```
Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 19 (2003), 205-213
www.emis.de/journals
```


ε-ISOMETRIC APPROXIMATION PROBLEM

MA YUMEI

AbStract. In this paper, some problems for isometric approximation is resolved.

1. Introduction

Let E and F be normed linear spaces. Hyers and Ulam [6] called the mapping $T: E \rightarrow F$ an absolute error ε-isometry if for any $\varepsilon \geq 0$,

$$
\begin{equation*}
\|x-y\|-\varepsilon \leq\|T x-T y\| \leq\|x-y\|+\varepsilon \tag{1}
\end{equation*}
$$

for any $x, y \in E$. On the stability of isometry, Hyers and Ulam asked following questions:

1. For each surjective ε-isometry T, if there exists an isometric mapping $U: E \rightarrow F$, and a constant K such that

$$
\|T x-U x\| \leq K(E, F) \varepsilon
$$

for any $x \in E$ where the constant K depends only on E and F.
2. If the answer above is positive, what is the best K ?

To start with studying these problems, without loss of generality, $T(0)=0$ for T is ε-isometry, $T-T(0)$ is necessary ε-isometry. P.M. Grubern [4] in 1978, T.M. Rassias and P. Semel [12] in 1993 gave that the positive answer.

The ε-isometry $T: E \rightarrow F$ is called Lipschitz ε-isometry if

$$
\begin{equation*}
(1-\varepsilon)\|x-y\| \leq\|T x-T y\| \leq(1+\varepsilon)\|x-y\| \tag{2}
\end{equation*}
$$

for all $x, y \in E$.
Now, suppose that Lipschitz ε-isometry T is a linear operator, Benyamini [2], Alspach [1] and Dingguanggui [5] proved that there exists an isometric approximation of T. When T is nonlinear and surjective operator, K. Jarosz [7] obtained positive answer on $C_{0}(X) \rightarrow C_{0}(Y)$, where X, Y are locally compact Hausdorff spaces.

Withdrawing the condition of surjective and linear, how about Lipschitz ε isometric approximation problem? G.M. Lövblom [9, 10] gave two local results for these problems, i.e. to restrict the problem on the unit ball $B_{1}(C(X)) \rightarrow B_{1}(C(Y))$ where X, Y are compact Hausdorff spaces, the answer is positive. Two counterexamples given show that as $E=F=l_{1}$ or $E=F=\left(L_{1}(0,1) \times R\right)_{1}$ the local problem is negative.

In this paper we restrict ourselves to the local question about absolute error ε-isometry (1) without the assumption of surjective and we have some changed for the definition of T as follows.

[^0]$T: E \rightarrow F$ is an ε-isometry, meaning that
\[

$$
\begin{equation*}
\|x-y\|-\varepsilon \leq\|T x-T y\| \leq\|x-y\| \tag{3}
\end{equation*}
$$

\]

for any $x, y \in E$.
Thanks to Lövblom's idea, we prove that the ε-isometric problem (3) on

$$
B_{1}(C(X)) \rightarrow B_{1}(C(Y))
$$

is positive, and on $B_{1}(E) \rightarrow B_{1}(F)$ where $E=F=l_{1}$ or $E=F=\left(L_{1}(0,1) \times R\right)$ the problem is negative.

$$
\text { 2. } \varepsilon \text {-ISOMETRY ON } B_{1}(C(X)) \rightarrow B_{1}(C(Y))
$$

Let X, Y be compact metric spaces with metrics d_{1} and d_{2} and let $B_{R}(C(X))$ denote the ball of $C(X)$ with center 0 and radius R.

Theorem 2.1. Let $T: B_{1}(C(X)) \rightarrow B_{1}(C(Y))$ with $T(0)=0$, and

$$
\begin{equation*}
\|f-g\|-\varepsilon \leq\|T f-T g\| \leq\|f-g\| \tag{4}
\end{equation*}
$$

for any $f, g \in B_{1}(C(X))$. Then there exists an isometry

$$
U: B_{1-\delta_{1}(\varepsilon)}(C(X)) \rightarrow B_{1}(C(Y))
$$

such that

$$
\|T f-U f\| \leq \varepsilon
$$

on $B_{1-\delta_{1}(\varepsilon)}(C(X))$, where $\delta_{1}(\varepsilon) \rightarrow 0$ when $\varepsilon \rightarrow 0$.
The proof is based on the following Lemmas. Let a be fixed, $4 \varepsilon<a \leq 1$.
Definition 2.2 ([9]). Given $x_{0} \in X$, we say that $f \in C(X)$ is a tentfunction at x_{0} if for some $\delta>0$

$$
f(x)= \begin{cases}1-\frac{d_{1}\left(x_{0}, x\right)}{\delta}, & x \in B\left(x_{0}, \delta\right) \tag{5}\\ 0, & \text { otherwise }\end{cases}
$$

obviously, $f\left(x_{0}\right)=1,\|f\|=1$.
Lemma 2.3. Let $\left\{f_{n}\right\} \subset B_{1}(C(X)),\left\{x_{n}\right\} \subset X,\left\{y_{n}\right\} \subset Y$ be sequences with $y_{n} \rightarrow y$ and f_{n} a tentfunction at x_{n} with $\operatorname{supp}\left(f_{n}\right)=B\left(x_{n}, \delta_{n}\right)$ where $\delta_{n} \rightarrow 0$ when $n \rightarrow \infty$.

