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GEODESICS ON A CENTRAL SYMMETRIC WARPED
PRODUCT MANIFOLD

N.M. BEN YOUSSIF

Abstract. We consider a warped product Riemannian metric on the manifold
Rn

0 ×R1 with the central symmetric warping function φ(x) = ‖x‖−2 mapping

Rn
0 → R1. The orthogonal projections onto Rn

0 of geodesics of this warped

product manifold Rn
0 ×φ R1 are exactly the trajectories of the mechanical

systems on Rn
0 with potential function cφ(x)−1 with arbitrary constant c. In

this case all bounded trajectories of the mechanical system are closed. We
show that the projection of geodesics are conic sections and determine the
parameters of these conic sections as functions of the initial values of geodesics.

We consider the manifold Rn
0 × R1, (where Rn

0 = Rn \ {0}) equipped with a
Riemannian scalar product 〈., .〉 which is defined by the following properties:

(i) the projection onto Rn
0 along R1 of this Riemannian scalar product 〈., .〉 is

the canonical Euclidean one,
(ii) R1 is orthogonal to Rn

0 with respect to 〈., .〉,
(iii) the projection onto R1 along Rn

0 of 〈., .〉 at (a, α) ∈ Rn
0 ×R1 is the canonical

one multiplied by the scalar coefficient ‖a‖−1.
These properties determine uniquely the scalar product of vectors (x, ξ), (y, η) ∈

T(a,α)(Rn
n × R1) and it can be written in the form

(1) 〈(x, ξ)(y, η)〉 = 〈x,y〉+ ‖a‖−2ξη.

The above described Riemannian manifold is a special case of the so called warped
product Riemannian space (cf. [4], [5]) with warping function

x 7→ ‖x‖−2 : Rn
0 → R1.

Considering an arbitrary warping function φ : Rn
0 → R1, it is easy to see that the

orthogonal projections onto Rn
0 of geodesics of the warped product manifold

Rn
0 ×φ R1

are exactly the trajectories of the mechanical systems on Rn
0 with potential function

cφ(x)−1 with arbitrary constant c (cf. [2], [3], [5, Fact 6.2]). The geometry of the
trajectories of mechanical systems with central symmetric potential function is
presented in [1], Chapter 2. In particular there has been proved that all bounded
trajectories of a mechanical system with central symmetric potential function are
closed if and only if the potential function has the form −k‖x‖−1, (k ≥ 0) or
a‖x‖2, (a ≥ 0). The first case gives the geometry of Kepler motions.

Now, we want to study the geometry of the central symmetric warped product
manifold which corresponds to the potential function a‖x‖2, (a ≥ 0).

We get the following description of geodesics:
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Theorem. Let (x(s), ξ(s)) be a geodesic in Rn
0 ×R1 with respect to the Riemannian

metric (1). We denote its initial values at s = 0 by x(0) = x0, ξ(0) = ξ0, ẋ(0) = t0,
ξ̇(0) = τ0. Then one has the following possibilities:

a) If τ0 = 0 then the geodesic (x(s), ξ(s)) is contained in the line x(s) =
t0s + x0, ξ(s) = ξ0; this geodesic is complete except for the case if ξ0 = 0
and the vectors t0 and x0 are collinear.

b) If τ0 > 0 then the projection of the geodesic onto Rn
0 is an ellipse with centre

0. Its equation has the shape

x(s) = cos(
√

τ0‖x0‖−1s)x0 + sin(
√

τ0‖x0‖−1s)
√

τ0‖x0‖t0.

The corresponding geodesic is complete except for the case if the vectors t0

and x0 are collinear and the projected ellipse is degenerated to a segment
with the midpoint 0.

c) If τ0 < 0 then the projection of the geodesic onto Rn
0 is a hyperbola with

centre 0. Its equation has the shape

x(s) = cosh(
√

τ0‖x0‖−1s)x0 + sinh(
√

τ0‖x0‖−1s)
√

τ0‖x0‖t0.

