Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 19 (2003), 205-213 www.emis.de/journals

ε -ISOMETRIC APPROXIMATION PROBLEM

MA YUMEI

ABSTRACT. In this paper, some problems for isometric approximation is resolved.

1. INTRODUCTION

Let E and F be normed linear spaces. Hyers and Ulam [6] called the mapping $T: E \to F$ an absolute error ε -isometry if for any $\varepsilon \ge 0$,

(1)
$$||x - y|| - \varepsilon \le ||Tx - Ty|| \le ||x - y|| + \varepsilon$$

for any $x, y \in E$. On the stability of isometry, Hyers and Ulam asked following questions:

1. For each surjective ε -isometry T, if there exists an isometric mapping $U: E \to F$, and a constant K such that

$$||Tx - Ux|| \le K(E, F)\varepsilon$$

for any $x \in E$ where the constant K depends only on E and F.

2. If the answer above is positive, what is the best K?

To start with studying these problems, without loss of generality, T(0) = 0for T is ε -isometry, T - T(0) is necessary ε -isometry. P.M. Grubern [4] in 1978, T.M. Rassias and P. Šemel [12] in 1993 gave that the positive answer.

The ε -isometry $T \colon E \to F$ is called Lipschitz ε -isometry if

(2)
$$(1-\varepsilon)\|x-y\| \le \|Tx-Ty\| \le (1+\varepsilon)\|x-y\|$$

for all $x, y \in E$.

Now, suppose that Lipschitz ε -isometry T is a linear operator, Benyamini [2], Alspach [1] and Dingguanggui [5] proved that there exists an isometric approximation of T. When T is nonlinear and surjective operator, K. Jarosz [7] obtained positive answer on $C_0(X) \to C_0(Y)$, where X, Y are locally compact Hausdorff spaces.

Withdrawing the condition of surjective and linear, how about Lipschitz ε isometric approximation problem? G.M. Lövblom [9, 10] gave two local results for these problems, i.e. to restrict the problem on the unit ball $B_1(C(X)) \to B_1(C(Y))$ where X, Y are compact Hausdorff spaces, the answer is positive. Two counterexamples given show that as $E = F = l_1$ or $E = F = (L_1(0, 1) \times R)_1$ the local problem is negative.

In this paper we restrict ourselves to the local question about absolute error ε -isometry (1) without the assumption of *surjective* and we have some changed for the definition of T as follows.

²⁰⁰⁰ Mathematics Subject Classification. 46A40, 46B20, 46B25.

Key words and phrases. isometric operator, ε -isometry.

 $T: E \to F$ is an ε -isometry, meaning that

(3)
$$||x - y|| - \varepsilon \le ||Tx - Ty|| \le ||x - y||$$

for any $x, y \in E$.

Thanks to Lövblom's idea, we prove that the ε -isometric problem (3) on

$$B_1(C(X)) \to B_1(C(Y))$$

is positive, and on $B_1(E) \to B_1(F)$ where $E = F = l_1$ or $E = F = (L_1(0, 1) \times R)$ the problem is negative.

2.
$$\varepsilon$$
-isometry on $B_1(C(X)) \to B_1(C(Y))$

Let X, Y be compact metric spaces with metrics d_1 and d_2 and let $B_R(C(X))$ denote the ball of C(X) with center 0 and radius R.

Theorem 2.1. Let
$$T: B_1(C(X)) \to B_1(C(Y))$$
 with $T(0) = 0$, and

(4)
$$\|f - g\| - \varepsilon \le \|Tf - Tg\| \le \|f - g\|$$

for any $f, g \in B_1(C(X))$. Then there exists an isometry

$$U: B_{1-\delta_1(\varepsilon)}(C(X)) \to B_1(C(Y))$$

 $\|Tf - Uf\| \le \varepsilon$

such that

on
$$B_{1-\delta_1(\varepsilon)}(C(X))$$
, where $\delta_1(\varepsilon) \to 0$ when $\varepsilon \to 0$.

The proof is based on the following Lemmas. Let a be fixed, $4\varepsilon < a \leq 1$.