If for all n

$$
\begin{equation*}
2 a-\varepsilon \leq\left|T\left(a f_{n}\right)\left(y_{n}\right)-T\left(-a f_{n}\right)\left(y_{n}\right)\right|, \tag{6}
\end{equation*}
$$

then $\lim _{n \rightarrow \infty} x_{n}$ exists.
Proof. X is a compact metric space, so $\left\{x_{n}\right\}$ contains a convergent subsequence, say $\left\{x_{n^{\prime}}\right\}$ with $\lim _{n^{\prime} \rightarrow \infty} x_{n^{\prime}}=x$. Assume that x_{n} is not convergent. Then for some $d>0$, there exists, for every $N, n \geq N$ such that $d_{1}\left(x_{n}, x\right) \geq d$. Let $g \in C(X)$ with $0 \leq g \leq \frac{a}{2}, g=\frac{a}{2}$ on $B\left(x, \frac{d}{4}\right)$ and with $\operatorname{supp}(g) \subset B\left(x, \frac{d}{2}\right)$.

For each N it is possible to find $n, n^{\prime} \geq N$ such that $\operatorname{supp}\left(f_{n^{\prime}}\right) \subset B\left(x, \frac{d}{4}\right)$ and $B\left(x_{n}, \delta_{n}\right) \bigcap B\left(x, \frac{d}{2}\right)=\emptyset$. Then we have

$$
\begin{equation*}
\left\|g-a f_{n}\right\|=\frac{a}{2},\left\|g+a f_{n}\right\|=\frac{3 a}{2},\left\|g \pm a f_{n}\right\|=a \tag{7}
\end{equation*}
$$

Because T is ε-isometry, therefore for any $y \in Y, f, g \in B_{1}(C(X))$

$$
|T(g)(y)-T(f)(y)| \leq\|g-f\|
$$

Thus

$$
-\|g-f\|+T(f)(y) \leq T(g)(y) \leq\|g-f\|+T(f)(y)
$$

We get

$$
\begin{equation*}
T\left(a f_{n^{\prime}}\right)\left(y_{n^{\prime}}\right)-\frac{a}{2} \leq T(g)\left(y_{n^{\prime}}\right) \leq T\left(a f_{n^{\prime}}\right)\left(y_{n^{\prime}}\right)+\frac{a}{2} . \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
T\left(-a f_{n}\right)\left(y_{n}\right)-\frac{3 a}{2} \leq T(g)\left(y_{n}\right) \leq T\left(-a f_{n}\right)\left(y_{n}\right)+\frac{3 a}{2} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
T\left(\pm a f_{n}\right)\left(y_{n}\right)-a \leq T(g)\left(y_{n}\right) \leq T\left(\pm a f_{n}\right)\left(y_{n}\right)+a . \tag{10}
\end{equation*}
$$

By hypothesis of T with $T(0)=0$, we have for all n.

$$
\begin{gather*}
\left\|T\left(\pm a f_{n}\right)\right\| \leq a . \tag{11}\\
\left\{\begin{array}{l}
T\left(a f_{n}\right)\left(y_{n}\right) \geq T\left(-a f_{n}\right)\left(y_{n}\right)+2 a-\varepsilon \\
T\left(a f_{n}\right)\left(y_{n}\right) \leq T\left(-a f_{n}\right)\left(y_{n}\right)-2 a+\varepsilon
\end{array}\right. \tag{12}
\end{gather*}
$$

From (8)-(12) we get

$$
\begin{gather*}
\left\{\begin{array}{c}
a-\varepsilon \leq T\left(a f_{n}\right)\left(y_{n}\right) \leq a \\
-a \leq T\left(-a f_{n}\right)\left(y_{n}\right) \leq-a+\varepsilon
\end{array}\right. \tag{13}\\
\left\{\begin{array}{c}
-a \leq T\left(a f_{n}\right)\left(y_{n}\right) \leq-a+\varepsilon \\
a-\varepsilon \leq T\left(-a f_{n}\right)\left(y_{n}\right) \leq a
\end{array}\right. \tag{14}
\end{gather*}
$$

By (12) and (14) we obtain that

$$
\pm \frac{a}{2}-\varepsilon \leq T(g)\left(y_{n^{\prime}}\right) \leq \pm \frac{a}{2}+\varepsilon
$$

Thus we have

$$
\left|T(g)\left(y_{n^{\prime}}\right)\right| \geq \frac{a}{2}-\varepsilon>\varepsilon \text { and }\left|T(g)\left(y_{n}\right)\right| \leq \varepsilon
$$

Since $T(g) \in C(Y), 4 \varepsilon<a \leq 1$ fixed and $d_{2}\left(y_{n^{\prime}}, y_{n}\right) \rightarrow 0$ when $n, n^{\prime} \rightarrow \infty$, this clearly gives a contradiction for n, n^{\prime} large enough. Hence $\left\{x_{n}\right\}$ is convergent.

Definition 2.4 ([9]). We say $y \in A_{x}$ if there exist sequences $\left\{f_{n}\right\},\left\{x_{n}\right\},\left\{y_{n}\right\}$ satisfying the conditions in Lemma 2.3 with $x=\lim x_{n}$ and $y=\lim y_{n}$.

