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CONVERGENCE OF CESÀRO MEANS OF FUNCTIONS WITH
RESPECT TO UNBOUNDED VILENKIN SYSTEMS

GYÖRGY GÁT

This paper is dedicated to Professor William Wade
on the occasion of his sixtieth birthday

Abstract. One of the most celebrated problems in dyadic harmonic analysis
is the pointwise convergence of the Fejér (or (C, 1)) means of functions on
unbounded Vilenkin groups. The aim of this paper is to give a résumé of
the recent developments concerning this matter. Above all, we prove that the
maximal operator sup |σMn | is of type (H, L1) on unbounded Vilenkin groups.

First, we give a brief introduction to the theory of Vilenkin systems. These
orthonormal systems were introduced by N.Ja. Vilenkin in 1947 (see e.g. [25, 1]) as
follows.

Let m := (mk, k ∈ N) (N := {0, 1, . . . },P := N \ {0}) be a sequence of integers
each of them not less than 2. Let Zmk

denote the discrete cyclic group of order
mk. That is, Zmk

can be represented by the set {0, 1, . . . ,mk − 1}, with the group
operation mod mk addition. Since the groups is discrete, then every subset is
open. The normalized Haar measure on Zmk

, µk is defined by µk({j}) := 1/mk

(j ∈ {0, 1, . . . ,mk − 1}). Let

Gm :=
∞×

k=0
Zmk

.

Then every x ∈ Gm can be represented by a sequence x = (xi, i ∈ N) , where
xi ∈ Zmi (i ∈ N). The group operation on Gm (denoted by +) is the coordinate-
wise addition (the inverse operation is denoted by −), the measure (denoted by µ),
which is the normalized Haar measure, and the topology are the product measure
and topology. Consequently, Gm is a compact Abelian group. If supn∈Nmn < ∞,
then we call Gm a bounded Vilenkin group. If the generating sequence m is not
bounded, then Gm is said to be an unbounded Vilenkin group. The Vilenkin group
is metrizable in the following way:

d(x, y) :=
∞∑

i=0

|xi − yi|
Mi+1

(x, y ∈ Gm).
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The topology induced by this metric, the product topology, and the topology given
by intervals defined below, are the same. A base for the neighborhoods of Gm can
be given by the intervals:

I0(x) := Gm, In(x) := {y = (yi, i ∈ N) ∈ Gm : yi = xi for i < n}
for x ∈ Gm, n ∈ P. Let 0 = (0, i ∈ N) ∈ Gm denote the nullelement of Gm.

Furthermore, let Lp(Gm) (1 ≤ p ≤ ∞) denote the usual Lebesgue spaces (‖.‖p the
corresponding norms) on Gm, An the σ-algebra generated by the sets In(x) (x ∈
Gm), and En the conditional expectation operator with respect to An (n ∈ N)
(f ∈ L1).

The concept of the maximal Hardy space ([21]) H1(Gm) is defined by the
maximal function f∗ := supn |Enf | (f ∈ L1(Gm)), saying that f belongs to the
Hardy space H1(Gm) if f∗ ∈ L1(Gm). H1(Gm) is a Banach space with the norm
‖f‖H1 := ‖f∗‖1.

The so-called atomic Hardy space H(Gm) is defined for bounded Vilenkin groups
as follows [21, 22]. A function a ∈ L∞(Gm) is called an atom, if either a = 1 or a
has the following properties: supp a ⊆ Ia, ‖a‖∞ ≤ 1

µ(Ia) ,
∫

Ia
a = 0 , where Ia ∈ I :=

{In(x) : x ∈ Gm, n ∈ N}. The elements of I are called intervals on Gm. We say
that the function f belongs to H(Gm) , if f can be represented as f =

∑∞
i=0 λiai,

where ai-s are atoms and for the coefficients λi (i ∈ N)
∑∞

i=0 |λi| < ∞ is true. It
is known that H(Gm) is a Banach space with respect to the norm

‖f‖H := inf
∞∑

i=0

|λi|,

where the infinum is taken all over decompositions

f =
∞∑

i=0

λiai ∈ H(Gm).

If the sequence m is not bounded, then we define the set of intervals in a different
way [22], that is we have “more” intervals than in the bounded case.