Definition 2.2 ([9]). Given $x_0 \in X$, we say that $f \in C(X)$ is a tentfunction at x_0 if for some $\delta > 0$

(5)
$$f(x) = \begin{cases} 1 - \frac{d_1(x_0, x)}{\delta}, & x \in B(x_0, \delta) \\ 0, & \text{otherwise.} \end{cases}$$

obviously, $f(x_0) = 1$, ||f|| = 1.

Lemma 2.3. Let $\{f_n\} \subset B_1(C(X)), \{x_n\} \subset X, \{y_n\} \subset Y$ be sequences with $y_n \to y$ and f_n a tentfunction at x_n with $\operatorname{supp}(f_n) = B(x_n, \delta_n)$ where $\delta_n \to 0$ when $n \to \infty$.

If for all n

(6)
$$2a - \varepsilon \le |T(af_n)(y_n) - T(-af_n)(y_n)|,$$

then $\lim_{n \to \infty} x_n$ exists.

Proof. X is a compact metric space, so $\{x_n\}$ contains a convergent subsequence, say $\{x_{n'}\}$ with $\lim_{n'\to\infty} x_{n'} = x$. Assume that x_n is not convergent. Then for some d > 0, there exists, for every $N, n \ge N$ such that $d_1(x_n, x) \ge d$. Let $g \in C(X)$ with $0 \le g \le \frac{a}{2}, g = \frac{a}{2}$ on $B(x, \frac{d}{4})$ and with $\operatorname{supp}(g) \subset B(x, \frac{d}{2})$.

For each N it is possible to find $n, n' \ge N$ such that $\operatorname{supp}(f_{n'}) \subset B(x, \frac{d}{4})$ and $B(x_n, \delta_n) \bigcap B(x, \frac{d}{2}) = \emptyset$. Then we have

(7)
$$||g - af_n|| = \frac{a}{2}, ||g + af_n|| = \frac{3a}{2}, ||g \pm af_n|| = a.$$

Because T is ε -isometry, therefore for any $y \in Y, f, g \in B_1(C(X))$

$$|T(g)(y) - T(f)(y)| \le ||g - f||$$

Thus

$$-\|g - f\| + T(f)(y) \le T(g)(y) \le \|g - f\| + T(f)(y).$$

We get

(8)
$$T(af_{n'})(y_{n'}) - \frac{a}{2} \le T(g)(y_{n'}) \le T(af_{n'})(y_{n'}) + \frac{a}{2}.$$

(9)
$$T(-af_n)(y_n) - \frac{3a}{2} \le T(g)(y_n) \le T(-af_n)(y_n) + \frac{3a}{2}.$$

(10)
$$T(\pm af_n)(y_n) - a \le T(g)(y_n) \le T(\pm af_n)(y_n) + a.$$

By hypothesis of T with T(0) = 0, we have for all n.

(11)
$$||T(\pm af_n)|| \le a.$$

(12)
$$\begin{cases} T(af_n)(y_n) \ge T(-af_n)(y_n) + 2a - \varepsilon, \\ T(af_n)(y_n) \le T(-af_n)(y_n) - 2a + \varepsilon. \end{cases}$$

From (8)–(12) we get

(13)
$$\begin{cases} a - \varepsilon \leq T(af_n)(y_n) \leq a, \\ -a \leq T(-af_n)(y_n) \leq -a + \varepsilon. \end{cases}$$

(14)
$$\begin{cases} -a \leq T(af_n)(y_n) \leq -a + \varepsilon, \\ a - \varepsilon \leq T(-af_n)(y_n) \leq a. \end{cases}$$

By (12) and (14) we obtain that

$$\pm \frac{a}{2} - \varepsilon \le T(g)(y_{n'}) \le \pm \frac{a}{2} + \varepsilon.$$

Thus we have

$$|T(g)(y_{n'})| \ge \frac{a}{2} - \varepsilon > \varepsilon$$
 and $|T(g)(y_n)| \le \varepsilon$.

Since $T(g) \in C(Y)$, $4\varepsilon < a \leq 1$ fixed and $d_2(y_{n'}, y_n) \to 0$ when $n, n' \to \infty$, this clearly gives a contradiction for n, n' large enough. Hence $\{x_n\}$ is convergent. \Box

Definition 2.4 ([9]). We say $y \in A_x$ if there exist sequences $\{f_n\}, \{x_n\}, \{y_n\}$ satisfying the conditions in Lemma 2.3 with $x = \lim x_n$ and $y = \lim y_n$.