Lemma 2.5. The set $\bigcup_{x \in X} A_{x}$ is closed and mapping

$$
\varphi: \bigcup_{x \in X} A_{x} \rightarrow X, \varphi(y)=x, y \in A_{x}
$$

is well-defined and continuous.
Proof. The proof of Lemma is same as G.M. Lövblom's [9] although the two definitions of isometry is different.

Lemma 2.6. Let $y \in A_{x}$ and let $\left\{f_{k n}\right\},\left\{x_{k n}\right\}$ and $\left\{y_{k n}\right\}$ be any collection of sequences satisfying the conditions in Lemma 2.3. Then

$$
\lim _{n \rightarrow \infty} \operatorname{sign} T\left(a f_{n}\right)\left(y_{n}\right)=\operatorname{sign} T\left(\frac{a}{2}\right)(y)
$$

Proof. For each y_{n} we have $\operatorname{sign} T\left(a f_{n}\right)\left(y_{n}\right)=\operatorname{sign} T\left(\frac{a}{2}\right)\left(y_{n}\right)$, and $\left|T\left(\frac{a}{2}\right)(y)\right|>\varepsilon$. Indeed, by definition we have

$$
\begin{equation*}
\left|T\left(a f_{n}\right)\left(y_{n}\right)\right| \geq 2 a-\varepsilon-\left|T\left(-a f_{n}\right)\left(y_{n}\right)\right| \geq a-\varepsilon \tag{15}
\end{equation*}
$$

and by $\left\|\frac{a}{2}-a f_{n}\right\|=\frac{a}{2}$ we get

$$
\begin{equation*}
T\left(a f_{n}\right)\left(y_{n}\right)-\frac{a}{2} \leq T\left(\frac{a}{2}\right)\left(y_{n}\right) \leq T\left(a f_{n}\right)\left(y_{n}\right)+\frac{a}{2} . \tag{16}
\end{equation*}
$$

Hence

$$
T\left(\frac{a}{2}\right)\left(y_{n}\right) \geq a-\varepsilon-\frac{a}{2}>\varepsilon, \text { if } T\left(a f_{n}\right)\left(y_{n}\right) \geq 0
$$

Similarly,

$$
T\left(\frac{a}{2}\right)\left(y_{n}\right) \leq-a+\varepsilon+\frac{a}{2}<-\varepsilon, \text { if } T\left(a f_{n}\right)\left(y_{n}\right) \leq 0 .
$$

Thus

$$
\lim _{n \rightarrow \infty} \operatorname{sign} T\left(a f_{n}\right)\left(y_{n}\right)=\operatorname{sign} T\left(\frac{a}{2}\right)(y)
$$

Lemma 2.7 ([9]). Let $f_{1}, f_{2} \in B_{1-\frac{a}{2}}(C(X)), x_{0} \in X$ and

$$
\left\|f_{1}-f_{2}\right\|=\left|f_{1}\left(x_{0}\right)-f_{2}\left(x_{0}\right)\right|
$$

and $d>0$ be such that $\left.\mid f_{i}(x)-f_{i}\left(x_{0}\right)\right) \mid \leq a, i=1,2, x \in B\left(x_{0}, d\right)$. For each n, let

$$
\begin{gathered}
p_{n}(x)= \begin{cases}1-\frac{n d_{1}\left(x_{0}, x\right)}{d}, & x \in B\left(x_{0}, \frac{d}{n}\right) \\
\min _{1,2}\left\{1-f_{i}\left(x_{0}\right)+f_{i}(x), 1-a\right\}, & \text { otherwise } .\end{cases} \\
q_{n}(x)= \begin{cases}-1+\frac{n a d_{1}\left(x_{0}, x\right)}{d}, & x \in B\left(x_{0}, \frac{d}{n}\right) \\
\max _{1,2}\left\{-1-f_{i}\left(x_{0}\right)+f_{i}(x),-1+a\right\}, & \text { otherwise. }\end{cases} \\
r_{n}(x)= \begin{cases}1-\frac{n d_{1}\left(x_{0}, x\right)}{d}, & x \in B\left(x_{0}, \frac{d}{n}\right) \\
0, & \text { otherwise } .\end{cases}
\end{gathered}
$$

Then

$$
\begin{gathered}
\left\|f_{i}-p_{n}\right\| \rightarrow 1-f_{i}\left(x_{0}\right) \quad(n \rightarrow \infty) \\
\left\|f_{i}-q_{n}\right\| \rightarrow 1+f_{i}\left(x_{0}\right) \quad(n \rightarrow \infty) \\
\left\|p_{n}-a r_{n}\right\|=1-a \\
\left\|q_{n}+a r_{n}\right\|=1-a
\end{gathered}
$$

Lemma 2.8. Given $x_{0} \in X$, let $f_{1}, f_{2} \in B_{1-\frac{a}{2}}(C(X))$, and

$$
\left\|f_{1}-f_{2}\right\|=\left|f_{1}\left(x_{0}\right)-f_{2}\left(x_{0}\right)\right|
$$

Then there exists a signal function $s: \bigcup_{x \in X} A_{x} \rightarrow\{-1,1\}$ and $y_{0} \in \varphi^{-1}\left(x_{0}\right)$ such that $\left|T\left(f_{i}\right)\left(y_{0}\right)-s\left(y_{0}\right) f_{i}\left(x_{0}\right)\right| \leq \varepsilon, i=1,2$.
Proof. Let $K=\bigcup_{x \in X} A_{x}, s(y)=\operatorname{sign} T\left(\frac{a}{2}\right)(y)$ on K and let $x_{0} \in X, f_{1}, f_{2} \in$ $B_{1-\frac{a}{2}}(C(X))$ such that $\left\|f_{1}-f_{2}\right\|=\left|f_{1}\left(x_{0}\right)-f_{2}\left(x_{0}\right)\right|$ and p_{n}, q_{n}, r_{n} are the functions in Lemma 2.7. Clearly, $p_{n}, q_{n} \in B_{1}(C(X))$ and $\left\|p_{n}-q_{n}\right\|=2$.

