#px(X\NA), X F#pz(A).

Theorem 11.21. If R is a relator on X and A C X such that ) # A # X,
then the following assertions are equivalent :

(1) Sa € RA; (2) Er=010.
Proof. By Theorems 2.8 and 11.12, Corollary 5.23 and Theorem 3.8, it is clear that

SAeERY &= SAeR = Acrt,, Acr,
EFrCA, ACDp < FEr CA, ERCX\A e ER:(D.

Finally, we note that analogously to Theorems 10.14 and 10.15, the following
two theorems are also true.

Theorem 11.22. If R is a relator on X and A C X such that ) # A # X,
then the following assertions are equivalent :

(1) SaeR*; (2) R#{X?}.

Theorem 11.23. If R 1is a relator on X and A C X, then the following asser-
tions are equivalent :

(1) Sa€R*; (2) (card(A)#1 or Aer, (AeTR))
and (card(X\A)#1 or Aer, (A€Fgr)).

Proof. By Proposition 11.4, it is clear that o,, = 0, U o - Hence, by Theorem
A
3.16, Corollary 7.10 and Proposition 10.3, it is clear that

1

SpeR — RAER*Q(R*)_ < Rj4€eR", RX\AER*.

Therefore, by Theorems 10.15 and 3.6, the required assertions are also equivalent.

Remark 11.24. Moreover, note that, by Remark 10.18, we can write S4 in place
of R4 in Remark 10.16 and Theorem 10.17.

12. WELL-CHAINEDNESS OF ARBITRARY RELATORS

Definition 12.1. A relator R on X will be called properly well-chained or chain-
connected if R = { X?2}.

Moreover, if [1 is a unary operation for relators on X, then the relator R will
be called C-well-chained if the relator RE is properly well-chained.
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Remark 12.2. The condition R* = {X?}, in a detailed form, means only
that for every R € R we have X? = R>® = Ax U J.2, R™. That is, for
every x,y € X, with x # y, there exists an n € N such that (z,y) € R™.
That is, there exists a family (z;)]~, in X such that z, = 2, z, = y and
(i 1,z;) €R forall i=1,...,n.

Therefore, our present definition of proper well-chainedness is a straightforward
generalization of Cantor’s chain-connectedness. (See, for instance, Thron [72, p.
29] and Wilder [76, p. 721].)

Preliminary forms of some of the following theorems, for Weil uniformities and
reflexive relators, have already proved by Levine [24] and Kurdics and Széz [22],
respectively. However, for the readers convenience, we shall now give some improved
proofs.

Theorem 12.3. If R is a relator on X, then the following assertions are equi-
valent :

(1) R is properly well-chained ;

(2) Ra & R* for every proper nonvoid subset A of X;

(8) R & R* for every proper preorder relation R on X;

(4) R & R* for every proper nonvoid transitive relation R on X.

Proof. If A C X such that R4 € R*, then there exists an R € R such that
R C Ry4. Hence, it follows that R> C RY = R4 . Moreover, if the assertion (1)
holds, then we have R> = X?2. Therefore, we also have R4 = X 2. This implies
that A=0 or A= X. Therefore, the assertion (2) also holds.

While, if R is a preorder relation on X and A = R(x) for some z € X,
then z € A and R(A) = R(R(z)) C R(z) = A. Therefore, if R € R*
holds, then A € Tz« = 7 also holds. Hence, by Theorem 10.6, it follows that
R4 € R*. Therefore, if the assertion (2) holds, then since A # () we necessarily
have A = X, and thus R(z) = X. Hence, it is clear that R = X2, and thus
the assertion (3) also holds.

On the other hand, if R is a transitive relation on X, then S = Ax UR is
a preorder relation on X such that R C S. Therefore, if R € R*, then we also
have S € R*. Hence, if the assertion (3) holds, we can infer that S = X?, and
thus X2 = Ax UR. Therefore, if v € X and v € X \ {u}, then we necessarily
have (u,v) € R and (v,u) € R. Hence, by the transitivity of R, it follows
that (u,u) € R. Therefore, if card (X) > 1, then we necessarily have R = X2
even if R was not supposed to be nonvoid. Therefore, the assertion (4) also holds.
Namely, if card (X) =1, then ) and X? are the only relations on X .

Finally, to complete the proof, we note that if R € R, then R is, in particular,
a nonvoid transitive relation on X . Therefore, if the assertion (4) holds, then we
necessarily have R*° = X?2. And thus, the assertion (1) also holds.

Remark 12.4. The assertion (3) of Theorem 12.3 can be briefly verbalized by
saying that X?2 is the only preorder relation being contained in R*.

A simple application of the assertion (4) of Theorem 12.3 gives the following
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Corollary 12.5. If R is a properly well-chained relator on X and card (X) > 1,
then R is a total relator on X .

Proof. 1f this not the case, then there exist z € X and R € R such that
R(z) = 0. Hence, it is clear that S = (X \ {z}) x X is a proper nonvoid
transitive relation on X such that R C S, and thus S € R*. And this is a
contradiction by Theorem 12.3.

The following simple proposition shows that the extra cardinality condition on
X cannot be omitted from the above corollary.

Proposition 12.6. If X is a nonvoid set, then the following assertions are equi-
valent :

(1) card(X)=1;

(2) {0} is a properly well-chained relator on X ;

(8) every relator R on X is a properly well-chained.

Now, by using Theorem 12.3 and Corollary 12.5, we can also easily establish a
useful reformulation of Definition 12.1

Proposition 12.7. If R is a relator on X and card (X) > 1, then the following
assertions are equivalent :

(1) R is properly well-chained ; (2) X?*=,>, R™ forall RER.

Proof. If R € R, then it is clear that S =J ., R™ is a transitive relation on X
such that R C S, and hence S € R*. Moreover, if the assertion (1) holds, then
by Corollary 12.5 in particular we have R # (), and hence S # (). Therefore,
by Theorem 12.3, we necessarily have S = X2, and thus the assertion (2) also
holds. Now, since the converse implication (2) = (1) is quite obvious, the proof
is complete.

Moreover, as an immediate consequence of Theorems 12.3 and 10.6, we can also
state the following

Theorem 12.8. If R is a relator on X, then the following assertions are equi-
valent :

(1) R is properly well-chained ;
(2) 7 =A{0,X}; (3) 7o =A{0,X}.

Proof. Namely, by Theorem 12.3, we have (1) if and only if R4 ¢ R* for all
proper nonvoid subset A of X . Moreover, by Theorem 10.6, for any A C X we
have R4 ¢ R* if and only if A ¢ 7,,. Therefore, the assertions (1) and (2) are
equivalent. Moreover, by Theorem 3.6, it is clear that the assertions (2) and(3) are
also equivalent.

Remark 12.9. The assertion (2) of Theorem 12.8 can be briefly verbalized by
saying that no proper nonvoid subset of X (R) is proximally open.

From Theorem 12.8, by the definitions of the families 7, and 7., it is clear
that the proper well-chainedness of a relator R can also be expressed in terms of
the relations Intr and Clg.

Therefore, it is rather surprising that the following theorem has formerly been
overlooked by the authors of the papers [22] and [23].
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Theorem 12.10. If R is a relator on X and card(X) > 1, then the following
assertions are equivalent :

(1) R is properly well-chained ;

(2) B € Intr(A) implies A¢ B forall A, BC X with A# X and
B#0;

(8) X =AUB implies B € Clg(A) forall A, BC X with A#0 and
B#0.

Proof. If the assertion (1) holds, then by Theorem 12.8 we have 7, = {0, X }.
Moreover, if the assertion (2) does not hold, then there exist A, B C X, with
A# X and B # (), such that B € Intgx(A) and A C B. Hence, by the
corresponding definitions, it is clear that A € Intg(A) and B € Intg(B), and
thus A, B € 7,. Hence, since 7, ={0, X} and A# X and B# 0, we can
infer that A =( and B = X . Therefore, we actually have X € Intx (()), and
hence () € R. Hence, by the assertion (1) and Proposition 12.6, it follows that
card(X) =1, which is a contradiction. Therefore, the implication (1) = (2) is
true.

Now, to prove the converse implication (2) = (1), we note that if A € 7,
then A € Intg(A). Therefore, if the assertion (2) holds then we necessarily have
A=X or A=1(. Consequently, 7, = {0, X}, and thus by Theorem 12.8, the
assertion (1) also holds.