Lemma 2.5. The set $\bigcup_{x \in X} A_x$ is closed and mapping $\varphi \colon \bigcup_{x \in X} A_x \to X, \ \varphi(y) = x, \ y \in A_x$

is well-defined and continuous.

Proof. The proof of Lemma is same as G.M. Lövblom's [9] although the two definitions of isometry is different. $\hfill \Box$

Lemma 2.6. Let $y \in A_x$ and let $\{f_{kn}\}, \{x_{kn}\}$ and $\{y_{kn}\}$ be any collection of sequences satisfying the conditions in Lemma 2.3. Then

$$\lim_{n \to \infty} \operatorname{sign} T(af_n)(y_n) = \operatorname{sign} T(\frac{a}{2})(y).$$

Proof. For each y_n we have sign $T(af_n)(y_n) = \operatorname{sign} T(\frac{a}{2})(y_n)$, and $|T(\frac{a}{2})(y)| > \varepsilon$. Indeed, by definition we have

(15)
$$|T(af_n)(y_n)| \ge 2a - \varepsilon - |T(-af_n)(y_n)| \ge a - \varepsilon$$

and by $\|\frac{a}{2} - af_n\| = \frac{a}{2}$ we get

(16)
$$T(af_n)(y_n) - \frac{a}{2} \le T(\frac{a}{2})(y_n) \le T(af_n)(y_n) + \frac{a}{2}.$$
 Hence

1101100

$$T(\frac{a}{2})(y_n) \ge a - \varepsilon - \frac{a}{2} > \varepsilon$$
, if $T(af_n)(y_n) \ge 0$.

Similarly,

$$T(\frac{a}{2})(y_n) \le -a + \varepsilon + \frac{a}{2} < -\varepsilon, \text{ if } T(af_n)(y_n) \le 0.$$

Thus

$$\lim_{n \to \infty} \operatorname{sign} T(af_n)(y_n) = \operatorname{sign} T(\frac{a}{2})(y).$$

Lemma 2.7 ([9]). Let $f_1, f_2 \in B_{1-\frac{a}{2}}(C(X)), x_0 \in X$ and $\|f_1 - f_2\| = |f_1(x_0) - f_2(x_0)|$

and d > 0 be such that $|f_i(x) - f_i(x_0))| \le a, \ i = 1, 2, \ x \in B(x_0, d).$ For each n, let

$$p_n(x) = \begin{cases} 1 - \frac{nd_1(x_0, x)}{d}, & x \in B(x_0, \frac{d}{n}) \\ \min_{1,2} \{1 - f_i(x_0) + f_i(x), 1 - a\}, & otherwise. \end{cases}$$

$$q_n(x) = \begin{cases} -1 + \frac{nad_1(x_0, x)}{d}, & x \in B(x_0, \frac{d}{n}) \\ \max_{1,2} \{-1 - f_i(x_0) + f_i(x), -1 + a\}, & otherwise. \end{cases}$$

$$r_n(x) = \begin{cases} 1 - \frac{nd_1(x_0, x)}{d}, & x \in B(x_0, \frac{d}{n}) \\ 0, & otherwise. \end{cases}$$

Then

$$\begin{aligned} \|f_i - p_n\| &\to 1 - f_i(x_0) \ (n \to \infty), \\ \|f_i - q_n\| &\to 1 + f_i(x_0) \ (n \to \infty), \\ \|p_n - ar_n\| &= 1 - a, \\ \|q_n + ar_n\| &= 1 - a. \end{aligned}$$

Lemma 2.8. Given $x_0 \in X$, let $f_1, f_2 \in B_{1-\frac{a}{2}}(C(X))$, and

$$||f_1 - f_2|| = |f_1(x_0) - f_2(x_0)|.$$

Then there exists a signal function $s: \bigcup_{x \in X} A_x \to \{-1, 1\}$ and $y_0 \in \varphi^{-1}(x_0)$ such that $|T(f_i)(y_0) - s(y_0)f_i(x_0)| \le \varepsilon, i = 1, 2.$

Proof. Let $K = \bigcup_{x \in X} A_x$, $s(y) = \operatorname{sign} T(\frac{a}{2})(y)$ on K and let $x_0 \in X$, $f_1, f_2 \in B_{1-\frac{a}{2}}(C(X))$ such that $||f_1 - f_2|| = |f_1(x_0) - f_2(x_0)|$ and p_n, q_n, r_n are the functions in Lemma 2.7. Clearly, $p_n, q_n \in B_1(C(X))$ and $||p_n - q_n|| = 2$.