Because T is the ε-isometry, there exist $y_{n} \in Y$ for every n such that

$$
\begin{equation*}
2-\varepsilon \leq\left|T\left(p_{n}\right)\left(y_{n}\right)-T\left(q_{n}\right)\left(y_{n}\right)\right| \leq 2 \tag{17}
\end{equation*}
$$

The sequence $\left\{y_{n}\right\}$ contains a convergent subsequence, say $y_{n} \rightarrow y_{0}$. We shall now prove that

$$
y_{0} \in \varphi^{-1}\left(x_{0}\right)=A_{x_{0}} .
$$

Since r_{n} is a tentfunction at $x_{0}, \frac{d}{n} \rightarrow 0$ and $y_{n} \rightarrow y_{0}$ we have $y_{0} \in \varphi^{-1}\left(x_{0}\right)=A_{x_{0}}$ if we can prove that $-\left|T\left(a r_{n}\right)\left(y_{n}\right)-T\left(-a r_{n}\right)\left(y_{n}\right)\right| \leq-2 a+\varepsilon$.

Assume that $T\left(p_{n}\right)\left(y_{n}\right) \geq T\left(q_{n}\right)\left(y_{n}\right)$. By (17)we obtain

$$
2-\varepsilon \leq T\left(p_{n}\right)\left(y_{n}\right)-T\left(q_{n}\right)\left(y_{n}\right)
$$

therefore

$$
\begin{aligned}
-\left|T\left(a r_{n}\right)\left(y_{n}\right)-T\left(-a r_{n}\right)\left(y_{n}\right)\right| \leq & T\left(-a r_{n}\right)\left(y_{n}\right)-T\left(a r_{n}\right)\left(y_{n}\right) \\
\leq & T\left(-a r_{n}\right)\left(y_{n}\right)-T\left(q_{n}\right)\left(y_{n}\right)+T\left(p_{n}\right)\left(y_{n}\right) \\
& -T\left(a r_{n}\right)\left(y_{n}\right)+T\left(q_{n}\right)\left(y_{n}\right)-T\left(p_{n}\right)\left(y_{n}\right) \\
\leq & 1-a+1-a+\varepsilon-2=-2 a+\varepsilon
\end{aligned}
$$

Thus $y_{0} \in \varphi^{-1}\left(x_{0}\right)=A_{x_{0}}$.
The case $T\left(p_{n}\right)\left(y_{n}\right) \leq T\left(q_{n}\right)\left(y_{n}\right)$ is proved similarly. We shall now prove that

$$
\left.\mid T\left(f_{i}\right)\left(y_{0}\right)-s\left(y_{0}\right) f_{i}\left(x_{0}\right)\right) \mid \leq \varepsilon, i=1,2
$$

$\left|T\left(p_{n}\right)\left(y_{n}\right)\right| \leq 1$ and $\left|T\left(q_{n}\right)\left(y_{n}\right)\right| \leq 1$ imply

$$
\left\{\begin{array}{c}
1-\varepsilon \leq T\left(p_{n}\right)\left(y_{n}\right) \leq 1 \tag{18}\\
-1 \leq T\left(q_{n}\right)\left(y_{n}\right) \leq \varepsilon-1
\end{array}\right.
$$

or

$$
\left\{\begin{array}{c}
-1 \leq T\left(p_{n}\right)\left(y_{n}\right) \leq \varepsilon-1 \tag{19}\\
1-\varepsilon \leq T\left(q_{n}\right)\left(y_{n}\right) \leq 1
\end{array}\right.
$$

One can easily check that $\operatorname{sign} T\left(p_{n}\right)\left(y_{n}\right)=\operatorname{sign} T\left(a r_{n}\right)\left(y_{n}\right)$. In fact, since

$$
\left\|p_{n}-a r_{n}\right\|=1-a,
$$

then

$$
\left|T\left(p_{n}\right)\left(y_{n}\right)-T\left(a r_{n}\right)\left(y_{n}\right)\right| \leq 1-a
$$

From (18) and (19) we see
if $T\left(p_{n}\right)\left(y_{n}\right) \geq 1-\varepsilon$,

$$
\begin{equation*}
T\left(a r_{n}\right)\left(y_{n}\right) \geq a-2 \varepsilon>0 \tag{20}
\end{equation*}
$$

if $T\left(p_{n}\right)\left(y_{n}\right) \leq-1+\varepsilon$,

$$
\begin{equation*}
T\left(a r_{n}\right)\left(y_{n}\right) \leq-a+2 \varepsilon<0 \tag{21}
\end{equation*}
$$

