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PROPORTION THEORY IN GREEK MATHEMATICS

LÁSZLÓ FILEP

Abstract. The concepts of ratio, equal ratio, proportion played an impor-
tant role in ancient Greek mathematics. The Book V of Euclid’s Elements
contains a proportion theory of (geometrical) magnitudes based on the equal
ratio definition of Eudoxus (Definition V.5). In this paper we study both the
pre-Eudoxian theory of proportion, and the genesis of Eudoxus’s definition.

1. Proportion theory in Elements

First recall the most important definitions and propositions of the Elements for
ratio, equal ratio and proportion. Most of them are formulated separately both for
numbers and magnitudes. The citations are from Heath’s translation [2].

Magnitude itself was not explicitly defined, so handled as a common notion,
but the number was: “A number is a multitude composed of units” (Def. VII.2).
Definition V.4 shows that not all kinds of magnitudes can have ratio only the so-
called Archimedean ones: “Magnitudes are said to have a ratio to one another
which are capable, when multiplied, of exceeding one another.” Circle segment is
one example for non-Archimedean magnitude.

In case of ratio, the situation is opposite. The ratio for numbers was not defined,
only for magnitudes: “A ratio is a sort of relation in respect of size between two
magnitudes of the same kind.” (Def. V.3)

Eudoxus’s celebrated equal ratio definition for magnitudes sounds like this: “Mag-
nitudes are said to be in the same ratio, the first to the second and the third to
the fourth, when, if any equimultiples whatever be taken of the first and third, and
any equimultiples whatever of the second and fourth the former equimultiples alike
exceed, are alike equal to, or alike fall short of, the latter equimultiples respectively
taken in corresponding order” (Def. V.5).

Thus, if a, b, c, d are magnitudes (of the same kind), then a : b = c : d holds, if
and only if for any positive integers (“numbers” in Greek usage) n, m

ma T nb =⇒ mc T nd.

The arithmetical books of the Elements (Books VII-IX) are held the oldest ones,
preserving the Pythagorean number theory for us. Euclid defines the proportion-
ality (equal ratio) of numbers, and gives a criterion for it in Book VII:

“Numbers are proportional when the first is the same multiple, or the same part,
or the same parts of the second that the third is of the fourth” (Def. VII.20).

“If four numbers be proportional, the number produced from the first and fourth
will be equal to the number produced from the second and third; and, if the number

2000 Mathematics Subject Classification. 01A20.
Key words and phrases. Proportion theory, same ratio definition, Eudoxus,

incommensurability.

167
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produced from the first and fourth be equal to that produced from the second and
third, the four numbers will be proportional” (Prop. VII.19).

In modern algebraic language, this theorem can be reformulated like this: Let a,
b, c, d be positive integers. The equality a : b = c : d holds if and only if a ·d = b · c.
In his proof Euclid uses propositions from Book V (Props 7, 9) on magnitudes being
in the same ratio.

It is worth mentioning that in Prop. VI.16 a criterion is given for the propor-
tionality of four straight lines: “If four straight lines be proportional, the rectangle
contained by the extremes is equal to the rectangle contained by the means; and, if
the rectangle contained by the extremes be equal to the rectangle contained by the
means, the four straight lines will be proportional.” In other words: the criterion
for the straight lines a, b, c, d to be proportional a : b = c : d is that a ·d = b ·c. Pro-
duction of straight lines (generally: magnitudes) was impossible for Greeks, in fact
for all mathematicians before Descartes, so Euclid used the “equal area” language
instead.

These equal ratio definitions are clearly older than that of Eudoxus’s, whose
secret of the success lies in the following facts. It does not use any disputed concepts
of Greek mathematics, such as infinite divisibility, commensurability, number, ratio,
etc., only those ones (greater, equal, and smaller) which are suitable to compare
two equimultiples of magnitudes. Definition V.4 seemingly is that of ratio, but
actually prescribes the existence of potential increasing infinity, which was generally
accepted for both numbers and magnitudes. Eudoxus generalized the former equal
ratio definitions for number and lines, so the theorems proved by them remained
valid. It annuls only those theorems, which took all magnitudes commensurable.
These theorems remain valid only for commensurable magnitudes, especially for
numbers.