Because T is the ε -isometry, there exist $y_n \in Y$ for every n such that

(17)
$$2-\varepsilon \le |T(p_n)(y_n) - T(q_n)(y_n)| \le 2.$$

The sequence $\{y_n\}$ contains a convergent subsequence, say $y_n \to y_0$. We shall now prove that

$$y_0 \in \varphi^{-1}(x_0) = A_{x_0}.$$

Since r_n is a tentfunction at $x_0, \frac{d}{n} \to 0$ and $y_n \to y_0$ we have $y_0 \in \varphi^{-1}(x_0) = A_{x_0}$ if we can prove that $-|T(ar_n)(y_n) - T(-ar_n)(y_n)| \le -2a + \varepsilon$.

Assume that $T(p_n)(y_n) \ge T(q_n)(y_n)$. By (17)we obtain

$$2 - \varepsilon \le T(p_n)(y_n) - T(q_n)(y_n)$$

therefore

$$\begin{aligned} -|T(ar_n)(y_n) - T(-ar_n)(y_n)| &\leq T(-ar_n)(y_n) - T(ar_n)(y_n) \\ &\leq T(-ar_n)(y_n) - T(q_n)(y_n) + T(p_n)(y_n) \\ &- T(ar_n)(y_n) + T(q_n)(y_n) - T(p_n)(y_n) \\ &\leq 1 - a + 1 - a + \varepsilon - 2 = -2a + \varepsilon. \end{aligned}$$

Thus $y_0 \in \varphi^{-1}(x_0) = A_{x_0}$.

The case $T(p_n)(y_n) \leq T(q_n)(y_n)$ is proved similarly. We shall now prove that $|T(f_i)(y_0) - s(y_0)f_i(x_0))| \leq \varepsilon, \ i = 1, 2.$

 $|T(p_n)(y_n)| \le 1$ and $|T(q_n)(y_n)| \le 1$ imply

(18)
$$\begin{cases} 1 - \varepsilon \le T(p_n)(y_n) \le 1, \\ -1 \le T(q_n)(y_n) \le \varepsilon - 1. \end{cases}$$

or

(19)
$$\begin{cases} -1 \le T(p_n)(y_n) \le \varepsilon - 1, \\ 1 - \varepsilon \le T(q_n)(y_n) \le 1. \end{cases}$$

One can easily check that sign $T(p_n)(y_n) = \operatorname{sign} T(ar_n)(y_n)$. In fact, since $\|p_n - ar_n\| = 1 - a$,

then

(21)

$$|T(p_n)(y_n) - T(ar_n)(y_n)| \le 1 - a.$$

From (18) and (19) we see if $T(p_n)(y_n) \ge 1 - \varepsilon$,

(20)
$$T(ar_n)(y_n) \ge a - 2\varepsilon > 0$$

 $\text{if } T(p_n)(y_n) \le -1 + \varepsilon,$

$$T(ar_n)(y_n) \le -a + 2\varepsilon < \varepsilon$$

By Lemma 2.6, $s(y_0) = \lim_{n \to \infty} \operatorname{sign} T(p_n)(y_n)$, so for n large enough we have

(22)
$$s(y_0) = \operatorname{sign} T(p_n)(y_n).$$

Hence for n large enough those inequalities can be rewritten in the form

$$1 \ge s(y_0)T(p_n)(y_n) \ge 1 - \varepsilon$$

-1 + \varepsilon \ge s(y_n)T(q_n)(y_n) \ge -1

0.