By Lemma 2.6, $s\left(y_{0}\right)=\lim _{n \rightarrow \infty} \operatorname{sign} T\left(p_{n}\right)\left(y_{n}\right)$, so for n large enough we have

$$
\begin{equation*}
s\left(y_{0}\right)=\operatorname{sign} T\left(p_{n}\right)\left(y_{n}\right) \tag{22}
\end{equation*}
$$

Hence for n large enough those inequalities can be rewritten in the form

$$
\begin{gathered}
1 \geq s\left(y_{0}\right) T\left(p_{n}\right)\left(y_{n}\right) \geq 1-\varepsilon \\
-1+\varepsilon \geq s\left(y_{n}\right) T\left(q_{n}\right)\left(y_{n}\right) \geq-1 .
\end{gathered}
$$

From Lemma 2.8 we obtain

$$
\begin{aligned}
-\varepsilon\left(n, f_{i}\right)+T\left(p_{n}\right)\left(y_{n}\right)-\varepsilon-\left(1-f_{i}\left(x_{0}\right)\right) & \leq T\left(f_{i}\right)\left(y_{n}\right) \\
& \leq 1-f_{i}\left(x_{0}\right)+T\left(p_{n}\right)\left(y_{n}\right)+\varepsilon\left(n, f_{i}\right) \\
-\varepsilon\left(n, f_{i}\right)+T\left(q_{n}\right)\left(y_{n}\right)-\varepsilon-\left(1+f_{i}\left(x_{0}\right)\right) & \leq T\left(f_{i}\right)\left(y_{n}\right) \\
& \leq 1+f_{i}\left(x_{0}\right)+T\left(q_{n}\right)\left(y_{n}\right)+\varepsilon\left(n, f_{i}\right)
\end{aligned}
$$

where $\varepsilon\left(n, f_{i}\right) \rightarrow 0$ when $n \rightarrow \infty$. Hence for n large enough we have

$$
\left.\left.-\varepsilon\left(n, f_{i}\right)-\varepsilon+s\left(y_{0}\right) f_{i}\left(x_{0}\right)\right) \leq T\left(f_{i}\right)\left(y_{n}\right) \leq \varepsilon+s\left(y_{0}\right) f_{i}\left(x_{0}\right)\right)+\varepsilon\left(n, f_{i}\right)
$$

Letting $n \rightarrow \infty$ we obtain

$$
\left.\mid T\left(f_{i}\right)\left(y_{0}\right)-s\left(y_{0}\right) f_{i}\left(x_{0}\right)\right) \mid \leq \varepsilon
$$

The proof is complete.

Before the proof of the Theorem 2.1, we recall the famous Michael Selected Theorem [7]. Suppose that Ω is a paracompact and X is a Banach space, if F is a lower-semi-continuous multi-valued function on Ω, and $f(t)(\forall t \in \Omega)$ is a closed convex set of X, then there exists a continuous function f satisfies $f(t) \in F(t)$ $(t \in \Omega)$.

The proof of Theorem 2.1. Let φ and s be as above. Since

$$
s: K=\bigcup_{x \in X} A_{x} \rightarrow\{-1,1\}
$$

and K is closed we can find, by Urysohn's Lemma, a continuous function

$$
\bar{s}: Y \rightarrow[-1,1]
$$

with $\left.\bar{s}\right|_{K}=s$.
Now, let $M_{1}(X)=B_{1}(C(X))^{*}$ be the unit ball of the Radon measure space on X endowed with the weak*-topology. Define a set valued map on $Y, \Psi: Y \rightarrow 2^{M_{1}}(X)$ by

$$
\Psi(y)= \begin{cases}s(y) \delta_{\varphi(y)}, & y \in K \\ \left\{\bar{s}(y) \mu, \mu \text { is the probability measure of } M_{1}(X),\right. & y \in Y \backslash K\end{cases}
$$

Clearly $\Psi(y)$ is a closed and convex subset of $M_{1}(X)$ for all $y \in Y$. Furthermore, we can check that the set is the $w *$ - lower-semi-continuous.

Assume that $y_{n} \rightarrow y$ when $n \rightarrow \infty$ and $\nu \in \Psi(y)$. Thus

$$
\nu= \begin{cases}s(y) \delta_{\varphi(y)}, & y \in K \\ \bar{s}(y) \mu, \quad \mu \text { is some probability measure of } M_{1}(X), & y \in Y \backslash K\end{cases}
$$

Let

$$
\nu_{n}= \begin{cases}s\left(y_{n}\right) \delta_{\varphi\left(y_{n}\right)}, & y_{n} \in K, \\ \bar{s}\left(y_{n}\right) \mu^{\prime}, & y_{n} \in Y \backslash K .\end{cases}
$$

Where

$$
\mu^{\prime}= \begin{cases}\delta_{\varphi(y)}, & y \in K \\ \mu, & y \in Y \backslash K\end{cases}
$$

is the probability measure of $M_{1}(X)$, hence $\nu_{n} \in \varphi_{n}\left(y_{n}\right)$.
We shall now prove that $\nu_{n} \xrightarrow{w^{*}} \nu$ when $n \rightarrow \infty$.
(1) If $y \in K$ and there is a subsequence $\left\{y_{n}\right\} \subset K, \varphi$ is continuous implies $\delta_{\varphi\left(y_{n}\right)} \xrightarrow{w^{*}} \delta_{\varphi(y)}$ by $\nu_{n} \xrightarrow{w^{*}} \nu$ when $n \rightarrow \infty$.
(2) If $y \in K$ and there is a subsequence $\left\{y_{n}\right\} \subset Y \backslash K$, then $\nu_{n}=\bar{s}\left(y_{n}\right) \delta_{\varphi(y)} \xrightarrow{w^{*}} \nu$ when $n \rightarrow \infty$.
(3) If $y \notin K$, since $Y \backslash K$ is an open set, then it is necessary there exists N such that $y_{n} \in Y \backslash K$ for $n>N$, hence $\nu_{n}=\bar{s}\left(y_{n}\right) \mu \xrightarrow{w^{*}} \nu$ when $n \rightarrow \infty$.