A set I ⊂ Gm is called an interval if for some x ∈ Gm and n ∈ N0, I is of the
form I =

⋃
k∈U In(x, k) where U is one of the following sets

U1 =
{

0, . . . ,
[
mn

2

]
−1

}
, U2 =

{[
mn

2

]
, . . . ,mn − 1

}

U3 =
{

0, . . . ,
[
[mn/2]− 1

2

]
−1

}
, U4 =

{[
[mn/2]− 1

2

]
−1, . . . ,

[
mn

2

]
−1

}
, . . .

etc., and In(x, k) := {y ∈ Gm : yj = xj(j < n), yn = k} , (x ∈ Gm, k ∈ Zmn , n ∈
N0). The rest of the definition of the atomic Hardy space H is the same as in the
bounded case.

It is known that if the sequence m is bounded, then H1 = H , otherwise H is a
proper subset of H1 [16].

We say that the function f ∈ L1(Gm) belongs to the logarithm space L log+L(Gm)
if the integral

‖f‖L log+ L :=
∫

Gm

|f(x)| log+(|f(x)|)dµ(x)
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is finite. The positive logarithm log+ is defined as

log+(x) :=

{
x if x > 1,
0 otherwise .

Let X and Y be either H1(Gm) or Lp(Gm) for some 1 ≤ p ≤ ∞ with norms
‖.‖X and ‖.‖Y . We say that operator T is of type (X,Y ) if there exist an absolute
constant C > 0 for which ‖Tf‖Y ≤ C‖f‖X for all f ∈ X. If X = Y = Lp(Gm)
then we often say that T is of type (p, p) instead of type (Lp, Lp). T is of weak type
(L1, L1) (or weak type (1, 1)) if there exist an absolute constant C > 0 for which
µ(Tf > λ) ≤ C‖f‖1/λ for all λ > 0 and f ∈ L1(Gm). It is known that the operator
which maps a function f to the maximal function f∗ is of weak type (L1, L1), and
of type (Lp, Lp) for all 1 < p ≤ ∞ (see e.g. [3]).

Let M0 := 1,Mn+1 := mnMn (n ∈ N) be the so-called generalized powers. Then
each natural number n can be uniquely expressed as

n =
∞∑

i=0

niMi (ni ∈ {0, 1, . . . ,mi − 1}, i ∈ N),

where only a finite number of ni-s differ from zero. The generalized Rademacher
functions are defined as

rn(x) := exp(2πı
xn

mn
) (x ∈ Gm, n ∈ N, ı :=

√−1).

It is known that
∑mn−1

i=0 ri
n(x) =

{
0 , if xn 6= 0,
mn , if xn = 0

(x ∈ Gm, n ∈ N). The nth

Vilenkin function is

ψn :=
∞∏

j=0

r
nj

j (n ∈ N).

The system ψ := (ψn : n ∈ N) is called a Vilenkin system. Each ψn is a character
of Gm, and all the characters of Gm are of this form. Define the m -adic addition
as

k ⊕ n :=
∞∑

j=0

(kj + nj(modmj))Mj (k, n ∈ N).

Then , ψk⊕n = ψkψn, ψn(x+ y) = ψn(x)ψn(y), ψn(−x) = ψ̄n(x), |ψn| = 1 (k, n ∈
N, x, y ∈ Gm).

Define the Fourier coefficients, the partial sums of the Fourier series, the Dirichlet
kernels, the Fejér means, and the Fejér kernels with respect to the Vilenkin system
ψ as follows

f̂(n) :=
∫

Gm

fψ̄n, Snf :=
n−1∑

k=0

f̂(k)ψk, Dn(y, x) = Dn(y − x) :=
n−1∑

k=0

ψk(y)ψ̄k(x),

σnf :=
1
n

n−1∑

k=0

Skf, Kn(y, x) = Kn(y − x) :=
1
n

n−1∑

k=0

Dk(y − x),

(n ∈ P, y, x ∈ Gm, f̂(0) :=
∫

Gm

f, S0f = D0 = K0 = 0, f ∈ L1(Gm)).
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It is well-known that

Snf(y) =
∫

Gm

f(x)Dn(y − x)dµ(x),

σnf(y) =
∫

Gm

f(x)Kn(y − x)dµ(x) (n ∈ P, y ∈ Gm, f ∈ L1(Gm)).