Finally, to complete the proof, we note that the equivalence of the assertions (2)
and (3) is immediate from Theorem 3.1. Namely, for A, B C X, the conditions
X\ACB and X = AUB are equivalent.

Remark 12.11. By Proposition 12.6, it is clear that not only the equivalence of
the assertions (2) and (3), but also the implications (2) = (1) and (3) = (1)
are true without the extra cardinality condition on X .

However, if card(X) =1 and R = {0}, and moreover A = B = X, then
X =AUB, with A#( and B # (0, such that B ¢ Clg(A). Therefore, in this
case, the converses of the above implications fail to hold.

Now, as an immediate consequence of Theorems 12.8, 12.10 and 3.9, we can also
state the following

Theorem 12.12. If R is a relator on X and card (X) > 1, then the following
assertions are equivalent :

(1) R is properly well-chained ;

(2) for each proper nonvoid subset A of X there exist nets x and y in A
and X \ A, respectively, such that y € Limg (z) (y € Adhg (z) ) ;

(8) for any two nonvoid subsets A and B of X, with X = AU B, there
exist nets x and y in A and B, respectively, such that y € Limg(x)

(y € Adhg(2)).

Remark 12.13. Later, we shall see that the proper well-chainedness of a relator
R cannot, in general, be expressed in terms of the relations clg or limg.

Therefore, it is of some interest to point out that we still have the following
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Theorem 12.14. If R is a relator on X , then the following assertions are equi-

valent :

(1) R is properly well-chained ; (2) proo = X2.

Proof. Note that, by Theorem 3.3, we have p;olo =) R°°. Therefore, the equality
R ={X?} canhold if and only if p_L = X?, thatis, ppe = X2

Moreover, as an immediate consequence of Definition 12.1 and the inversion
compatibility of the operation oo, we can also at once state

Theorem 12.15. If R is a relator on X , then the following assertions are equi-
valent :

(1) R is properly well-chained ; (2) R~ is properly well-chained .

Finally, as some immediate consequences of the corrresponding definitions and
Theorems 12.3, 12.15 and 2.8, we can also state the following two theorems.

Theorem 12.16. If R is a relator on X and O is an *—invariant operation on
relators, then the following assertions are equivalent :

(1) R is O-well-chained ;
(2) Ra ¢ RE for every proper nonvoid subset A of X ;

(3) R¢ RU for every proper preorder relation R on X ;

(4) R &R for every proper nonvoid transitive relation R on X.

Theorem 12.17. If R is a relator on X and O is an inversion compatible ope-
ration on relators, then the following assertions are equivalent :

1) R 1is U-well-chained ; 2) R~' is O-well-chained.
(1)

13. WELL-CHAINEDNESS OF REFINEMENT RELATORS

Definition 13.1. A relator R on X will be called uniformly, proximally, topologi-
cally, paratopologically, infinitesimally, ultrainfinitesimally, parainfinitesimally, and
ultimately well-chained if it is [l—well-chained with [ =%, #, A, A, e, %, A,
and ¢, respectively.

Remark 13.2. From the inclusion relations of the above operations, it is clear
that ‘paratopologically or infinitesimally well-chained” = ‘topologically well-
chained” = ‘proximally well-chained” = ‘uniformly well-chained’ = ‘properly
well-chained’. And ‘ultimately well-chained” = ‘parainfinitesimally well-chained’
— ‘ultrainfinitesimally wel-chained’ = ‘paratopologically and infinitesimally
well-chained’.

Moreover, in addition to the corresponding particular cases of Theorems 12.16
and 12.17, we can also easily establish the following theorems.
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Theorem 13.3. If R is a relator on X, then the following assertions are equi-
valent :

(1) R is properly well-chained ;

(2) R is uniformly well-chained ; (8) R is proximally well-chained.

Proof. Note that, by Theorem 4.2(2), we have 7, = 7., = 7_,. Therefore, by
Theorem 12.8, the required assertions are also equivalent.

Remark 13.4. Later we shall see that ‘proximally well-chained’ =~ ‘topologically
well-chained’ =5 ‘infintesimally well-chained’ =& ‘paratopologically well-chained’.

But, ‘paratopologically well-chained’ = ‘ultimately well-chained’. Therefore,
‘paratopologically well-chained’ is equivalent to ‘ultrainfinitesimaly, parainfinitesi-
mally and ultimately well-chained’. Moreover, ‘paratoplogically well-chained” —
‘infinitesimally well-chained’.

Theorem 13.5. If R is a relator on X, then the following assertions are equi-
valent :

(1) R is topologically well-chained ;

Proof. By Theorem 12.8, we have (1) if and only if 7, = {0, X } . Moreover,
by Corollary 5.15, we also have 7_, = Tg. Therefore, the assertions (1) and
(2) are equivalent. Moreover, by Theorem 3.6, the assertions (2) and (3) are also
equivalent.

Theorem 13.6. If R is a relator on X and card(X) > 1 , then the following
assertions are equivalent :

(1) R is topologically well-chained ;
(2) B C intg(A) implies A¢ B forall A, BC X with A# X and
B#0;

(3) X =AUB implies BNclg(A)#0 forall A,BC X with A%
and B #1).

Proof. By Theorem 2.8, it is clear that R is topologically well-chained if and only
if R" is proximally well chained. Moreover, by Theorem 5.14, for any A, B C X,
we have B € Intga(A) if and only if B C intg(A). Therefore, by Theorem
12.10, the assertions (1) and (2) are equivalent. Moreover, by Theorem 3.1, it is
clear that the assertions (2) and (3) are also equivalent.

Theorem 13.7. If R is a relator on X and card(X) > 1, then the following
assertions are equivalent :

(1) R is topologically well-chained ;

(2) for each poper nonvoid subset A there exists a net x in A and a point y

in X\ A such that y € limg(z) (y € adhg(z));

(8) for any two nonvoid subsets A and B of X, with X = AU B, there
exists a net © in A and a point y in B such that y € limg (z) (y € adhg (z)).
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Remark 13.8. Later we shall see that the inverse of a topologically well-chained
relator need not be topologically well-chained.

Concerning paratopological well-chainedness, we first prove the following ana-
logue of Theorem 13.5.

Theorem 13.9. If R is a relator on X and card (X) > 1, then the following
assertions are equivalent :

(1) R is paratopologically well-chained ;
(2) Er={X}; (3) Dr=P(X)\{0}.

Proof. By Corollary 5.17, we have 7,, = Er U{0}. Moreover, if the assertion (1)
holds, then by Theorem 12.8 and Corollary 12.5 we also have 7,, = {0, X'} and
0 ¢ Er. Therefore, the assertion (2) also holds.

On the other hand, if the assertion (2) holds, then again by Corollary 5.17, we
have 7,, = Er U{0} = {0, X }. And thus, by Theorem 12.8, the assertion (1)
also holds even if the condition card (X) > 1 is not assumed.

Finally, to complete the proof, we note that the equivalence of the assertions (2)
and (3) is immediate from Theorem 3.7.

The latter theorem allows us to easily prove that paratopologically well-chained
relators need not actually be studied since we have the following

Theorem 13.10. If R is a relator on X and card (X) > 1, then the following
assertions are equivalent :

(1) R is paratopologically well-chained ; (2) R={X?}.

Proof. If R€ R and z € X, then R(x) € Eg. Therefore, if the assertion (1)
holds, then by Theorem 13.9 we necessarily have R (z) = X . Hence, it is clear
that R = X2, and thus the assertion (2) also holds.

On the other hand, if the assertion (2) holds, then by the corresponding defini-
tions it is clear that &g = {X}. Therefore, again by Theorem 13.9, the assertion
(1) also holds.

Remark 13.11. Note that if card (X ) =1, then by Proposition 12.6 any relator
on X is paratopologically well chained.

Moreover, if card(X) =1 and R is a relator on X, then we actually have
Er={X} ifandonly if 0 ¢ R.

From Theorem 13.10, it is clear that, in contrast to Remark 13.8, we have

Corollary 13.12. A relator R on X 1is paratopologically well-chained if and only
if its inverse R~ is paratopologically well-chained.

Moreover, by using Theorem 13.10, we can also easily establish the following

Theorem 13.13. If R is a relator on X and card (X) > 1, then the following
assertions are equivalent :

(1) R is paratopologically well-chained ;
(2) intr(A)=0 (Intr(A)={0}) forall ACX with A#X;
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(8) cr(A)=X (Clg(A)=P(X)\{0}) forall ACX with A#0.