We can find, by Michael Selected Theorem, a $w^{*}-$ continuous function

$$
\tilde{\Psi}: Y \rightarrow M_{1}(X)
$$

satisfies $\tilde{\Psi}(y) \in \Psi(y)$. Furthermore we have that $\tilde{\Psi}(y)=s(y) \delta_{\varphi(y)}$ for all $y \in K$.
Now, for any $y \in Y, f \in B_{1-\frac{a}{2}}(C(X))$ define a map by

$$
U(f)(y)=\sup \{\inf \{\tilde{\Psi}(y)(f), T(f)(y)+\varepsilon\}, T(f)(y)-\varepsilon\}
$$

Clearly $\mid T(f)(y)-\tilde{\Psi}((y)(f) \mid \leq \varepsilon$ if and only if $U(f)(y)=\tilde{\Psi}(y)(f)$.
Since $\tilde{\Psi}(y)$ is $w^{*}-$ continuous, we have $U(f)(y)$ is continuous on Y and hence $U(f) \in C(Y)$. We now prove that U is an isometry and to do this we first show that

$$
\begin{equation*}
\left|U\left(f_{1}\right)(y)-U\left(f_{2}\right)(y)\right| \leq\left\|f_{1}-f_{2}\right\|, \quad \forall y \in Y \tag{23}
\end{equation*}
$$

(1) If $U\left(f_{i}\right)(y)=\tilde{\Psi}(y)\left(f_{i}\right),(23)$ is true.
(2) If $U\left(f_{i}\right)(y)=T\left(f_{i}(y) \mp \varepsilon\right.$, let $U\left(f_{1}\right)(y)=T\left(f_{1}(y)-\varepsilon\right.$, and $U\left(f_{2}\right)(y)=$ $T\left(f_{2}(y)+\varepsilon\right.$, then by definition of $U(f)(y)$

$$
\left\{\begin{array}{l}
U\left(f_{1}\right)(y) \geq \tilde{\Psi}(y)\left(f_{1}\right) \\
U\left(f_{2}\right)(y) \leq \Psi(y)\left(f_{2}\right)
\end{array}\right.
$$

Hence

$$
\begin{gathered}
U\left(f_{2}\right)(y)-U\left(f_{1}\right)(y) \leq \tilde{\Psi}(y)\left(f_{2}-f_{1}\right) \leq\left\|f_{1}-f_{2}\right\|, \\
U\left(f_{1}\right)(y)-U\left(f_{2}\right)(y) \leq\left\|f_{1}-f_{2}\right\| .
\end{gathered}
$$

(3) If $U\left(f_{1}\right)(y)=\tilde{\Psi}(y)\left(f_{1}\right)$ and $U\left(f_{2}(y)\right)=T\left(f_{2}(y)\right)+\varepsilon$, then

$$
U\left(f_{1}\right)(y) \leq T\left(f_{1}(y)+\varepsilon,\right.
$$

thus

$$
\begin{gathered}
U\left(f_{2}\right)(y)-U\left(f_{1}\right)(y) \leq \tilde{\Psi}(y)\left(f_{2}-f_{1}\right) \leq\left\|f_{1}-f_{2}\right\| \\
U\left(f_{1}\right)(y)-U\left(f_{2}\right)(y) \leq T\left(f_{1}\right)(y)+\varepsilon-T\left(f_{2}\right)(y)-\varepsilon \leq\left\|f_{1}-f_{2}\right\|
\end{gathered}
$$

(4) The case $U\left(f_{1}\right)(y)=\tilde{\Psi}(y)\left(f_{1}\right), U\left(f_{2}\right)(y)=T\left(f_{2}\right)(y)-\varepsilon$ is proved similarly. Now we shall prove that

$$
\begin{equation*}
\left\|U\left(f_{1}\right)-U\left(f_{2}\right)\right\| \geq\left\|f_{1}-f_{2}\right\| . \tag{24}
\end{equation*}
$$

Given $x_{0} \in X$ such that $\left\|f_{1}-f_{2}\right\|=\left|f_{1}\left(x_{0}\right)-f_{2}\left(x_{0}\right)\right|$, then by Lemma 2.8, we can find a point $y_{0} \in \varphi^{-1}\left(x_{0}\right)=A_{x_{0}} \subset K$ such that

$$
\left|T\left(f_{i}\right)\left(y_{0}\right)-s\left(y_{0}\right) f_{i}\left(x_{0}\right)\right| \leq \varepsilon
$$

and $s\left(y_{0}\right) f_{i}\left(x_{0}\right)=s\left(y_{0}\right) \delta_{\varphi\left(y_{0}\right)} f_{i}=\tilde{\Psi}\left(y_{0}\right)\left(f_{i}\right)$. Thus $U\left(f_{i}\right)\left(y_{0}\right)=\tilde{\Psi}\left(y_{0}\right)\left(f_{i}\right)$. Hence

$$
\left\|U\left(f_{1}\right)-U\left(f_{2}\right)\right\| \geq\left|s\left(y_{0}\right) f_{1}\left(x_{0}\right)-s\left(y_{0}\right) f_{2}\left(x_{0}\right)\right|=\left\|f_{1}-f_{2}\right\| .
$$