It is also well-known that

DMn(x) =

{
Mn if x ∈ In(0)
0 if x /∈ In(0)

,

SMn
f(x) = Mn

∫

In(x)

f = Enf(x) (f ∈ L1(Gm), n ∈ N).

Next we introduce some notation with respect to the theory of two-dimensional
Vilenkin systems. Let m̃ be a sequence like m. The relation between the sequence
(m̃n) and (M̃n) is the same as between sequence (mn) and (Mn). The group
Gm × Gm̃ is called a two-dimensional Vilenkin group. The normalized Haar mea-
sure is denoted by µ, just as in the one-dimensional case. It will not cause any
misunderstood.

The two-dimensional Fourier coefficients, the rectangular partial sums of the
Fourier series, the Dirichlet kernels, the Fejér means, and the Fejér kernels with
respect to the two-dimensional Vilenkin system are defined as follows:

f̂(n1, n2) :=
∫

Gm×Gm̃

f(x1, x2)ψ̄n1(x
1)ψ̄n2(x

2)dµ(x1, x2),

Sn1,n2f(y1, y2) :=
n1−1∑

k1=0

n2−1∑

k2=0

f̂(k1, k2)ψk1(y
1)ψk2(y

2),

Dn1,n2(y, x) = Dn1(y
1 − x1)Dn2(y

2 − x2)

:=
n1−1∑

k1=0

n2−1∑

k2=0

ψk1(y
1)ψk2(y

2)ψ̄k1(x
1)ψ̄k2(x

2),

σn1,n2f :=
1

n1n2

n1−1∑

k1=0

n2−1∑

k2=0

Sk1,k2f,

Kn1,n2(y, x) = Kn1,n2(y − x) :=
1

n1n2

n1−1∑

k1=0

n2−1∑

k2=0

Dk1,k2(y − x),

(y = (y1, y2), x = (x1, x2) ∈ Gm ×Gm̃).

It is also well-known that

σn1,n2f(y) =
∫

Gm×Gm̃

f(x)Kn1,n2(y − x)dµ(x),

SMn1 ,M̃n2
f(x) = Mn1M̃n2

∫

In1 (x1)×In2 (x2)

f = (E1
n1
⊗ E2

n2
)f(x).

One of the most celebrated problems in dyadic harmonic analysis is the pointwise
convergence of the Fejér (or (C, 1)) means of functions on one and two-dimensional
unbounded Vilenkin groups.
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Fine [4] proved every Walsh-Fourier series (in the Walsh case mj = 2 for all
j ∈ N) is a.e. (C,α) summable for α > 0. His argument is an adaptation of
the older trigonometric analogue due to Marcinkiewicz [12]. Schipp [19] gave a
simpler proof for the case α = 1, i.e. σnf → f a.e. (f ∈ L1(Gm)). He proved that
σ∗ = sup |σn|, h ∈ N is of weak type (L1, L1). That σ∗ is bounded from H1 to L1

was discovered by Fujii [6].
The theorem of Schipp are generalized to the p-series fields (mj = p for all j ∈ N)

by Taibleson [24], and later to bounded Vilenkin systems by Pál and Simon [16].
Now, what about the Vilenkin groups with unbounded generating sequences?

The methods known in the trigonometric or in the Walsh, bounded Vilenkin case
are not powerful enough. One of the main problems is that the proofs on the
bounded Vilenkin groups (or in the trigonometric case) heavily use the fact that
the L1 norm of the Fejér kernels are uniformly bounded. This is not the case if the
group Gm is an unbounded one [17]. From this it follows that the original theorem
of Fejér does not hold on unbounded Vilenkin groups. Namely, Price proved [17]
that for an arbitrary sequencem (supnmn = ∞) and a ∈ Gm there exists a function
f continuous on Gm and σnf(a) does not converge to f(a). Moreover, he proved
[17] that if log mn

Mn
→ ∞ , then there exists a function f continuous on Gm whose

Fourier series are not (C, 1) summable on a set S ⊂ Gm which is non-denumerable.
On the other hand, Nurpeisov gave [15] a necessary and sufficient condition of the
uniform convergence of the Fejér means σMnf of continuous functions on unbounded
Vilenkin groups. Namely, define the uniform modulus of continuity as

ωn(f) := sup
h∈In(0),x∈Gm

|f(x+ h)− f(x)|.