Hint. Note that if the assertion (2) holds, then z ¢ intg (A) for all z € X and
A C X with A# X . This implies that R(z) ¢ A forall RER, x € X and
A C X with A # X . Therefore, we necessarily have R(z) =X forall ReR
and z € X. Consequently, R = {X?}, and thus the assertion (1) also holds.

Theorem 13.14. If R is a relator on X , then the following assertions are equi-
valent :
(1) R is paratopologically well-chained; (2) R is ultrainitesimally well-chained;
(8) R is parainfinitesimally well-chained;  (4) R is ultimately well-chained.

Proof. 1f the assertion (1) holds and card (X) > 1, then by Theorem 13.10 we
have R = {X?2}, and hence R* = {X?}. Therefore, by the corresponding
definitions, the assertion (4) also holds.

Now, by Remarks 13.11 and 13.2, it is clear that required assertions are equivalent
even if card (X )= 1. Moreover, we have the following

Corollary 13.15. If R is a paratopologically well-chained relator on X , then R
18, in particular, infinitesimally well-chained.

In this respect, it is also worth mentioning that analogously to Theorem 12.14
we also have

Theorem 13.16. If R is a relator on X , then the following assertions are equi-
valent :
(1) R is infinitesimally well-chained ; (2) p=X2.

Proof. Recall that R® = { p*}*. Therefore, the relator R is infinitesimally well-
chained if and only if the relator { p;l} is uniformly well-chained. That is, by
Theorems 13.3 and 12.15, the relator {p,} is properly well-chained. Therefore,
the assertions (1) and (2) are equivalent.

From Theorems 12.8 and 12.10, by Corollary 5.19 and Theorem 5.18, it is clear
that we also have the following

Theorem 13.17. If R is a relator on X , then the following assertions are equi-
valent :

(1) R is infinitesimally well-chained ;

(2) ANp,(X\A)#0D for every proper nonvoid subset A of X;

(3) AnNp,(B) # 0 for any two nonvoid subsets A and B of X with
X=AUB.

Finally, by calling a relator oc—infinitesimally well-chained if it is x—well-chained,
we can also prove the following

Theorem 13.18. If R is a relator on X , then the following assertions are equi-
valent :

(1) R is o—infinitesimally well-chained ;
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(2) card(X) <3 and 7, ={0,X} (Tr ={0,X}).

Proof. By Theorem 12.3, we have (1) if and only if R4 ¢ R* for every proper
nonvoid subset A of X. Moreover, by Theorem 10.15, for any A C X we have
Ra ¢ R* if and only if card(A) =1 and A ¢ 7, (A ¢ Tg). Therefore, the

required assertions are also equivalent.

Remark 13.19. From the equality R*> = R*> we can at once see that the
relator R is oo—well-chained if and only if it is properly well-chained. Therefore,
the ‘quasi well-chainedness properties’ of relators need not be studied.

Moreover, from Theorem 12.6, by Theorem 10.17 and Remark 10.16, we can
at once see that the ‘almost uniform (almost proximal) and the superproximal
(supertopological) well-chainedness properties’ of relators need not also be studied.

However, note that a relator R on X may be naturally called properly well-

chained at a point x of X if R*°(x) =X for all R € R. Therefore, localized
forms of the corresponding well-chainedness properties may also be investigated.

14. CONNECTEDNESS OF ARBITRARY RELATORS

Definition 14.1. A relator R on X will be called properly connected if the
relator R VR™! is properly well-chained.

Moreover, if [ is a unary operation for relators on X, then the relator R will
be called O-connected if the relator RY is properly connected.

Remark 14.2. The appropriateness of the above apparently very strange defi-
nition should have already been quite obvious from the results of Kurdics [19].
However, despite this, it has later been still overlooked even by Kurdics and Szaz
[23].

The proper connectedness of R, i.e., the condition (RVRfl)oo ={X?},
by Remark 12.2, means only that for every x,y € X, with x # y, and every
R € R there exist a finite family (z;)", in X such that z, =z, =, =y
and (x; 1,2;) € RUR™Y, ie, (x;1,2;) € R or (z;, z; 1) € R for all
i=1,...,n.

Moreover, as a close analogue of Theorem 12.3, we can also easily prove the
following

Theorem 14.3. If R s a relator on X , then the following assertions are equi-
valent :

(1) R is properly connected ;
(2) Sa ¢ R* for every proper nonvoid subset A of X;
(8) S ¢& R* for every proper equivalence relation S on X;

(4) S & R* for every proper nonvoid symmetric and transitive relation S on
X.

Proof. From Definition 14.1 and Theorem 12.3, we can at once see that the assertion
(1) holds if and only if R4 ¢ (RVRil)* for all proper nonvoid subset A of
X . DMoreover, from Theorem 11.5, we know that for any A C X we have
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Ra ¢ (RVR*)* if and only if S4 ¢ R*. Therefore, the assertions (1) and (2)
are equivalent.

On the other hand, it is clear that the implications (4) = (3) = (2) are
true. Namely, S is a proper equivalence relation on X whenever A is a proper
nonvoid subset of X . Therefore, to complete proof, we need only show that the
implication (1) = (4) is also true.

For this, note that if the assertion (4) does not hold, then there exists a
proper nonvoid symmetric and transitive relation S on X such that S € R*.
Therefore, there exists an R € R such that R C S. Hence, it follows that
RUR™'C SUS™ = 8. Therefore, S € (RVR™')". And thus, by Theorem
12.3 and Definition 14.1, the assertion (1) does not also holds.

Remark 14.4. The assertion (3) of Theorem 14.3 can be briefly verbalized by
saying that X? is the only equivalence relation being contained in R*.

Now, as a useful consequence of Theorem 14.3, we can also state the following

Theorem 14.5. If R is a relator on X and card(Y) > 1, then the following
assertions are equivalent :

(1) R is properly connected ;
(2) f~tof¢&R* for every non-constant function f of X into Y.

Proof. If the assertion (2) does not hold, then there exists a non-constant function
f of X into Y such that f 'o f € R*. Hence, since

fTlof={(u,v) € X*: f(u)=f(v)}

is a proper equivalence relation on X, Theorem 14.3 shows that the assertion (1)
does not also holds. Therefore, the implication (1) = (2) is true.

While, if the assertion (1) does not hold, then by Theorem 14.3 there exists a
proper nonvoid subset A of X such that S4 € R*. Hence, by choosing vy, z € Y
such that y # z, and defining a function f on X such that f(x) =y for all
r€Aand f(x)=2z forall x € X\ A, wecanat onceseethat f~lof =S4 € R*.
That is, the assertion (2) does not also hold. Therefore, the implication (2) = (1)
is also true.

Hence, by Theorems 9.5, it is clear that we also have the following

Theorem 14.6. If R is a relator on X and card(Y) > 1, then the following
assertions are equivalent :

(1) R is properly connected ;

(2) every uniformly continuous function f of X (R) into Y (Ay) is constant.
Proof. Note that if f is a function of X into Y, then f lof=f loAyof.
Moreover, by Theorem 9.5, f is a uniformly continuous function of X (R) into

Y (Ay) ifand only if f~1oAyof € R*. Therefore, the assertion (2) of Theorem
14.6 is equivalent to that of Theorem 14.5.

From Theorem 14.3, we can also easily get the following
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Theorem 14.7. If R is a relator on X and card(X) > 1, then the following
assertions are equivalent :

(1) R is properly connected ;
(2)  for each proper nonvoid subset A of X there exists a net (x,y) in
Ax (X \A)U(X\ A)x A such that y € Limg(z) (y € Adhg(z));

(8) for any two nonvoid subsets A and B of X, with X = AU B, there
exists anet (z,y) in Ax BUBXA such that y € Limg(z) (y € Adhg(z)).

Hint. If the assertion (1) holds, then by Theorem 14.3, for each proper nonvoid
subset A of X, we have Sy ¢ R*. Therefore, for each R € R, there exists
a pair (yg,z,) € R such that (y,,z,) ¢ Sa, and hence by Proposition
112 (yp, z,) € AX (X \A)U(X \ A) x A. Now, by defining = = (z,),cn
and y = (¥, )rcr ,» and preordering R with the reverse set inclusion (the discrete
preorder), we can easily see that (x,y) is a partially ordered (directed) net in
Ax(X\A)U(X\ A)x A such that y € Limg(z) (y € Adhg(z)). Therefore,
the assertion (2) also holds.