From Lemma 2.8 we obtain

$$\begin{aligned} -\varepsilon(n, f_i) + T(p_n)(y_n) - \varepsilon - (1 - f_i(x_0)) &\leq T(f_i)(y_n) \\ &\leq 1 - f_i(x_0) + T(p_n)(y_n) + \varepsilon(n, f_i); \\ -\varepsilon(n, f_i) + T(q_n)(y_n) - \varepsilon - (1 + f_i(x_0)) &\leq T(f_i)(y_n) \\ &\leq 1 + f_i(x_0) + T(q_n)(y_n) + \varepsilon(n, f_i), \end{aligned}$$

where $\varepsilon(n, f_i) \to 0$ when $n \to \infty$. Hence for n large enough we have

$$-\varepsilon(n, f_i) - \varepsilon + s(y_0)f_i(x_0)) \le T(f_i)(y_n) \le \varepsilon + s(y_0)f_i(x_0)) + \varepsilon(n, f_i)$$

Letting $n \to \infty$ we obtain

$$|T(f_i)(y_0) - s(y_0)f_i(x_0))| \le \varepsilon.$$

The proof is complete.

Before the proof of the Theorem 2.1, we recall the famous Michael Selected Theorem [7]. Suppose that Ω is a paracompact and X is a Banach space, if F is a lower-semi-continuous multi-valued function on Ω , and f(t) ($\forall t \in \Omega$) is a closed convex set of X, then there exists a continuous function f satisfies $f(t) \in F(t)$ $(t \in \Omega).$

The proof of Theorem 2.1. Let φ and s be as above. Since

$$s\colon K=\bigcup_{x\in X}A_x\to\{-1,1\}$$

and K is closed we can find, by Urysohn's Lemma, a continuous function

$$\bar{s} \colon Y \to [-1,1]$$

with $\bar{s}|_K = s$.

Now, let $M_1(X) = B_1(C(X))^*$ be the unit ball of the Radon measure space on X endowed with the weak*-topology. Define a set valued map on $Y, \Psi: Y \to 2^{M_1}(X)$ by

$$\Psi(y) = \begin{cases} s(y)\delta_{\varphi(y)}, & y \in K, \\ \{\bar{s}(y)\mu, \ \mu \text{ is the probability measure of } M_1(X), & y \in Y \setminus K. \end{cases}$$

Clearly $\Psi(y)$ is a closed and convex subset of $M_1(X)$ for all $y \in Y$. Furthermore, we can check that the set is the w- lower-semi-continuous.

Assume that $y_n \to y$ when $n \to \infty$ and $\nu \in \Psi(y)$. Thus

$$\nu = \begin{cases} s(y)\delta_{\varphi(y)}, & y \in K, \\ \bar{s}(y)\mu, \ \mu \text{ is some probability measure of } M_1(X) \ , \ y \in Y \setminus K. \end{cases}$$

Let

$$\nu_n = \begin{cases} s(y_n)\delta_{\varphi(y_n)}, & y_n \in K, \\ \bar{s}(y_n)\mu', & y_n \in Y \setminus K \end{cases}$$

Where

$$\mu' = \begin{cases} \delta_{\varphi(y)}, & y \in K, \\ \mu, & y \in Y \setminus K \end{cases}$$

is the probability measure of $M_1(X)$, hence $\nu_n \in \varphi_n(y_n)$.

We shall now prove that $\nu_n \xrightarrow{w^*} \nu$ when $n \to \infty$. (1) If $y \in K$ and there is a subsequence $\{y_n\} \subset K$, φ is continuous implies $\delta_{\varphi(y_n)} \xrightarrow{w^*} \delta_{\varphi(y)}$ by $\nu_n \xrightarrow{w^*} \nu$ when $n \to \infty$.

(2) If $y \in K$ and there is a subsequence $\{y_n\} \subset Y \setminus K$, then $\nu_n = \bar{s}(y_n) \delta_{\varphi(y)} \xrightarrow{w^*} \nu$ when $n \to \infty$.

(3) If $y \notin K$, since $Y \setminus K$ is an open set, then it is necessary there exists N such that $y_n \in Y \setminus K$ for n > N, hence $\nu_n = \bar{s}(y_n) \mu \xrightarrow{w^*} \nu$ when $n \to \infty$.