Furthermore, for any $f \in B_{1-\frac{a}{2}}(C(X))$ we have

$$
\|T(f)-U(f)\| \leq \varepsilon
$$

(1) $U(f)(y)=\tilde{\Psi}(y) f$ is equivalent to

$$
|T(f)(y)-U(f)(y)| \leq \varepsilon
$$

(2) If $U(f)(y)=T(f)(y) \pm \varepsilon$, clearly,

$$
\|T(f)-U(f)\| \leq \varepsilon
$$

and the proof is complete.
3. The Counterexamples for ε - Isometric Approximate Problem.

Theorem 3.1. Let $M \geq 3$, and any $\varepsilon>0$. Then there exists an ε-isometry

$$
T: B_{1}\left(l_{1}\right) \rightarrow B_{1}\left(l_{1}\right)
$$

such that for any isometry U which defines on some subset of l_{1} that contains $B_{\frac{6}{M}}\left(l_{1}\right)$, it is necessary to have $x \in B_{\frac{3}{M}}\left(l_{1}\right)$ with $\|T x-U x\| \geq \frac{2}{M^{2}}$.
Theorem 3.2. Let $M \geq 3$, for any $\varepsilon>0$, then there exists an ε-isometry

$$
T: B_{1}\left(\left(L_{1}(0,1) \times R\right)_{1}\right) \rightarrow B_{1}\left(\left(L_{1}(0,1) \times R\right)_{1}\right)
$$

such that for any isometry U which defines on some subset of $\left.\left(L_{1}(0,1) \times R\right)_{1}\right)$ that contains $B_{\frac{6}{M}}\left(\left(L_{1}(0,1) \times R\right)_{1}\right)$, it is necessary to have $x \in B_{\frac{3}{M}}\left(\left(L_{1}(0,1) \times R\right)_{1}\right)$ with $\|T x-U x\| \geq \frac{2}{M^{2}}\left(\right.$ where $\left.\|(f, r)\|=\|f\|_{L_{1}}+|r|\right)$ is the norm of $\left(L_{1}(0,1) \times R\right)_{1}$.

Lemma 3.3 ([10]). Let $n \in \mathbf{N}, \varepsilon=\frac{1}{n}$ and $a \in l_{1}, S_{a}=\{1,2, \ldots, n\} \bigcap \operatorname{supp}(a)$.
Let

$$
T_{1}(a)=\left\{\begin{array}{cc}
a, & a_{n+1}<0 \\
a+\frac{a_{n+1}}{M}\left(\varepsilon \sum e_{i}-e_{n+1}\right), & a_{n+1}>0
\end{array}\right.
$$

For any $a, b \in l_{1}$, if $\operatorname{card}\left(S_{a}\right), \operatorname{card}\left(S_{b}\right) \leq \frac{M}{2}$ and $a_{i}, b_{i} \geq 0,(1 \leq i \leq n)$. Then

1) if $a_{n+1}, b_{n+1} \leq 0$, then

$$
\left\|T_{1}(a)-T_{1}(b)\right\|=\|a-b\|
$$

2) if $a_{n+1}, b_{n+1} \geq 0$, then

$$
\|a-b\| \geq\left\|T_{1}(a)-T_{1}(b)\right\| \geq\|a-b\|-2 \varepsilon\left(\operatorname{card}\left(S_{b}\right)\right) \frac{\left(a_{n+1}-b_{n+1}\right)}{M}
$$

3) if $a_{n+1} \geq 0 \geq b_{n+1}$, then

$$
\|a-b\| \geq\left\|T_{1}(a)-T_{1}(b)\right\| \geq\|a-b\|-2 \varepsilon \sum_{S_{b}} \frac{a_{n+1}}{M} .
$$

Furthermore

$$
\|a-b\| \geq\left\|T_{1}(a)-T_{1}(b)\right\| \geq\|a-b\|(1-\varepsilon) .
$$

Lemma 3.4 ([10]). Let $n \in \mathbf{N}, \varepsilon=\frac{1}{n}, a \in l_{1}$, and $S_{a}=\{1,2, \ldots, n\} \bigcap \operatorname{supp}(a)$.
Let $T_{2}(a)=\sum_{i=1}^{\infty} T_{2}\left(a_{i} e_{i}\right)$, where

$$
T_{2}\left(a_{i} e_{i}\right)= \begin{cases}a_{i} e_{n+1+i}, & i \leq n \text { and } a_{i}<\frac{2}{M} \tag{25}\\ \left(a_{i}-\frac{2}{M}\right) e_{i}+\left(\frac{2}{M}\right) e_{n+1+i}, & i \leq n \text { and } a_{i} \geq \frac{2}{M} \\ a_{n+1} e_{n+1}, & i=n+1, \\ a_{i} e_{n+1}, & i>n+1\end{cases}
$$

Then T_{2} is an isometry and if $a \in B_{1}\left(l_{1}\right)$, then $\left(T_{2}(a)\right)_{i} \geq 0,1 \leq i \leq n$ and $\operatorname{card}\left(S_{T_{2}(a)}\right) \leq \frac{M}{2}$.
Lemma 3.5 ([10]). Let T_{1}, T_{2} satisfy the conditions of the Lemma 3.3 and Lemma 3.4 and $T=T_{1} \circ T_{2}$. Then for any isometry U which defines on some subset of l_{1} that contains $B_{\frac{6}{M}}\left(l_{1}\right)$, it's necessary to have $x \in B_{\frac{3}{M}}\left(l_{1}\right)$, with $\|T x-U x\| \geq \frac{2}{M^{2}}$.