Nurpeisov proved [15]: A necessary and sufficient condition that the means σMnf
of the Fourier series of the continuous function f converge uniformly to f on an
unbounded Vilenkin group for all such an f is that

ωn−1(f) log(mn) = o(1).

Since the uniform modulus of continuity can be any nonincreasing real sequence
which converges to zero (for the proof see [18, 5]), then as a consequence of this
it is possible to give a sequence m increasing enough fast, and a function even in
the Lipschitz class Lip(1), such that the Mnth Fejér means do not converge to the
function uniformly.

So, it seems that it is impossible to give a (Hölder) function class such that the
uniform convergence of the Fejér means would hold for all functions in this class if
there is no condition on sequence m at all.

On the other hand, mean convergence of the full partial sums for Lp, p > 1, is
known for the unbounded case. For the proof see [20]. This trivially implies the
norm convergence σnf → f for all f ∈ Lp, where 1 < p <∞.

What about the a.e. convergence? Simon proved [22] that the maximal operator
σ∗ is of type (H,L1) if and only if the Vilenkin group is a bounded one. It does not
sound good in the point of view of the a.e. convergence, since in the bounded case,
the method of the proof of the a.e. relation σnf → f (f ∈ L1) implies that σ∗ is
of type (H,L1). However, below we prove that if we take the maximal function of
the partial sequence of the Fejér means σMn in place of the whole sequence, then
we get an operator of type (H,L1) regardless of the boundedness of m.
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Concerning the a.e. convergence we can say a bit more. Namely, in 1999 the au-
thor [8] proved that if f ∈ Lp(Gm), where p > 1, then σnf → f almost everywhere.
This was the very first “positive” result with respect to the a.e. convergence of the
Fejér means of functions on unbounded Vilenkin groups.

In 2001 Simon proved [23] the following theorem with respect to the Fejér means
of L1 functions. A sequence m is said to be strong quasi-bounded if

1
Mn+1

n−1∑

j=0

Mj+1 < C logmn.

Then every bounded m is quasi-bounded, and there are also some unbounded ones.
Let m is strong quasi-bounded. Then for all f ∈ L1(Gm)

σMn
f(x)− f(x) = o(max(logm0, . . . ,mn−1)).

Later, in 2003, the author of this paper improved [10] this result, and gave a partial
answer for L1 case. He discussed this partial sequence of the sequence of the Fejér
means. Namely, if f ∈ L1(Gm), then he proved (see [10]) that σMn

f → f almost
everywhere, where m is any sequence. In my opinion, it is highly likely that the
methods of the papers [8, 10] can be applied and improved in order to prove the
a.e. relation σnf → f for all f ∈ L log+ L and m. Anyway, it is not an easy task. . .

What can be said in the case of two-dimensional functions? This is “another
story”. For double trigonometric Fourier series Marcinkiewicz and Zygmund [13]
proved that σm,nf → f a.e. as m,n → ∞ provided the integral lattice points
(m,n) remain in some positive cone, that is provided β−1 ≤ m/n ≤ β for some
fixed parameter β ≥ 1. It is known that the classical Fejér means are dominated by
decreasing functions whose integrals are bounded but this fails to hold for the one-
dimensional Walsh-Fejér kernels. This growth difference is exacerbated in higher
dimensions so that the trigonometric techniques are not powerful enough for the
Walsh case.

In 1992 Móricz, Schipp and Wade [14] proved that σ2n1 ,2n2 f → f a.e. for each
f ∈ L1([0, 1)2), when n1, n2 →∞, |n1 − n2| ≤ α for some fixed α. Later, Gát and
Weisz proved (independently, in the same year) this for the whole sequence, that
is, the theorem of Marcinkiewicz and Zygmund with respect to the Walsh-Paley
system (see [7] and [27]). In 2000 Blahota and the author of this paper generalized
this theorem with respect to two-dimensional bounded Vilenkin systems [2].