We can find, by Michael Selected Theorem, a w^* – continuous function

$$\Psi\colon Y\to M_1(X)$$

satisfies $\tilde{\Psi}(y) \in \Psi(y)$. Furthermore we have that $\tilde{\Psi}(y) = s(y)\delta_{\varphi(y)}$ for all $y \in K$. Now, for any $y \in Y, f \in B_{1-\frac{\alpha}{2}}(C(X))$ define a map by

$$U(f)(y) = \sup\{\inf\{\tilde{\Psi}(y)(f), T(f)(y) + \varepsilon\}, T(f)(y) - \varepsilon\}.$$

Clearly $|T(f)(y) - \tilde{\Psi}(y)(f)| \le \varepsilon$ if and only if $U(f)(y) = \tilde{\Psi}(y)(f)$.

Since $\tilde{\Psi}(y)$ is w^* - continuous, we have U(f)(y) is continuous on Y and hence $U(f) \in C(Y)$. We now prove that U is an isometry and to do this we first show that

(23)
$$|U(f_1)(y) - U(f_2)(y)| \le ||f_1 - f_2||, \ \forall y \in Y.$$

(1) If $U(f_i)(y) = \tilde{\Psi}(y)(f_i)$, (23) is true.

(2) If $U(f_i)(y) = T(f_i(y) \mp \varepsilon)$, let $U(f_1)(y) = T(f_1(y) - \varepsilon)$, and $U(f_2)(y) = U(f_1(y) - \varepsilon)$ $T(f_2(y) + \varepsilon$, then by definition of U(f)(y)

$$\begin{cases} U(f_1)(y) \ge \tilde{\Psi}(y)(f_1), \\ U(f_2)(y) \le \Psi(y)(f_2). \end{cases}$$

Hence

$$U(f_{2})(y) - U(f_{1})(y) \leq \Psi(y)(f_{2} - f_{1}) \leq ||f_{1} - f_{2}||$$
$$U(f_{1})(y) - U(f_{2})(y) \leq ||f_{1} - f_{2}||.$$
(3) If $U(f_{1})(y) = \tilde{\Psi}(y)(f_{1})$ and $U(f_{2}(y)) = T(f_{2}(y)) + \varepsilon$, then
$$U(f_{1})(y) \leq T(f_{1}(y) + \varepsilon,$$

thus

$$U(f_{2})(y) - U(f_{1})(y) \leq \tilde{\Psi}(y)(f_{2} - f_{1}) \leq ||f_{1} - f_{2}||,$$

$$U(f_{1})(y) - U(f_{2})(y) \leq T(f_{1})(y) + \varepsilon - T(f_{2})(y) - \varepsilon \leq ||f_{1} - f_{2}||.$$

(4) The case $U(f_{1})(y) = \tilde{\Psi}(y)(f_{1}), U(f_{2})(y) = T(f_{2})(y) - \varepsilon$ is proved similarly.
Now we shall prove that

(24)
$$||U(f_1) - U(f_2)|| \ge ||f_1 - f_2||.$$

Given $x_0 \in X$ such that $||f_1 - f_2|| = |f_1(x_0) - f_2(x_0)|$, then by Lemma 2.8, we can find a point $y_0 \in \varphi^{-1}(x_0) = A_{x_0} \subset K$ such that

$$T(f_i)(y_0) - s(y_0)f_i(x_0)| \le \varepsilon$$

and $s(y_0)f_i(x_0) = s(y_0)\delta_{\varphi(y_0)}f_i = \tilde{\Psi}(y_0)(f_i)$. Thus $U(f_i)(y_0) = \tilde{\Psi}(y_0)(f_i)$. Hence $||U(f_1) - U(f_2)|| \ge |s(y_0)f_1(x_0) - s(y_0)f_2(x_0)| = ||f_1 - f_2||.$

Furthermore, for any $f \in B_{1-\frac{\alpha}{2}}(C(X))$ we have

$$|T(f) - U(f)|| \le \varepsilon$$

(1) $U(f)(y) = \tilde{\Psi}(y)f$ is equivalent to

$$|T(f)(y) - U(f)(y)| \le \varepsilon,$$

(2) If $U(f)(y) = T(f)(y) \pm \varepsilon$, clearly,

$$\|T(f) - U(f)\| \le \varepsilon$$

and the proof is complete.