On the other hand, by using Corollary 12.5, we can also easily prove the following

Theorem 14.8. If R is a properly connected relator on X and card (X) > 1,
then X =R(X)UR(X) forall ReER.

Proof. In this case, by Corollary 12.5, the relator RV R~! is total. Therefore,
we have X = (RUR') ' (X)= (RUR ) (X)=R(X)UR (X) forall
ReR.

From the equality RVR ™! = R_lv(R_l)_l, by Definition 14.1, it is clear
that now we also have

Theorem 14.9. If R is a relator on X, then the following assertions are equi-
valent :

(1) R is properly connected ; (2) R~' is properly connected.

Moreover, by using Theorem 14.5, we can also easily prove the following

Theorem 14.10. If R and S are relators on X such that R is reflerive and
properly connected and S is uniformly refined by R, then S is also properly
connected.

Proof. 1f this is not the case, then by Theorem 14.5 there exists a function f of
X onto {0,1} such that f~'o f € 8*. Hence, since S* is also uniformly
refined by R, we can infer that there exists a function g on X to X such
that f o fog € R*. Hence, since R* is also reflexive, we can infer that
zef ' (f(g(x))), and thus f(z)= f(g(z)) forall z € X. Therefore, we
have f= fog, and thus f~'o f= f~'o fog € R*. Hence, by Theorem 14.5,
it follows that R is also not properly connected, and this contradiction proves the
theorem.

Remark 14.11. Later we shall see that the counterpart of Theorem 14.10 with
‘connected’ replaced by ‘well-chained’ is not true.

Now, as some immediate consequence of the corresponding definitions and
Theorems 14.3 and 14.5, we can also state the following theorems.
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Theorem 14.12. If R is a relator on X and O is an *—invariant operation for
relators on X, then the following assertions are equivalent :

(1) R is O-connected;
(2) Sa¢RY for every proper nonvoid subset A of X ;
(3) S ¢&RE for every proper equivalence relation S on X ;

(4) S &R for every proper nonvoid symmetric and transitive relation S on

X.

Theorem 14.13. If R is a relator on X, [ is an x—invariant operation for
relators on X and card (Y) > 1, then the following assertions are equivalent :

(1) R is O-connected;
(2) f~lof¢&RE forevery non-constant function f of X into Y.

Hence, by using Theorems 9.5, 9.6 and 9.7, we can also easily get the following
two theorems.

Theorem 14.14. If R is a relatoron X, O € {*, #, N,o} and card (Y) > 1,
then the following assertions are equivalent :

(1) R is O-connected;
(2) every O—continuous function f of X (R) into Y (Ay) is constant.

Theorem 14.15. If R is a relator on X, O € {A A, ¢} and card(Y) =2,
then the following assertions are equivalent :

(1) R is O-connected;
(2) every O—continuous function f of X (R) into Y (Ay) is constant.

Hint. If the assertion (1) does not hold, then by Theorem 14.13 there exists a
function f of X onto Y such that f~loAy o f = f~lof € RH. Hence, by
Theorem 9.7, it follows that f is a O—continous function of X (R) onto Y (Ay).
Therefore, the assertion (2) does not also hold. Consequently, the implication
(2) = (1) is true.

Remark 14.16. Note that if, for instance, 1 < card(X) < card(Y), then
by Corollary 9.20 every A—continuous function f of X (Ax) into Y (Ay) is
constant, but by the equivalence of the assertions (1) and (3) of Theorem 14.12 the
relator {A X} is not A-—connected.

In this respect, it is also worth mentioning that, by using the corresponding
results of Section 16, it can be easily shown that if 0 € {A, A, ¢} and f isa
O—continuous function on a O—connected relator space X (R) to a [—separated
relator space Y (S), then f is necessarily constant.

Finally, as some immediate consequence of the corresponding definitions and
Theorem 14.9, we can also state

Theorem 14.17. If R is a relator on X and O s an inversion compatible ope-
ration for relators on X, then the following assertions are equivalent :

1) R is [—connected; 2) R~! is O-connected.
(
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15. CONNECTEDNESS OF REFINEMENT RELATORS

Definition 15.1. A relator R on X will be called uniformly, proximally, topolo-
gically, paratopologically, infinitesimally, ultrainfinitesimally, parainfinitesimally,
and ultimately connected if it is [l—connected with 1=, #, A, A, e, %, A,
and ¢, respectively.

Remark 15.2. From the inclusions relations of the above operations, it is clear
that ‘paratopologically or infinitesimally connected” = ‘topologically connected’
— ‘proximally connected” = ‘uniformly connected’ = ‘properly connected’.
And ‘ultimately connected” = ‘parainfinitesimally connected’ = ’ultrainfini-
tesimally connected’ = ‘paratopologically and infinitesimally connected’.

Moreover, as an immediate consequence of Theorems 14.3 and 14.12, we can at
once state the following

Theorem 15.3. If R s a relator on X , then the following assertions are equi-
valent :

(1) R is properly connected ; (2) R is uniformly connected.

Remark 15.4. Later we shall see that ‘uniformly connected’ =% ‘proximally con-
nected’ == ‘topologically connected’ =& ‘paratopologically or infinitesimally con-
nected’. And ‘paratopologically and infinitesimally connected’ are independent no-
tions. Moreover, ‘paratopologically and infinitesimally connected’ =~ ‘ultrainfini-
tesimally connected’ =~ ‘parainfinitesimally connected’ =~ ‘ultimately connected’.

However, as an immediate consequence of Theorems 14.3 and 14.12 and Corollary
11.14, we still have the following counterpart of Theorem 13.3.

Theorem 15.5. If R is a uniformly filtered relator on X, then the following
assertions are equivalent :

(1) R is properly connected ; (2) R is proximally connected .

Moreover, as an immediate consequence of Theorem 14.12 and 11.12, we can
also at once state

Theorem 15.6. If R is a relator on X, then the following assertions are equi-
valent :

(1) R is proximally connected ; (2) T,NF, ={0,X}.

In addition to this theorem, it is also worth proving the following

Theorem 15.7. If R is a uniformly filtered relator on X and card(X) > 1,
then the following assertions are equivalent :

(1) R is proximally connected ;
(2) B € Intr(A) and X\ A € Intr(X \B) imply A ¢ B for all
A, BCX with A#X and B#0;

(3) X =AUB implies B € Clg(A) or A€ Clg(B) forall A,BCX
with A#0 and B#0.
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Proof. From Theorem 15.5 we know that R is proximally connected if and only if
R is properly connected. Moreover, from Corollary 11.6, by using Theorems 14.3
and 12.3, we can see R is properly connected if and only if R VR ! is properly
well-chained.

On the other hand, from Theorem 12.10 we know that RV R~! is properly
well-chained if and only if B € Intryr-1(A) implies A¢Z B forall A, BC X
with A # X and B # (. Moreover, from Theorem 6.12 we know that
B € Intgyr-1(A) ifand only if B € Intg(A) and B € Intg-1(A). Further-
more, from Theorem 3.2, we know that B € Intgz-1(A) if and only if
X\ A € Intr(X \ B). Therefore, the assertions (1) and (2) are equivalent.
The equivalence of the assertions (2) and (3) is again immediate from Theorem 3.1.

From Theorems 15.6 and 15.7, by Theorem 3.9, it is clear that we also have the
following

Theorem 15.8. If R is a uniformly filtered relator on X and card (X) > 1,
then the following assertions are equivalent :

(1) R is proximally connected ;

(2) for each proper nonvoid subset A of X, there ezists a net (x,y) in
Ax (X\A) or (X\A)xA suchthat y€ Limg(z) (y € Adhg(z));

(8) for any two nonvoid subsets A and B of X, with X = AU B, there
exists anet (z,y) in AxB or BxA suchthat y € Limg(z) (y € Adhg(z)).

From Theorem 15.6, by Theorem 2.8 and Corollary 5.15, it is clear that we also
have the following

Theorem 15.9. If R is a relator on X, then the following assertions are equi-
valent :

(1) R is topologically connected ; (2) TpRNnFr={0,X}.

In addition to Theorem 15.9, we can also easily prove

Theorem 15.10. If R is a topologically filtered relator on X and card (X) > 1,
then the following assertions are equivalent :

(1) R is topologically connected ;

(2) B C intgr(A) and X\ A C intg(X \ B) imply A ¢ B for all
A, BCX with A#X and B#0;

(3) X = AUB implies BnNeclg(A) #0 or Anclg(B) # 0 for all
A, BCX with A#( and B#0.