If we do not provide a “cone restriction” for the indices in σn,kf that is, we discuss
the convergence of this two-dimensional Fejér means in the Pringsheim sense, then
the situation changes. In 1992 Móricz, Schipp and Wade [14] proved with respect
to the Walsh-Paley system that σn,kf → f a.e. for each f ∈ L log+ L([0, 1)2),
when min {n, k} → ∞. Later, in 2002 Weisz generalized [28] this with respect
to two-dimensional bounded Vilenkin systems. In 2000 Gát proved [9] that the
theorem of Móricz, Schipp and Wade above can not be improved. Namely, let
δ : [0,+∞) → [0,+∞) be a measurable function with property limt→∞ δ(t) = 0.
Gát proved the existence of a function f ∈ L1([0, 1)2) such that f ∈ L log+ Lδ(L),
and σn,kf does not converge to f a.e. as min{n, k} → ∞.

What can be said in the two-dimensional case with respect to unbounded Vilenkin
systems? In 1997 Wade proved [26] the following. Let

βk,j := max {m0, . . . ,mk−1, m̃0, . . . , m̃j−1} .
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The sequence m is called δ-quasi bounded, 0 ≤ δ < 1, if the sums
n−1∑

j=0

mj/(mj+1 . . .mn)δ

are (uniformly) bounded. Let the generating sequences m, m̃ be δ-quasi bounded.
Then for all f ∈ L1(Gm ×Gm̃) we have

σMn,M̃k
f(x)− f(x) = o(βn,kβ

2r
n+r,k+r),

as n, k → ∞, provided that |n − k| < α, where α, r ∈ N are some constants for
almost every x ∈ Gm ×Gm̃.

On the other hand, there was nothing concerning the pointwise convergence
before the following manuscript of the author. In [11] he proved the following
theorem. Let f ∈ (L log+ L)(Gm × Gm̃). Then we have σMn1 ,M̃n2

f → f almost
everywhere, where min {n1, n2} → ∞ provided that the distance of the indices is
bounded, that is, |n1 − n2| < α for some fixed constant α > 0. Here it is necessary
to emphasize that in this paper m, m̃ can be any sequences.

At last, we prove a (H,L) type inequality with respect to the one-dimensional
Fejér means of integrable function on unbounded Vilenkin groups. Define the max-
imal operator σ†f := supn∈N |σMnf |, where f is an integrable function.

Theorem 1. Let f ∈ H(Gm). Then we have

‖σ†f‖1 ≤ C‖f‖H .

In order to prove this theorem we need a modified Calderon-Zygmund decom-
position lemma due to Simon: on unbounded Vilenkin groups (see [22]). For
z ∈ Gm, k ∈ N, j ∈ {0, . . . ,mk − 1} we use the notation

Ik(z, j) = Ik+1(z0, . . . , zk−1, j).

Lemma 2. Let f ∈ L1(Gm), and λ > ‖f‖1 > 0 arbitrary. Then the function f
can be decomposed in the following form:

f = f0 +
∞∑

j=1

fj , ‖f0‖∞ ≤ Cλ, ‖f0‖1 ≤ C‖f‖1,

supp fj ⊂
βj⋃

l=αj

Ikj (z
j , l) = Jj ,

∫

Gm

fjdµ = 0 (j ∈ P),

and for

F =
⋃

j∈P
Jj , µ(F ) ≤ C

‖f‖1
λ

.

Moreover, the sets Jj are disjoint (j ∈ P).
Proof of Theorem 1. Basically, the proof is a kind of application of the results in
[10]. Namely, for an integrable function f we define the following operator:

H1f(y) := sup
A∈N

∣∣∣∣∣MA−1

∫
S

xA−1 6=yA−1
IA(y0,...,yA−2,xA−1)

f(x)
1

1− rA−1(y − x)
dµ(x)

∣∣∣∣∣ .
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In [10] we proved that the operator H1 is of type (L2, L2). Let f ∈ L1(Gm) such
that ∫

Gm

fdµ = 0, supp f ⊂
β⋃

j=α

Ik(z, j) =: I,

where Ik(z, j) = Ik+1(z0, . . . , zk−1, j), z ∈ Gm, and

j ∈ {α, α+ 1, . . . , β} ⊂ {0, 1, . . . ,mk − 1}.
Let γ := b(α+ β)/2c. Define the distance of j, k ∈ {0, 1, . . . ,mk − 1} = Zmk

as

ρ(j, k) :=

{
|j − k|, if |j − k| ≤ mk

2 ,

mk − |j − k|, if |j − k| > mk

2 .