3. The Counterexamples for ε - Isometric Approximate Problem.

Theorem 3.1. Let $M \geq 3$, and any $\varepsilon > 0$. Then there exists an ε -isometry

$$T\colon B_1(l_1)\to B_1(l_1)$$

such that for any isometry U which defines on some subset of l_1 that contains $B_{\frac{6}{M}}(l_1)$, it is necessary to have $x \in B_{\frac{3}{M}}(l_1)$ with $||Tx - Ux|| \ge \frac{2}{M^2}$.

Theorem 3.2. Let $M \ge 3$, for any $\varepsilon > 0$, then there exists an ε -isometry

 $T: B_1((L_1(0,1) \times R)_1) \to B_1((L_1(0,1) \times R)_1)$

such that for any isometry U which defines on some subset of $(L_1(0,1) \times R)_1)$ that contains $B_{\frac{6}{M}}((L_1(0,1)\times R)_1)$, it is necessary to have $x \in B_{\frac{3}{M}}((L_1(0,1)\times R)_1)$ with $\|Tx - Ux\| \ge \frac{2}{M^2} \text{ (where } \|(f,r)\| = \|f\|_{L_1} + |r|) \text{ is the norm of } (L_1(0,1) \times R)_1.$

Lemma 3.3 ([10]). Let $n \in \mathbf{N}$, $\varepsilon = \frac{1}{n}$ and $a \in l_1$, $S_a = \{1, 2, ..., n\} \bigcap \text{supp}(a)$. Let

$$T_1(a) = \begin{cases} a, & a_{n+1} < 0, \\ a + \frac{a_{n+1}}{M} (\varepsilon \sum e_i - e_{n+1}), & a_{n+1} > 0. \end{cases}$$

For any $a, b \in l_1$, if $card(S_a)$, $card(S_b) \le \frac{M}{2}$ and $a_i, b_i \ge 0$, $(1 \le i \le n)$. Then 1) if $a_{n+1}, b_{n+1} \le 0$, then

$$||T_1(a) - T_1(b)|| = ||a - b||,$$

2) if $a_{n+1}, b_{n+1} \ge 0$, then

$$||a - b|| \ge ||T_1(a) - T_1(b)|| \ge ||a - b|| - 2\varepsilon(\operatorname{card}(S_b))\frac{(a_{n+1} - b_{n+1})}{M},$$

3) if $a_{n+1} \ge 0 \ge b_{n+1}$, then $||a - b|| \ge ||T_1(a_{n+1})||a_{n+1}||$

$$||a - b|| \ge ||T_1(a) - T_1(b)|| \ge ||a - b|| - 2\varepsilon \sum_{S_b} \frac{a_{n+1}}{M}$$

Furthermore

$$|a - b|| \ge ||T_1(a) - T_1(b)|| \ge ||a - b||(1 - \varepsilon).$$

Lemma 3.4 ([10]). Let $n \in \mathbf{N}$, $\varepsilon = \frac{1}{n}$, $a \in l_1$, and $S_a = \{1, 2, ..., n\} \bigcap \text{supp}(a)$. Let $T_2(a) = \sum_{i=1}^{\infty} T_2(a_i e_i)$, where

(25)
$$T_2(a_i e_i) = \begin{cases} a_i e_{n+1+i}, & i \le n \text{ and } a_i < \frac{2}{M}, \\ (a_i - \frac{2}{M})e_i + (\frac{2}{M})e_{n+1+i}, & i \le n \text{ and } a_i \ge \frac{2}{M}, \\ a_{n+1}e_{n+1}, & i = n+1, \\ a_i e_{n+1}, & i > n+1. \end{cases}$$

Then T_2 is an isometry and if $a \in B_1(l_1)$, then $(T_2(a))_i \ge 0$, $1 \le i \le n$ and $\operatorname{card}(S_{T_2(a)}) \le \frac{M}{2}$.

Lemma 3.5 ([10]). Let T_1 , T_2 satisfy the conditions of the Lemma 3.3 and Lemma 3.4 and $T = T_1 \circ T_2$. Then for any isometry U which defines on some subset of l_1 that contains $B_{\frac{6}{M}}(l_1)$, it's necessary to have $x \in B_{\frac{3}{M}}(l_1)$, with $||Tx - Ux|| \geq \frac{2}{M^2}$.