“Similar rectilineal figures are such as have their angles severally equal and the
sides about the equal angles proportional.” – says Definition VI.1. To prove all
theorems in the book, Euclid could have used only Eudoxus’s definition, so to give
a special “proportional” definition for straight lines in Prop. VI.16 appears useless,
unless Euclid wanted to preserve some former and simpler proofs. This also confirms
that must have existed pre-Eudoxian theories of proportions.

2. Development of Greek proportion theory

Since the only original source of Greek mathematics is Euclid’s Elements, and
even Eudoxus lived before Euclid, it is very hard to reconstruct the development.
The other sources, such as Plato and Aristotle allusions, fragments of some math-
ematical works, and Proclus’s commentaries allow different deductive reconstruc-
tions. In the following we also give a possible reconstruction. To support our train
of thought, we refer mainly to Árpád Szabó’s book, as well as to the Elements, and
the following words of Proclus, a scholiast to Book X of the Elements, and Diogenes
Laertius:

“The theory of commensurable magnitudes is developed primarily by arithmetic
and then by geometry in imitation of it. This is why both sciences define commen-
surable magnitudes as those which have to one another the ratio of a number to a
number, and this implies that commensurability exists primarily in numbers.” [6,
p. 49]

Euclid was “. . . Collecting many of the theorems of Eudoxus, perfecting many
others by Theaetetus, and bringing irrefragable demonstrations the propositions
which had only been somewhat loosely proved by his predecessors.” [6, p. 8]

“The Pythagoreans were the first to make inquiry into commensurability, having
first discovered it as a result of their observation of numbers; for though the unit
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is a common measure of all numbers, they could not find a common measure of all
magnitudes.” [8, p. 215]

“He adds that Pythagoras specially applied himself to the arithmetical aspects
of geometry, and he discovered the musical intervals on the monochord.” [8, p. 175]

We think that the so-called antanairesis method played a key role in the devel-
opment of Greek mathematics, especially in proportion theory. Antanairesis was
used for finding a common measure of two numbers or two magnitudes (e.g. two
straight lines). Subtract in each step some multiple of the smaller from the greater,
so that the remainder is not greater than the smaller. The procedure ends when the
smaller measures the greater, i.e. some multiple of it is equal to the greater. This
last remainder gives the greatest common measure of the two numbers or magni-
tudes. The unit (one) is a common measure of any two numbers, if they prime to
one another it is the only common measure, as Def. VII.12 states. This means that
any two numbers are commensurable; the antanairesis is a finite procedure.

In our opinion the development of proportion theory (generally: the development
of Greek mathematics) could have happened in three phases. We also think that
these phases are reflected in Euclid’s Elements.

2.1. Pre-antanairesis stage. Arithmetic and geometry developed separately.
Arithmetic studied the properties of the discrete number, while geometry those
of the continuous magnitude. Numbers were represented by rows or figures of peb-
bles, antanairesis was applied for numbers. To study their proportions they used
Def. VII.20 or later its simpler equivalent Prop. VII.19.

Geometry was purely synthetic, so to define similarity with ratio of lines was
impossible. Two circles were considered similar intuitively, while for their segments
we find the following definition (Def. III.11): “Similar segments of circles are those
which admit equal angles, or in which the angles are equal to one another.” This
“equal angles” definition works for all regular polygons, for any triangles, but not
for rectangles.

We know that the Greek word for equal (isos) had two meanings in this respect:
congruent, or of equal area. The first meaning was used in case of regular polygons
and triangles (see, for instance Prop. I.4), while the second in other cases, when
”equal and similar” expressed congruency (see e.g. Props. VI.29, XII.3). The central
problem of geometry was the squaring (dynamis, tetragonism): to find a square
equal to a given rectilinear figure. Theorems of this kind can be found in Books
I-II of Elements. As Á. Szabó showed in [7], the word “dynamis” is a very old one,
so these theorems must also be old.

Proposition II.11 is perhaps the most important in this respect: “To cut a given
straight line so that the rectangle contained by the whole and one of the segments is
equal to the square on the remaining segment.” In strict sense, it is not a theorem
but a constructional problem. The solution uses Props. I.46, I.47 (the Pythagorean
theorem), and II.6. By II.11, the Pythagoreans could construct their symbolical
regular pentagon without the concept of similarity (see Props. IV.10–14).