Proof. By Theorem 2.8, it is clear that R is topologically connected if and only
if R” is proximally connected. Moreover, since R” is now uniformly filtered,
from Theorem 15.7 we know that R” is proximally connected if and only if
B e€Intga(A) and X\A € Intga (X\B) imply A¢ B forall A, B C X with
A# X and B # (). Moreover, from Theorem 5.14, we know that B € Intga (A)
if and only if B C intg(A). Therefore, the assertions (1) and (2) are equiva-
lent. Moreover, by Theorem 3.1, it is clear that the assertions (2) and (3) are also
equivalent.
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Remark 15.11. The assertion (2) of Theorem 15.9 can be briefly verbalized by
saying that no proper nonvoid subset of X is topologically clopen.

While, the assertion (3) of Theorem 15.10 can be briefly verbalized by saying
that X cannot be decomposed into the union of two nonvoid separated sets.

From Theorems 15.9 and 15.10, by using Theorem 3.12, we can also get the
following

Theorem 15.12. If R is a topologically filtered relator on X and card (X) > 1,
then the following assertions are equivalent :

(1) R is topologically connected ;

(2) for each proper nonvoid subset A of X there exist a net x in A and
a point y in X \ A, or anet z in X\ A and a point y in A such that
y € limg (z) (y € adhg(z));

(8) for any two nonvoid subsets A and B of X, with X = AU B, there

erist a net x in A and a point y in B, or a net x in B and a point y in A
such that y € limg (z) (y € adhg(z)).

Hence, analogously to Ward [73, Theorem 82, p. 66], we can also state

Corollary 15.13. If R is a topologically filtered relator on X and card (X) > 1,
then the following assertions are equivalent :

(1) R is topologically connected ;

(2) for each proper nonvoid topologically open subset A of X (R) there exist
anet xz in A and a point y in X \ A such that y € limg (x) (y € adhg (z) ) ;

(8) for each proper nonvoid topologically closed subset A of X (R) there exist
anet x in X\ A and a point y in A such that y € limg(z) (y € adhg(z)).

Hint. To prove the implication (2) = (1), suppose on the contrary that the
assertion (2) holds, but the assertion (1) does not hold. Then, by Theorem 15.9
there exists a poper nonvoid subset A of X such that A is both topologically
open and closed in X (R). Therefore, by the assertion (2), there exists a net x
in A and point y in X \ A such that y € limg(z) (y € adhg(z)). Hence, by
Theorem 3.12, it follows that y € clg(A) C A, and this contradicts to the fact
that y € X \ A.

In addition to Theorems 15.3 and 15.5, it is also worth proving the following

Theorem 15.14. If R is a reflexive Lebesque relator on X , then the following
assertions are equivalent :

(1) R is properly connected ; (2) R is uniformly connected ;
(8) R is proximally connected ; (4) R is topologically connected .

Proof. Suppose that the assertion (1) holds. Since R is a Lebesgue relator, R"
is uniformly refined by R. Hence, since R" = (R/\) i , by using Theorem 14.10
we can infer that R” is also properly connected. Therefore, the assertion (4) also
holds. Moreover, from Remark 15.2, we know that the implications (4) = (3) =
(2) = (1) are always true.

From Theorem 15.14, by Theorem 9.0, it is clear that in particular we also have
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Corollary 15.15. If R is a reflexive, uniformly filtered, strongly topologically
transitive and topologically compact relator on X , then R is properly connected if
and only if it is topologically connected.

16. SOME FURTHER RESULTS ON THE CONNECTEDNESS
OF REFINEMENT RELATORS

Theorem 16.1. If R is a relator on X, then the following assertions are equi-
valent :

(1) R is paratopologically connected ; (2) Er\{0} C DrU{X}.

Proof. By Theorem 14.12, the assertion (1) holds if and only if Sa ¢ R% for
all proper nonvoid subset A of X . Moreover, by Theorem 11.18, for any proper
nonvoid subset A of X we have S4 ¢ R% ifandonlyif A ¢ Ex\Dx . Therefore,
the assertion (1) is equivalent to the condition that A ¢ Ex \ Dr for all proper
nonvoid subset A of X . The latter condition means only that Ex\{0, X } C Dg,
that is, €xr \ {0} € Dr U{X}. Therefore, the assertions (1) and (2) are also

equivalent.

Corollary 16.2. If R is a paratopologically connected relator on X such that
card (X ) > 1, then R is a total relator on X .

Proof. If this is not the case, then by Theorem 5.3 we have &x = P(X) and
Dr = (. Hence, using that card (X ) > 1, we can see that the assertion (2) of
Theorem 16.1 fails to hold. And this contradicts the paratopological connectedness

of R.

Remark 16.3. Later, we shall see that even an infinitesimally connected relator
R on X need not be total.

Theorem 16.4. If R is a relator on X and card (X) > 1, then the following
assertions are equivalent :

(1) R is paratopologically connected ;
(2) Er C DR ; (3) R(z) C Dr forall z€X.

Proof. If the assertion (1) holds, then by Corollary 16.2 and Theorem 5.3 we have
0 ¢ Er and X € Dr. And hence, by Theorems 16.1, it is clear that the assertion
(2) also holds. Moreover, by Theorem 16.1, it is clear that the converse implication
is true even if X is a singleton.

Finally, to complete the proof, we note that the equivalence of the assertions (2)
and (3) is immediate from the facts that £x is the smallest ascending family in
X containing R(xz) ={R(z): Re€ R} forall x € X, and moreover Dp is
also an ascending family in X .

Theorem 16.5. If R is a relator on X and card (X ) > 1, then the following
assertions are equivalent :

(1) R is paratopologically connected ;
(2) ANB#0 foral A,Be€¢é&g;
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(8) R(z)NS(y)#0 foral z,ye X and R,S€R.

Proof. From Theorem 16.4 we know that the assertion (1) is equivalent to the
inclusion &xr C Dgr. Moreover, from Theorem 3.7 we can see that the inclusion
Er C Dr equivalent to the assertion (2).

On the other hand, by the corresponding definitions, it is clear that the assertions
(2) and (3) are also equivalent.
Corollary 16.6. If R is a topological relator on X , then the following assertions
are equivalent :

(1) R is paratopologically connected ;
(2) Tr \ {0} C Dr ; (8) UNV 0D forall U,V eTr\{0}.

Proof. Now, by Theorem 5.8, for any A C X, we have A € £ if and only if
there exists a V € Tg \ {0} such that V C A. Therefore, by Theorems 16.4 and
16.5, the required assertions are equivalent whenever card(X) > 1. However,
since a topological relator is in particular total, the above cardinality condition can
be omitted.

Remark 16.7. Hence, it is clear that the hyperconnectedness of Steen and Seebach
[54, p. 29], studied also by Levine [25] and several other people (see [52], [42]
and [1]), is a particular case of our paratopological connectedness.

Moreover, from Theorem 16.5 we can also at once see that the semi-directedness
of Szdz [60] coincides with our paratopological connectedness. Therefore, accord-
ing to the corresponding results of [60], we also have the following theorems.

Theorem 16.8. If R is a relator on X and card (X) > 1, then the following
assertions are equivalent :

(1) R is paratopologically connected ;

(2) X\A¢&Er foral A€lgr;

(3) A€ Dgr whenever AC X suchthat ANB#( forall B € Dg.
Theorem 16.9. If R is a relator on X and card (X) > 1, then the following
assertions are equivalent :

(1) R is paratopologically connected ;

(2) A€Dr or X\Ae€Dgr foral ACX;

(3) A€ Dgr or BeDgr whenever X =AUB.

Theorem 16.10. If R is a relator on X and card (X) > 1, then the following
assertions are equivalent :

(1) R is paratopologically connected ; (2) R 1oR={X?};
(3) pR—loR - X2 , (4) CZ'RD'R(AX) - X2 .

Proof. If the assertion (1) holds, then by Theorem 16.5 for any z,y € X and
R,S€R wehave R(z)NS(y)+#0. Hence, it follows that

yeS ' (R(z))= (S "oR) (z).
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Therefore, we have (S 'oR)(z) =X = X?(z) for all z € X. And hence, it
follows that S~'o R = X?2. Therefore, R "' oR = {X?}. That is, the assertion
(2) also holds. The converse implication (2) = (1) can be proved quite similarly
by reversing the above argument.