Proof of Theorem 3.1. We should only show that T is an ε-isometry on $B_{1}\left(l_{1}\right)$. By Lemma $3.3 T_{2}$ is an isometry, and if $a \in B_{1}\left(l_{1}\right)$, then $\left(T_{2}(a)\right)_{i} \geq 0$, and $\operatorname{card}\left(S_{T_{2}}(a)\right) \leq \frac{M}{2}$.
if $\operatorname{card}\left(S_{a}\right), \operatorname{card}\left(S_{b}\right) \leq \frac{M}{2}$, and $a_{i}, b_{i} \geq 0$, then

$$
\begin{equation*}
\|a-b\| \geq\left\|T_{1}(a)-T_{1}(b)\right\| \geq\|a-b\|-\varepsilon \tag{26}
\end{equation*}
$$

Directly by Lemma 3.4 we get
(1) If $a_{n+1}, b_{n+1} \leq 0$,

$$
\mid T_{1}(a)-T_{1}(b)\|=\| a-b \|,
$$

(2) If $a_{n+1} \geq b_{n+1} \geq 0$,

$$
\|a-b\| \geq \mid T_{1}(a)-T_{1}(b)\|\geq\| a-b \|-2 \varepsilon\left(\operatorname{card}\left(s_{b}\right)\right) \frac{\left(a_{n+1}-b_{n+1}\right)}{M}
$$

Since $\operatorname{card}\left(s_{b}\right) \leq \frac{M}{2}$, clearly, $a_{n+1}-b_{n+1} \leq a_{n+1}<1$.
(3) If $a_{n+1} \geq 0 \geq b_{n+1}$,

$$
\|a-b\| \geq\left\|T_{1}(a)-T_{1}(b)\right\| \geq\|a-b\|-2 \sum_{S_{b}} \varepsilon \frac{a_{n+1}}{M} \geq\|a-b\|-\varepsilon,\left(a_{n+1} \leq 1\right)
$$

Thus T is an ε-isometry. By Lemma 3.5, for any isometry U which defines on subset of l_{1} that contains $B_{\frac{6}{M}}\left(l_{1}\right)$. It is necessary to have $x \in B_{\frac{3}{M}}\left(l_{1}\right)$ with $\|T x-U x\| \geq$ $\frac{2}{M^{2}}$
Remark 3.6. The proof for Theorem 3.2 is gotten by revising Lövblom's [10] method.
Acknowledgement. The author would like to thank Professor Ding Guanggui for his many useful suggestions.

References

[1] D. E. Alspach. Small into isomorphisms on L_{p} spaces. Illinois J. Math., 27(2):300-314, 1983.
[2] Y. Benyamini. Small into-isomorphisms between spaces of continuous functions. Proc. Amer. Math. Soc., 83(3):479-485, 1981.
[3] M. Cambern. Isomorphisms $c_{0}(y)$ onto $c_{0}(x)$. Pacific J. Math., 35:307-312, 1970.
[4] P. M. Gruber. Stability of isometries. Trans. Amer. Math. Soc., 245:263-277, 1978.
[5] D. Guanggui. Topics on the approximation problem of almost isometric operators by isometric operators. In Functional analysis in China, volume 356 of Math. Appl., pages 19-28. Kluwer Acad. Publ., Dordrecht, 1996.
[6] D. H. Hyers and S. M. Ulam. Approximate isometries of the space of continuous functions. Ann. of Math. (2), 48:285-289, 1947.
[7] K. Jarosz. Small isomorphisms of $C(X, E)$ spaces. Pacific J. Math., 138(2):295-315, 1989.
[8] H. Laccy. The Isometric Theory of Classical Banach Spaces. Spring-Verlag, 1974.
[9] G.-M. Lövblom. Isometries and almost isometries between spaces of continuous functions. Israel J. Math., 56(2):143-159, 1986.
[10] G.-M. Lövblom. Almost isometries on the unit ball of l_{1}. Israel J. Math., 63(2):129-138, 1988.
[11] E. Michael. Continuous selections. I. Ann. of Math. (2), 63:361-382, 1956.
[12] T. M. Rassias and P. Šemrl. On the Mazur-Ulam theorem and the Aleksandrov problem for unit distance preserving mappings. Proc. Amer. Math. Soc., 118(3):919-925, 1993.
[13] M. Yumei. Isometry on the unit spheres. Acta. Math. Scientia, 4:366-373, 1992.
Received September 20, 2002.

Department of Computer Science,
Dalian Nationalities University, Dalian, Liaoning, 116600, China
E-mail address: mayumei@dlnu.edu.cn

[^0]: 2000 Mathematics Subject Classification. 46A40, 46B20, 46B25.
 Key words and phrases. isometric operator, ε-isometry.