If the straight line is denoted by AB, the desired cutting point by C, then by
II.11: AB · CB = AC2, or algebraically ac = b2, where AB = a, AC = b, CB = c.
Using the same notations, II.7 states for any point C on AB: a2 + c2 = 2ac + b2.
Thus, if especially fulfills the condition of II.11, then a2 + c2 = 3b2.

There is another remarkable proposition from Book II, namely II.14: “To con-
struct a square equal to a given rectilinear figure.” This is a general squaring
problem solved by Props. I.45, I.47, and II.5. We note, that to recognize the close
connection between II.11 and II.14 was not possible in this phase.
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2.2. Pro-antanairesis phase. We know from Plato that the Greeks were con-
vinced on the commensurability of any two geometric quantities: “Again, what of
the relations of line and surface to volume, or of surface and line to another: do
not all we Greeks imagine that they are commensurable in some way or other?” [5,
vii 820d; 12, p. 25]

Applying the antanairesis to geometry the Pythagoreans could think they had
found the proper method to verify this conviction. If any two magnitudes are
commensurable, then any ratio is “expressible” as the ratio of two numbers. Con-
sequently, any length, area, volume are expressible by numbers. Thus, number is
the first principle, not the point or line, arithmetic surpasses geometry. They in-
troduced arithmetic concepts in geometry trying to unite arithmetic and geometry.

According to Aristotle’s Metaphysics, the Pythagoreans developed a number-
based philosophy. Finding different means became interpretable for magnitudes,
too, not only for numbers as before. Instead of squaring, finding different means
was the basic problem in geometry. They recognized that (Aristotle: Met. 996b):
“what squaring a rectangle is, viz. that is the finding of a mean.”

The Pythagoreans used arithmetic, harmonic and geometrical means in music
theory. Then studied those conditions in arithmetic under which these means are
again numbers. That time the term “geometric mean” was not used, only the one:
mean proportional. Á. Szabó is right saying in [7, p. 177] : “. . . to find a numerical
geometric mean between the two numbers . . . may have led, by way of arithmetic,
first to the problem of geometrical similarity (for rectilinear figures) and then to
the geometrical construction of a mean proportional . . . ”

Proportionality in arithmetic and similarity in geometry became gradually sub-
types of the general equal ratio concept in the unified Pythagorean mathematics.
Since every ratio was supposed to be expressible in numbers, so they could have
stated a proportion like this: magnitudes have to one another a ratio which a
number has to a number. The proof must have been based on Def. VII.20.

In this “similarity” phase, both II.11 and II.14 were reformulated, as well as their
connection was noticed: “To cut a given finite straight line in extreme and mean
ratio.” (Prop. VI.30); “To two given straight lines to find a mean proportional.”
(Prop. VI.13) The figures of the proofs are the same as those of their “ancestors”
in Book II. The difference is only in the use of similarity concept.

The equality a2 + c2 = 3b2 obtained by applying II.11 to II.7 also has a coun-
terpart in the Elements, namely Prop. XIII.4. The statements, the graphs of the
proofs are the same in both propositions, except the use of the phrase “extreme
and mean ratio”. Hard to explain why Euclid did not use II.7 in his proof.

Prop. VI.13 offers an easy tool to make a construction required by VI.30. If our
train of thought is correct, II.14 must antedate VI.13. Moreover, dynamis must be
an earlier concept than mean proportional line, on the contrary of the generally
accepted views.

Finding a mean proportional between two lines is always possible by Prop. VI.13,
but it is not the case for numbers. Propositions VIII.18 and 20 give the criterion
for the existence of a mean proportional number: the two numbers must be similar
plane numbers. The square number clearly is a special plane number; nevertheless,
Euclid formulates another proposition (VIII.11) for them. This reflects the former
special role of squares in first phase similarity.

The phrase “similar plane numbers” sounds strange for us, but not for the
Pythagoreans, as we can see from the definitions of Book VII. Since every length,
area and volume are numbers, so a rectangle (its area), as a number is a product of
two numbers, namely of its sides. The product itself was called plane number (Def.
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VII.16). In case of a square the product’s name was square number (Def. VII.18).
Solid and cube numbers were defined similarly (Defs. VII.17 and 19).

“Similar plane and solid numbers are those which have their sides proportional”
– says Def. VII.21. Believing in the commensurability of any two magnitudes, by
proportionality the Pythagoreans might have meant the following. Let a, b, c,
d be magnitudes of the same kind, and let n, m, q, r be numbers. Further, let
a : b = n : m, c : d = q : r. The equality a : b = c : d holds if and only if
n : m = q : r, the criterion of which by Prop. VII.19: nr = mq. Let us call this
proposition concept “equal product” one. To prove Prop. VI.31, the generalization
of the Pythagorean theorem to similar rectangles, is also possible by this concept.