While, to prove the equivalences (2) <= (3) and (3) <= (4), it is enough to
note that

= ﬂ R 1oR and Pr1.. = ClroR(Ax) .

pR—loR

Remark 16.11. The above theorem is a counterpart of the more familiar state-
ment that a relator R on X is reflexive and properly separating if and only if
Pr 1., = Ax, or equivalently cdror(Ax) =Ax.
Theorem 16.12. If R is a relator on X , then the following assertions are equi-
valent :

(1) R is infinitesimally connected ;

(2) ANp, (X\NA)#D or (X\A)Np,(A)#D for every proper nonvoid
subset A of X ;
(8) ANp.(B)#0 or BNp,(A)#0 forany two nonvoid subsets A and

B of X with X=AUB.

Proof. By Theorem 14.12; the assertion (1) holds if and only if S4 ¢ R® for all
proper nonvoid subset A of X . Moreover, by Theorem 11.19, for any A C X we
have Sa ¢ R® ifand onlyif ANp (X\A)#0 or (X\A)Np(A)#0.
Therefore, the assertions (1) and (2) are also equivalent. Now, since the equivalence
of the assertions (2) and (3) is quite obvious, the proof is complete.

Theorem 16.13. If R is a relator on X , then the following assertions are equi-
valent :

(1) R is ultrainfinitesimally connected ;
(2) X=p(A) or X=p,(X\A) for every proper nonvoid subset A of
X
(8) X=p.(A) or X=p,(B) forany two nonvoid subset A and B of
X with X=AUB.

Proof. By Theorem 14.12, the assertion (1) holds if and only if S4 ¢ R* for all
proper nonvoid subset A of X . Moreover, by Theorem 11.20, for any A C X we
have S4 ¢ R* ifand only if X =p,(A) or X =p,( X\ A). Therefore, the
assertions (1) and (2) are equivalent.

Theorem 16.14. If R is a relator on X , then the following assertions are equi-
valent :

(1) R is parainfinitesimally connected ; (2) Er #0; (3) Dr # X.

Proof. By Theorem 14.12, the assertion (1) holds if and only if S4 ¢ R* for
all proper nonvoid subset A of X . Moreover, by Theorem 11.21, for any proper
nonvoid subset A of X, we have S4 ¢ R* if and only if Ex # (0. Therefore,
the assertions (1) and (2) are equivalent. Moreover, by Theorem 3.8, it is clear that
the assertions (2) and (3) are also equivalent.
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Remark 16.15. Later, we shall see that the inverse of a topologically, paratopo-
logically, or parainfinitesimally connected relator need not have the same connect-
edness property.

However, the following counterpart of Theorem 13.10 shows that the inverse of
an ultimately connected relator is still ultimately connected.

Theorem 16.16. If R is a relator on X and card (X ) > 1, then the following
assertions are equivalent :

(1) R is ultimately connected ; (2) R={X?}.

Proof. By Theorem 14.12, the assertion (1) holds if and only if S4 ¢ R*® for all
proper nonvoid subset A of X . Moreover, by Theorem 11.22, for a proper nonvoid
subset A of X, we have S4 ¢ R* if and only if R = { X2}. Therefore, the
assertions (1) and (2) are also equivalent.

Finally, by calling a relator o—infinitesimally connected if it is x—connected, we
can also prove the following

Theorem 16.17. If R is a relator on X and card (X ) > 1, then the following
assertions are equivalent :

(1) R is o—infinitesimally connected ;
(2) card(X)=1 or (card(X)=2 and {2} ¢ TN Fr forall z€X)
or (card(X)=3 and {2z} ¢ Tr forall z€X).

Proof. By Theorem 14.12; the assertion (1) holds if and only if S4 ¢ R* for all
proper nonvoid subset A of X . Moreover, by Theorem 11.23, for any A C X, we
have S4 ¢ R* if and only if (card(A)=1 and A¢ T ) or (card(X\A)=1
and A ¢ Fr ). Therefore, the assertions (1) and (2) are also equivalent.

Remark 16.18. From Theorem 14.3, by Remark 10.18, we can at once see that a
relator R on X is oo—connected if and only if it is properly connected. Therefore,
the ‘quasi-connectedness properties’ of relators need not also be studied.

Moreover, from Theorem 14.12, by Remark 10.18, we can at once see that the
‘almost uniform (almost proximal) and the superproximal (supertopological) con-
nectedness properties’ of relators need not also be studied.

However, by Remark 13.19, a relator R on X may naturally be called properly
connected at a point = € X if the relator RVR ™! is properly well-chained at = .
Therefore, localized forms of the corresponding connectedness properties of relators
may also be investigated.

17. RELATIONSHIPS BETWEEN WELL-CHAINEDNESS
AND CONNECTEDNESS PROPERTIES

As an immediate consequence of the corresponding definitions, we can at once
state the following
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Theorem 17.1. If R is a properly well-chained relator on X, then R 1s, in
particular, properly connected.

Proof. If R is properly well-chained, then R*> = X2 forall R € R. Hence, since
RC RUR™!Y, itis clear that (RUR™')™ = X2 forall Re€ R. Therefore, the

relator RVR ™! is also properly well-chained, and thus R is properly connected.

Remark 17.2. Later we shall see that even a parainfinitesimally connected
relator need not be properly well-chained.

However, as an immediate consequence of the corresponding definitions, we still
have the following

Theorem 17.3. If R is a strongly symmetric relator on X , then the following
assertions are equivalent :

(1) R is properly connected : (2) R is properly well-chained .

Proof. If R is strongly symmetric, then R~! = R, and hence RUR™! = R for all
R € R. Therefore, RVR ' = R, and hence in particular (RV’Ril)oo = R°°.
Thus, the assertions (1) and (2) equivalent.

Concerning properly connected relators, we can also easily prove the following
theorems.

Theorem 17.4. If R is a uniformly filtered relator on X, then the following
assertions are equivalent :

(1) R is properly connected ; (2) RV R~ is properly well-chained .

Proof. In this case, by Corollary 11.6, for any A C X we have S, € R* if and
only if R E(R \Y R_l)*. Therefore, by Theorems 14.3 and 12.3, the required
assertions are also equivalent.

Theorem 17.5. If R is a reflexive relator on X , then the following assertions
are equivalent :

(1) R is properly connected ;
(2) ReoR~! is properly well-chained ;

(3) R~'eR is properly well-chained.

Proof. In this case, by Theorem 11.7, for any A C X we have 5S4 € R* if
and only if R4 €(R @Rfl)*, or equivalently R4 E(RflaR)*. Therefore, by
Theorems 14.3 and 12.3, the required assertions are also equivalent.

Remark 17.6. The proper well-chainedness of the relator R~'eR, that is, the
condition (R7'eR)™ = {X?}, by Remark 12.2, means only that for any
x,y € X, with x # y, and any R € R there exists a finite family (z;)7,
in X such that z, = 2, 2, = y and (a,_1,7;) € R~ 1o R, that is,
R(z;—1)NR(z;)#0 forall i=1,...,n.
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Theorem 17.7. If R is a uniformly filtered reflexive relator on X, then the
following assertions are equivalent :

(1) R is properly connected ;
(2) RoR™! is properly well-chained ;
(3) R 'oR is properly well-chained.
Proof. In this case, by Corollary 11.9, for any A C X we have Sy, € R* if and

only if R4 € (R o Ril) ", or equivalently Ry E(Ril o R)* Therefore, by
Theorems 14.3 and 12.3, the required assertions are also equivalent.

As an immediate consequence of Theorem 17.1, we can at once state

Theorem 17.8. If [ is a unary operation for relators on X and R is a
L—well-chained relator on X , then R s, in particular, [1-connected.

Moreover, in addition to Theorem 17.3, we can also easily prove the following

Theorem 17.9. If R 1is a quasi-prorimally symmetric relator on X, then the
following assertions are equivalent :

(1) R is proximally connected ; (2) R is proximally well-chained .

Proof. In this case, by Theorem 8.5, we have 7, = 7, , and hence 7, N7, = 7,.
Therefore, by Theorems 15.6, 12.8 and 13.3, the required assertions are equivalent.

From Theorem 17.9, by Theorems 15.3, 15.5 and 13.3, it is clear that in particular
we also have the following

Corollary 17.10. If R s a uniformly filtered and quasi-proximally symmetric
relator on X , then the following assertions are equivalent :

(1) R is properly (uniformly) connected ;

(2) R is properly (uniformly) well-chained.