If the vectors t0 and x0 are collinear and the projected hyperbola is degen-
erated to a half line then the corresponding geodesic is complete.

Proof. Let {e1, . . . , en} be an orthonormal basis in the vector space Rn satisfying
x0 = re1, t0 = cos γe1 + sin γe2 and let e0 be a unit vector of R1. In the corre-
sponding coordinate system {x0, x1, . . . , xn}, defined by x = x1e1 + · · ·+xnen and
x0 = ξ, the Riemannian metric tensor gij has the following components:

gλµ = δλµ, gλ0 = g0λ = 0, g00 = ‖x‖−2, (λ, µ = 1, . . . , n)

at the point (x, ξ). An easy calculation gives that the non-vanishing coefficients
Γi

j k in the equation ẍi +
∑

Γi
j kẋj ẋk = 0, (i, j, k = 0, . . . , n) of geodesics can be

expressed by

Γλ
00 = ‖x‖−3 ∂‖x‖

∂xλ
, Γ0

µ0 = Γ0
0µ = −‖x‖−1 ∂‖x‖

∂xµ
.

It follows that the equation of a geodesic (x(s), ξ(s)) is of the form

ẍλ(s) + ‖x(s)‖−4xλ(s)ξ̇2(s) = 0, (λ = 1, . . . , n),

ξ̈(s)− 2‖x(s)‖−2
n∑

µ=1

xµ(s)ẋµ(s)ξ̇(s) = 0,

where the dot denotes the derivation d
ds . These equations can be written in the

form

ẍ(s) = ‖x(s)‖−4ẋ(s) ξ̇2(s), ξ̈(s) = 2‖x(s)‖−1 d‖x(s)‖
ds

ξ̇(s).

The last equation is equivalent to the expression

ξ̇(s) = c‖x(s)‖2

with an arbitrary c = constant. Substituting this into the preceding equations one
has ẍ(s) + cx(s) = 0.

If ξ̇(0) = τ0 = 0 then c = 0, the function ξ(s) = ξ0 is constant and the vector
valued function x(s) = t0s+x0 is linear. It means that the corresponding geodesic
is a line. If the initial values satisfy ξ0 = 0 and the vectors t0 and x0 are collinear
then the geodesic should contain the origin (0, 0) which does not belong to the
manifold. Hence in this case the corresponding geodesic is non-complete.
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Now, we assume τ0 6= 0. In this case we have τ0 = c‖x(0)‖2 = c‖x0‖2 and

ẍ(s) +
τ0

‖x0‖2 x(s) = 0.

If τ0 > 0 then the general solution of this equation has the following form

x(s) = cos(
√

τ0‖x0‖−1s)a + sin(
√

τ0‖x0‖−1s)b,

where a and b are constant vectors satisfying x0 = a and t0 =
√

τ0‖x0‖−1b.
Clearly, if the initial values x0 and t0 are linearly independent then the solution
curve is an ellipse with centre 0 which is contained in the 2-dimensional subspace
W of Rn spanned by the initial values x0 and t0. Hence the corresponding geodesic
is complete.

If the initial values x0 and t0 are linearly dependent then the solution ellipse
with centre 0 is degenerated to a segment containing 0. But the origin 0 does not
belong to our manifold and hence the corresponding geodesic is non-complete.

If τ0 < 0 then the general solution of this equation has the following form

x(s) = cosh(
√

τ0‖x0‖−1s)a + sinh(
√

τ0‖x0‖−1s)b,

where a and b are constant vectors satisfying x0 = a and t0 =
√

τ0‖x0‖−1b. If x0

and t0 are linearly independent then the solution curve is a connected component
of a hyperbola with centre 0 which is contained in the subspace W spanned by the
initial values x0 and t0. Hence the corresponding geodesic is complete.

If the vectors x0 and t0 are linearly dependent then the solution hyperbola with
centre 0 is degenerated to a repeated half line fully contained in the manifold.
Hence the corresponding geodesic is complete. ¤
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