The arithmetic version of the Pythagorean theorem is also can be found in the
Elements, strangely enough in Book X: To find two square numbers such that their
sum is also square (Lemma 1 after Prop. 28). The proof is based on three theorems
from Book IX, and Prop. II.6.

2.3. Incommensurability phase. Some Pythagorean (Hippasus?) discovered
that the antanairesis procedure is endless when applied to the diagonal and side
of the square. The existence of lines whose lengths or ratio is “inexpressible” by
numbers terminated the dominant role of number in mathematics. The concept
of magnitude took over its role. The line, plane figure, solid body exist, but their
length, area, volume are numbers only in special cases. Their ratios can only be
expressed in numbers, when they are commensurable (see Props. X.5–6). It is re-
markable that Euclid used Def. VII. 20 to show the proportionality (equal ratio) of
two magnitudes and two numbers.

The discovery of incommensurable lines invalidated the geometrical proofs in-
volving the concept of proportion (similarity). They remained valid only for com-
mensurable magnitudes, especially for numbers together the equal product con-
ception of proportionality. The need for a new proportion concept, valid for both
commensurable and incommensurable magnitudes, has arisen.

Á. Szabó quotes in [7, p. 101] a same ratio definition from Aristotle Topics
158b: “Those magnitudes are in the same ratio whose anthyphairesis is the same”.
This anthyphairesis (antanairesis) definition is allegedly attributed to Theaetetus,
a contemporary of Eudoxus.

The antanairesis definition of equal ratio was born probably to avoid the diffi-
culties with incommensurable straight lines. Some historians share this view, some
others, including Á. Szabó, reject it. Anyway, with this definition, many properties
of proportions found in Books V and VI can be proved for straight lines, but not
all, for instance Prop. VI.12 and VI.13. Omar Khajjam’s attempt to prove Prop.
13 by this definition is discussed in [3]. With Eudoxus’s equal ratio definition, Eu-
clid could give “irrefragable” proofs for all properties of proportions, and all former
theorems containing similarity concept.

In Books I–IV the word “similar” occurs only in connection with circle seg-
ments, since being non-Archimedean magnitudes the problem of commensurability
is meaningless for them. As mentioned before, Euclid gave two proofs for many
theorems: one in Book I–IV without proportion, and one later using proportion
theory. Euclid’s idea behind this strange doubling probably was: giving first a
proof (found by his predecessors, or by him) using not debated concepts helps to
accept and understand the new proofs including new, debated concepts.

Putting the earlier Pythagorean arithmetic after Book V (Books VII–IX) seems
not to be logical, since Euclid does not use any results from the previous books
except some properties of proportions of magnitudes. He applied them for numbers
without any proof. On the other hand, to some other theorems on proportions he
gave two proofs: one in Book V for magnitudes by Def. V.5, and one in Book VII
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for numbers by Def. VII.20. This shows that Euclid was not consequent in taking
number (and straight line, too) as special magnitude.

Euclid’s Elements reflects the influence of Aristotle’s philosophy, so let us quote
him on the relation between number and magnitude [1, An. Post. I.6-7 75a]:

“You cannot therefore when proving a thing pass form one genus to another; e.g.
you cannot prove a geometrical proposition by arithmetic. . . . Now the things from
which the proof starts (the axioms) may be the same (whatever the subject); but
where the genus is different, say in arithmetic and geometry, it is not possible to
apply the arithmetical demonstrations to the properties of magnitudes unless the
magnitudes are numbers.”

For us any geometrical magnitude is simply a real number, positive integers are
special real numbers, so all statements for real numbers remain valid for positive
integers, but the converse is not true. In the Elements, both magnitudes and
numbers were symbolised by straight lines, and Euclid handled straight lines mainly
also as special magnitudes.

Many theorems in Book VII concerning antanairesis have a correspondent in
Book X. Comparing them one can recognize that in some cases the latter simply
a translation of the former using the following vocabulary: number – magnitude,
prime to one another - incommensurable, not prime to one another – commensu-
rable. Take for example propositions VII.1 and X.2, as well as VII.2 and X.3 (their
numbering also suggests parallelism).