Moreover, from Theorem 17.9, we can also easily get the following

Theorem 17.11. If O is a # —invariant operation for relators on X and R is
a quasi—-C—symmetric relator on X , then the following assertions are equivalent :

(1) R is O-connected : (2) R is O-well-chained .

. . . . -1
Proof. Since R is a quasi-[J-symmetric, we have (RDOO) = RH>, Hence,
—1
since RU# = RP, we can infer that ( (RD)#OO> = (RD)#OO. Therefore, the
relator RY is quasi-proximally symmetric.

Now, by Theorem 17.9, it is clear that the relator R” is proximally connected
if and only if it is proximally well-chained. That is, the relator RE# is properly
connected if and only if it is properly well-chained. And hence, since RP# = R,
it is clear that the required assertions are also equivalent.
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Remark 17.12. From Theorem 17.11, in particular, it is clear that a quasi-
topologically symmetric relator is topologically connected if and only if it is topo-
logically well-chained.

On the other hand, from Theorems 17.1 and 15.14, we can at once see that a

properly well-chained reflexive Lebesque relator is already topologically connected,
despite that it need not be topologically well-chained by the following

Example 17.13. If X =[0, 1] and
R,={(z,y)eX?*: |z-y|<1l/n}

for all n € N, then R = { Rn}zo:l is a properly well-chained reflexive Lebesgue
relator on X such that R is not topologically well-chained.

Clearly, R is a properly filtered and strictly uniformly transitive tolerance relator
on X . Moreover, by Theorem 8.24, it is clear that R is topologically compact.
Therefore, by Theorem 8.27, R is a Lebesgue relator. Moreover, by Remark 12.2
and Theorem 13.5, it is clear that R is properly, but not topologically well-chained.

Finally, we note that, by Theorems 16.16, 13.10 and 13.14 and Proposition 12.6,
we also have the following

Theorem 17.14. If R is a relator on X , then the following assertions are equi-
valent :

(1) R is ultimately connected ; (2) R is ultimately well-chained.

Remark 17.15. The latter theorem can also be easily derived from Theorem 17.11
since the operation 4 is invariant under the operations # and —1.

18. A FEW ILLUSTRATING EXAMPLES

The following example shows that even a parainfinitesimally connected preorder
relator need not be properly well-chained.

Example 18.1. If X = {1,2} and R C X? such that R(1) = {1} and
R(2) =X, then R={R} is a parainfinitesimally connected preorder relator on
X such that R is neither properly well-chained nor ultimately connected.

Note that Eg = (1 &r = R(1)NR(2) = {1} # 0. Therefore, by Theorem
16.14, R is parainfinitesimally connected. But, R>® = R # X?2. Therefore, by
Definition 12.1, R is not properly well-chained. Moreover, by Theorem 16.16, R
is not ultimately connected.

The following example shows that even a uniformly connected preorder relator
need not be proximally connected. Moreover, the hypotheses of Theorems 15.5 and
17.3 cannot be significantly weakened.

Example 18.2. If X = {1,2} and R C X? such that R(1) = {1} and
R(2) = X, then then R = {R, Ril} is a uniformly connected, proximally
filtered and properly symmetric preorder relator on X such that R is neither
properly well-chained nor proximally connected.
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Note that Sfy = S(oy = Ax is not contained in R*. Therefore, by Theorem
14.12, R is uniformly connected. But, {1} € 7%, and moreover {2} € 7., and
hence {1} = X \ {2} € #,. Therefore, by Theorem 15.6, R is not proximally
connected. The required filteredness property of R is immediate from the fact that
Ax € R#.

The following two examples show that even a paratopologically connected
tolerance or preorder relator need not be infinitesimally connected. Therefore, the
counterpart of Corollary 13.15 with ‘well-chained’ replaced by ‘connected’ is not
true.

Example 18.3. If X ={1,2,3} and R; C X? for i=1, 2 such that
Ri(1)=X, Ri(2)={1,2}, Ri(3)={1,3},
R2(1)2{172}’ RQ(Z):Xa R2(3):{253}7

then R = {Ry, Re} is a proximally well-chained and paratopologically
connected tolerance relator on X such that R is neither topologically well-chained
nor infinitesimally connected.

Note that 7, = {0, X}. Therefore, by Theorems 12.8 and 13.3, R is
proximally well-chained. But, {1,2} € 7z . Therefore, by Theorem 13.5, R
is not topologically well-chained.

Moreover, we evidently have R;(z) N R;(y) # 0 for all i,j € {1,2} and
x,y € X. Therefore, by Theorem 16.5, R is paratopologically connected. But,
p;l = (1R = Sf3}, and hence S3) € {p;l}* = R*. Therefore, by Theorem
14.12, R is not infinitesimally connected.

Example 18.4. If X ={1,2,3} and R; C X2 forall i € X such that

Ri(1) =X, Ri(2)={2,3}, Ri(3)={2,3},
Ry(1)={1,3}, Ry(2) = X, Ry(3)={1,3},
R3(1):{172}7 R3(2):{1a2}7 R3(3):X7

then R ={ Ry, Ro, R3} is a paratopologically connected preorder relator on X
such that R is neither properly well-chained nor infinitesimally connected.

Note that R;(x) N R;(y) # 0 forall ¢, j € X and x,y € X. Therefore, by
Theorem 16.5, R is paratopologically connected. But, ,0;1 =R = Ax, and

hence Ax € {p;l}* = R*. Therefore, by Theorem 14.12, R is not infinitesi-
mally connected.

The following example shows that even an infinitesimally well-chained and
ultrainfinitesimally connected reflexive relator need not be parainfinitesimally
connected.

Example 18.5. If X ={1,2,3} and R C X2 such that
R(1)={1,2}, R(2)={2,3}, R(3)={1,3},

then R = { R} isan infinitesimally well-chained and ultrainfinitesimally connected
reflexive relator on X such that R is neither paratopologically well-chained nor
parainfinitesimally connected.
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Note that p, = (VR '= R~!. Moreover, R? = X? and hence R>™ = XZ2.
Therefore, p>° = (R_l)oo = (RC’O)_1 = X2, and thus by Theorem 13.16 R is
infinitesimally well-chained. But, by Theorem 13.10, R is not paratopologically
well-chained.

Moreover, R7'(1) = {1,3}, R7'(2) = {1,2} and R7'(3) = {2,3}.
Therefore, p,(A) = R71(A) = X forall A C X with card(A) = 2. Thus,
by Theorem 16.13, R is ultrainfinitesimally connected. But, now we also have
Er =N ér = ﬂ?zl R(i) = (. Therefore, by Theorem 16.14, R is not para-
infinitesimally connected.

The following example shows that even an infinitesimally well-chained tolerance
relator need not be paratopologically connected.

Example 18.6. If X ={i}!, and R C X? such that
R(1)={1,2}, R(2)={1,2,3}, R@3)={2,3,4}, R(4)={3,4},

then R = { R} is an infinitesimally well-chained and infinitesimally connected
tolerance relator on X such that R is neither paratopologically well-chained nor
paratopologically connected.

Note that p, = (Rl = R™1 = R. Moreover, R® = X2 | and hence
R>* = X?2. Therefore, pa =X 2 and thus by Theorem 13.16 R is infinitesimally
well-chained. And hence, by Theorem 17.8, R is infinitesimally connected. But,
R(1)NR(4) =0, and thus by Theorem 16.5 R is not paratopologically connected.
Moreover, by Theorem 13.10, R is not paratopologically well-chained.

The following example shows that even a topologically well-chained tolerance
relator need not be infinitesimally connected.

Example 18.7. If X ={i}}, and R; C X? for i=1,2 such that

Ri(1)=1{1,2,3}, R1(2)=1{1,2,4}, R1(3)={1,3,4}, Ri1(4)=1{2,3,4},
Ro(1)={1,2,4}, Ry(2)={1,2,3}, R5(3) ={2,3,4}, Ro(4)={1,3,4},
then R = { Ry, R2} is a topologically well-chained and topologically connected

tolerance relator on X such that R is neither infinitesimally well-chained nor
infinitesimally connected.

Note that 7gx = {0, X }. Therefore, by Theorem 13.5, R is topologically
well-chained. And hence, by Theorem 17.8, R is topologically connected. But,
if A={1,2}, then pZ' = (\R = Sa, and hence S4 € {p;'} = R
Therefore, by Theorem 14.12, R is not infinitesimally connected. And thus, by
Theorem 17.8, R is not infinitesimally well-chained.