Proof of Theorem 3.1. We should only show that T is an ε -isometry on $B_1(l_1)$. By Lemma 3.3 T_2 is an isometry, and if $a \in B_1(l_1)$, then $(T_2(a))_i \ge 0$, and $\operatorname{card}(S_{T_2}(a)) \le \frac{M}{2}$. if $\operatorname{card}(S_a), \operatorname{card}(S_b) \le \frac{M}{2}$, and $a_i, b_i \ge 0$, then

(26)
$$||a - b|| \ge ||T_1(a) - T_1(b)|| \ge ||a - b|| - \varepsilon$$

Directly by Lemma 3.4 we get

(1) If $a_{n+1}, b_{n+1} \leq 0$,

$$|T_1(a) - T_1(b)|| = ||a - b||,$$

(2) If $a_{n+1} \ge b_{n+1} \ge 0$,

$$||a - b|| \ge |T_1(a) - T_1(b)|| \ge ||a - b|| - 2\varepsilon(\operatorname{card}(s_b))\frac{(a_{n+1} - b_{n+1})}{M}$$

Since $\operatorname{card}(s_b) \leq \frac{M}{2}$, clearly, $a_{n+1} - b_{n+1} \leq a_{n+1} < 1$. (3) If $a_{n+1} \geq 0 \geq b_{n+1}$,

$$||a-b|| \ge ||T_1(a) - T_1(b)|| \ge ||a-b|| - 2\sum_{S_b} \varepsilon \frac{a_{n+1}}{M} \ge ||a-b|| - \varepsilon, \ (a_{n+1} \le 1).$$

Thus T is an ε -isometry. By Lemma 3.5, for any isometry U which defines on subset of l_1 that contains $B_{\frac{6}{M}}(l_1)$. It is necessary to have $x \in B_{\frac{3}{M}}(l_1)$ with $||Tx - Ux|| \ge \frac{2}{M^2}$

Remark 3.6. The proof for Theorem 3.2 is gotten by revising Lövblom's [10] method.

Acknowledgement. The author would like to thank Professor Ding Guanggui for his many useful suggestions.

References

- [1] D. E. Alspach. Small into isomorphisms on L_p spaces. Illinois J. Math., 27(2):300–314, 1983.
- [2] Y. Benyamini. Small into-isomorphisms between spaces of continuous functions. Proc. Amer. Math. Soc., 83(3):479–485, 1981.
- [3] M. Cambern. Isomorphisms $c_0(y)$ onto $c_0(x)$. Pacific J. Math., 35:307–312, 1970.
- [4] P. M. Gruber. Stability of isometries. Trans. Amer. Math. Soc., 245:263–277, 1978.
- [5] D. Guanggui. Topics on the approximation problem of almost isometric operators by isometric operators. In *Functional analysis in China*, volume 356 of *Math. Appl.*, pages 19–28. Kluwer Acad. Publ., Dordrecht, 1996.
- [6] D. H. Hyers and S. M. Ulam. Approximate isometries of the space of continuous functions. Ann. of Math. (2), 48:285–289, 1947.
- [7] K. Jarosz. Small isomorphisms of C(X, E) spaces. Pacific J. Math., 138(2):295-315, 1989.
- [8] H. Laccy. The Isometric Theory of Classical Banach Spaces. Spring-Verlag, 1974.
- [9] G.-M. Lövblom. Isometries and almost isometries between spaces of continuous functions. Israel J. Math., 56(2):143–159, 1986.
- [10] G.-M. Lövblom. Almost isometries on the unit ball of l_1 . Israel J. Math., 63(2):129–138, 1988.
- [11] E. Michael. Continuous selections. I. Ann. of Math. (2), 63:361-382, 1956.
- [12] T. M. Rassias and P. Šemrl. On the Mazur-Ulam theorem and the Aleksandrov problem for
- unit distance preserving mappings. Proc. Amer. Math. Soc., 118(3):919–925, 1993.
 [13] M. Yumei. Isometry on the unit spheres. Acta. Math. Scientia, 4:366–373, 1992.
- [15] M. Tumer, isometry on the unit spheres. Acta. Math. Sciencia, 4:300–373, 1992.

Received September 20, 2002.

DEPARTMENT OF COMPUTER SCIENCE, DALIAN NATIONALITIES UNIVERSITY, DALIAN, LIAONING, 116600, CHINA *E-mail address*: mayumei@dlnu.edu.cn