Prop. VII.1: Two unequal numbers being set out, and the less being contin-
ually subtracted from the greater, if the number which is left never measures
the one before it until an unit is left, the original numbers will be prime to
one another.

Prop. X.2: If, when the less of two unequal magnitudes is continually sub-
tracted in turn from the greater, that which is left never measures the one
before it, the magnitudes will be incommensurable.

Prop. VII.2: Given two numbers not prime to one another, to find their
greatest common measure.

Prop. X.3: Given two commensurable magnitudes to find their greatest com-
mon measure.

The argumentation and even the wording of the proofs of these counterparts are
nearly the same. In case of Props. VII.2 and X.3 the porisms are also the same:
From this it is manifest that if a number measures two numbers, it will also measure
their greatest common measure (VII.2). From this it is manifest that if a magnitude
measures two magnitudes, it will also measure their greatest common measure.
(X.2) The proofs of Book VII theorems use only generally accepted concepts, but
those of Book X require the debated exhaustion principle, which is the mathematical
form of infinite divisibility. Euclid proved this principle in Prop. X.1 by Def. V.4,
which is also behind Def V.5, Eudoxus’s equal ratio definition.

2.4. Genesis of Eudoxus’s equal ratio definition. To the best of my knowl-
edge, nobody has studied the deduction of Eudoxus’s, except V.J. Katz, who writes
in his excellent book [4, p. 80]: “It is not known what inspired Eudoxus to his new
definition, but a reasonable guess can be made.” Katz derives Eudoxus’s definition
from Theaetetus’s one, in spite his negative judgment on the latter: “for specific
magnitudes this definition may be awkward to use.” In my opinion, the argumen-
tation of his deduction is not convincing enough.

We will show that Eudoxus’s new equal ratio concept originated a former one:
namely from Prop. VII.19. Eudoxus could not simply rewrite it for magnitudes,
since to multiply magnitudes was unimaginable for him. Nevertheless, the idea
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might have come from it in the following manner. If n, m, q, r are arbitrary
numbers, there are three cases for their ratios n : m and q : r, namely: n : m > q : r,
n : m = q : r, n : m < q : r, or equivalently: nr > mq, nr = mq, nr < mq.
Combining the cases we have:

n : m T q : r, or nr T mq.

Now replace the numbers q and r by the magnitudes a and b, respectively, and
substitute in the above relations:

n : m > a : b, n : m = a : b, n : m < a : b, nb > ma, nb = ma, nb < ma.

If a and b are commensurable, then there exists exactly one n and m for which
the equality holds, while if they are incommensurable, then for all m and n one and
only one of these inequalities is valid. Thus for arbitrary a and b exactly one holds
from the above relations, which can be written in the following unified forms:

a : b T n : m, or ma T nb.

We can write similar relations for the magnitudes c and d, and may suppose that
the condition for the equal ratio is the same relation for the same numbers n and
m, i.e. a : b = c : d, if for all numbers n, m

ma T nb =⇒ mc T nd.

This definition (i.e. Def. V.5) seems to be logical, but the Greeks surely needed
an “irrefragable” proof for it, which must have been an indirect one regarding the
problems with the lemmas in a direct proof. We remark that the first generally
accepted proof for the incommensurability of the diagonal and side of the square
was also an indirect one.

Suppose that a : b = c : d, but the above implication is not true for all numbers
n, m. Then there exist at least one n and m for which one of the following three
relations holds:

(1) ma > nb and mc ≤ nd, (or a : b > n : m ≥ c : d),
(2) ma = nb and mc 6= nd, (or a : b = n : m 6= c : d),
(3) ma < nb and mc ≥ nd, (or a : b < n : m ≤ c : d).

Since a : b can be equal to c : d in neither case, therefore numbers n, m with
these properties cannot exist. Thus we have proved the correctness of Eudoxus’s
definition, which is in fact a statement. We note that Case 1 expresses the definition
of greater ratio by Def. V.7: “When, of the equimultiples, the multiple of the first
magnitude exceeds the multiple of the second, but the multiple of the third does
not exceed the multiple of the fourth, then the first is said to have a greater ratio
to the second than the third has to the fourth.”

This coincidence strengthens our conviction that we correctly reconstructed Eu-
doxus’s deduction of his equal ratio definition.
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