The following example shows that even a proximally well-chained tolerance
relator need not be topologically connected.

Example 18.8. If X ={i}} , and R; C X? for all i € X such that
Ry(1)={1,2}, Ri(2)=X, Ri(3)=Ry1(4)={2,34},

() ) R2(2):{172}7 R2(3):R2(4):{17374}a
R3(1)=R3(2) ={1,2,4}, R3(3)=1{3,4}, R3(4) =X,
(1)=R4(2)={1,2,3}, R4(3)=X, Ry(4)={3,4},
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then R = {Ri}jzl is a proximally well-chained and proximally connected
tolerance relator on X such that R is neither topologically well-chained nor topo-
logically connected.

Note that 7, = {0, X }. Therefore, by Theorems 12.8 and 13.3, R is proxi-
mally well-chained. And hence, by Theorem 17.8, R is proximally connnected.
But, {1,2} € 7, and moreover {3,4} € Tg, and hence {1,2} € Fxr.
Therefore, by Theorem 15.9, R is not topologically connected. And hence, by
Theorem 17.8, R is not topologically well-chained.

The following example shows that the inverse of even a topologically well-chained,
paratopologically and infinitesimally connected reflexive relator need not be topo-
logically well-chained.

Example 18.9. If X ={1,2,3} and R; C X? for i=1,2 such that
Rl(l):{172}7 R1(2):{273}7 R1(3):X7
Ry(1)={1,3}, Ry(2)={2,3}, Ry(3) = X,

then R = {R;, Ry} is a topologically well-chained, paratopologically and
infinitesimally connected reflexive relator on X such that R is neither infinitesi-
mally well-chained nor ultrainfinitesimally connected. =~ Moreover, R~! is a
proximally well-chained and parainfinitesimally connected reflexive relator on X
such that R~! is neither topologically well-chained nor ultimately connected.

Note that 7gr = {0, X }. Therefore, by Theorem 13.5, R is topologically
well-chained. Hence, by Remark 13.2 and Theorem 12.17, R~! is proximally well-
chained. Moreover, R;(z)NR;(y)#0 for all i,j e {1,2} and =,y € X.
Therefore, by Theorem 16.5, R is paratopologically connected.

Moreover, it can be easily seen that

Ry (1) = {1, 3}, Ry (2) =X, Ry (3) ={2,3};
Ry (1) = {1, 3}, Ry;'(2) = {2, 3}, Ry'(3) =X .
Hence, since p, =) R 1= RIl N Rgl, it is clear that
pr(l)={1,3} and Pr(2)=pr(3)={2,3}.

Therefore, {2,3}Np,(1)#0, {1,3}Np,(2)#0 and {1,2}Np,(3)#0D.
Thus, by Theorem 16.12, R is infinitesimally connected.

Moreover, we can also easily see that

Bra=()ra=[{R"(x): weX, ic{1,2}}={3}+#0.

Therefore, by Theorem 16.14, R~! is parainfinitesimally connected.

On the other hand, if A = {1}, then we can at once see that p,(A)={1, 3}
and p.(X\A)=1{2,3}. Thus, by Theorem 16.13, R is not ultrainfinitesimally
connected. Moreover, we can also at once see that {2, 3} € Tr-1. Therefore, by
Theorem 13.5, R~! is not topologically well-chained. Thus, by Remark 13.2 and
Theorem 12.17, R is not infinitesimally well-chained. Finally, by Theorem 16.16,
it is clear that R~' is not ultimately connected.
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Remark 18.10. From Example 18.9 we can at once see that the inverse of even
a proximally well-chained and parainfinitesimally connected reflexive relator need
not be either infinitesimally well-chained or ultrainfinitesimally connected.

Moreover, by using Example 18.4, we can easily show that the inverse of even a
paratopologically connected preorder relator need not be topologically connected.
Therefore, neither the topological nor the paratopological connectedness is inverse
invariant.

Example 18.11. If X and R are as in Example 18.4, then R is a para-
topologically connected preorder relator on X such that R~! is a preorder relator
on X such that R~! is not even topologically connected.

Note that, under the notation of Example 18.4, we have

RN (1) ={1}, RT'(2) =X, RT'(3)=X,
R, (1)=X, R,'(2)={2}, R'(3)=X,
R;'(1) =X, R;'(2) =X, Ry'(3)={3}.

Hence, since R~! = {Rl_l, Ry, R?)_l}, we can see that {1} € 7zr-1, and
moreover {2,3} € Tr-1, and hence {1} € Fr—1. Therefore, by Theorem 15.9,
R~ is not topologically connected.

The following example shows that the hypothesis of the reflexivity of the relator
R in Theorem 14.10 is essential.

Example 18.12. If X = {1,2} and R = X x {1}, then R ={R} isa
parainfinitesimally connected, strongly transitive relator and & = { Ax} is an
equivalence relator on X such that & is properly refined by R, but S is not
properly connected.

Note that Exr = (1 Er = R(1)NR(2) = {1} # 0. Therefore, by Theorem
16.14, R is parainfinitesimally connected. Moreover, f = R is a function of X
into itself such that Ax o f = R € R. Therefore, S is properly refined by R.
But, for instance, S;;; = Ax € § C §*, and thus by Theorem 14.3 § is not
properly connected.

The following example shows that the reflexivity of the relator S in Theorem
14.10 cannot be stated.

Remark 18.13. If X = {1,2} and S C X? such that S(1) = {2} and
S(2) = X, then R = {X 2} is a paratopologically well-chained and ultimately
connected equivalence relator and § = {S} is an infinitesimally well-chained
and parainfinitesimally connected strongly symmetric relator on X such that S is
properly refined by R, but S is not reflexive.

By Theorems 13.10 and 16.16, it is clear that the relator R is paratopologically
well-chained and ultimately connected. On the other hand, we can easily see that
ps =S t=8"1=8. Moreover, S? = X2, and hence S = X?. Therefore,
pe =X 2 and thus by Theorem 13.16 S is infinitesimally well-chained. More-
over, it is clear that Exr = (1 €s = S(1)NS(2) = {2} # 0. Therefore, by
Theorem 16.14, S is parainfinitesimally connected. Finally, we can observe that
f=Xx{2} isa function of X into itself such that So f = X? € R. Therefore,
S is properly refined by R. But, despite this, S is not reflexive.
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The following similar example shows that the counterpart of Theorem 14.10 with
‘connected’ replaced by ‘well-chained’ is not true.

Example 18.14. If X = {1,2} and S C X? such that S(1) = {1} and
S(2) = X, then R ={X?} isa paratopologically well-chained and ultimately
connected equivalence relator and & = {S} is a parainfinitesimally connected
preorder relator on X such that S is properly refined by R, but S is not properly
well-chained.

As a more delicate example of the above types, we can also at once state

Example 18.15. If X ={1,2} and S; C X? forall i € X such that
S1(1)={1}, S1(2) =X, and Se(1)=X, Se(2)={2},

then R = {X 2} is a paratopologically well-chained and ultimately connected
equivalence relator and § = { 51, S2} is a uniformly connected, properly filtered
and properly symmetric preorder relator on X such that S is properly refined
by R, but S is neither properly well-chained nor proximally connected. Thus, in
particular, the relator S# cannot be refined by R*.

The following example shows that, in contrast to Corollaries 12.5 and 16.2, an
infinitesimally connected relator need not be total.

Example 18.16. If X = {1,2} and R = {2} x X, then R = {R} is
an infinitesimally connected relator on X such that R is not total. Thus, in
particular, R cannot be properly well-chained and paratopologically connected.

Note that p, =R ' =R ' = X x {2}, and hence {2} Npr(1) # 0.
Therefore, by Theorem 16.12, R is infinitesimally connected. But, despite this R
is not total.
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19. A SUMMARY OF IMPLICATIONS

The relations between the various well-chainedness and connectedness properties
of relators may be summarized by the following set of implications.

[
properly properly
well-chained connected
133 M2 153
uniformly uniformly
well-chained connected
I§ED a2t P2
proximally 178 proximally
well-chained connected
M2 N 12
topologically 178 topologically
well-chained connected
M2 N 12 152
infinitesimally 178 infinitesimally
well-chained connected
SINERE: N 183184
paratopologically paratopologically
well-chained connected
M3z szt 152
ultrainfinitesimally ultrainfinitesimally
well-chained connected
132 is2ft i8S
parainfinitesimally parainfinitesimally ¢,

well-chained
M3z
ultimately
well-chained
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