In other words, Zmk
is considered as a circle. Define the set 6I in the following

way: If β − α+ 1 ≥ mk/6, then 6[α, β] := {0, . . . ,mk − 1},
6I :=

⋃

j∈6[α,β]

Ik(z, j) = Ik(z).

On the other hand, if β − α+ 1 < mk/6, then

6[α, β] := {j ∈ Zmk
: ρ(j, γ) ≤ 3(β − α+ 1)} ,

6I :=
⋃

j∈6[α,β]

Ik(z, j).

It is obvious that µ(I) ≤ µ(6I) ≤ 6µ(I). In [10, Lemma 2.4] Gát proved:
∫

Gm\6I

|H1f(y)| dµ(y) ≤ C‖f‖1.

More or less, H1 seems like a quasi-local operator (for the exact definition of quasi-
local operators see e.g. [21]). Then, by standard argument, with application of the
theorem of Cauchy and Buniakovskii, we have for an atom a,

supp a ⊂
β⋃

j=α

Ik(z, j) =: I,

that

‖H1a‖1 =
∫

Gm\6I

|H1ay)| dµ(y) +
∫

6I

|H1a(y)| dµ(y)

≤ C‖a‖1 + ‖16I‖2‖H1a‖2 ≤ C‖a‖1 + C
√
µ(6I)‖a‖2 ≤ C.

This immediately gives for all f ∈ H that

(1) ‖H1f‖1 ≤ C‖f‖H .

For any 1 ≤ j ∈ N define the operator Hj in the following way

Hjf(y) := sup
j≤A∈N

∣∣∣∣∣MA−j

∫
S

xA−j 6=yA−j
IA(y0,...,yA−j−1,xA−j ,...,yA−1)

f(x)

× 1
1− rA−j(y − x)

dµ(x)
∣∣∣∣ ,
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where y ∈ Gm. Hereinafter, we prove for the operator Hj :

(2) ‖Hjf‖1 ≤ C
j

2j
‖f‖H

for all f ∈ H. The proof applies inequality (1) for a modified Vilenkin group.
We apply a finite permutation for the coordinate groups of the Vilenkin group Gm

such that for all A ≥ j, A ∈ N the A − jth coordinate group and the A − 1st
coordinate group will be adjacent. Then we use inequality (1) for the modified
group. Introduce the operators Hj,k and HN

j,k as follows:

Hjf(y) ≤
j−1∑

k=0

sup
j≤A∈N

A≡k mod j

∣∣∣∣∣MA−j

∫
S

xA−j 6=yA−j
IA(y0,...,yA−j−1,xA−j ,...,yA−1)

f(x)

× 1
1− rA−j(y − x)

dx

∣∣∣∣ =:
j−1∑

k=0

Hj,kf(y),

and

HN
j,kf(y) := sup{|MA−j

∫
S

xA−j 6=yA−j
IA(y0,...,yA−j−1,xA−j ,...,yA−1)

f(x)

× 1
1− rA−j(y − x)

dx| : j ≤ A ≤ Nj + k,A ≡ k mod j}.

Since HN
j,kf is monotone increasing as N gets larger, then by the Beppo-Levi the-

orem we get that if we prove that the operators 2jHN
j,k satisfy (1), uniformly in N

(it means that the constant C does not depend on N, j, k), that is, 2j‖HN
j,kf‖1 ≤

C‖f‖H , then 2jHj,k is also of this type. This would imply

‖Hjf‖1 ≤
j−1∑

k=0

‖Hj,kf‖1 ≤
j−1∑

k=0

C

2j
‖f‖H ≤ Cj

2j
‖f‖H .

That is, the proof of inequality (2) would be complete.
Recall that the Vilenkin group Gm is the complete direct product of its coor-

dinate groups Zml
, that is, Gm =

∞×
l=0
Zml

. We define another Vilenkin group. Its

coordinate groups will be the same, but with certain rearrangement. Let the func-
tion α : N → N be defined in the following way. If n ≥ k + Nj, or n 6≡ k, k − 1
mod j, then

α(n) := n,

and
α(k + lj) := k + (l + 1)j − 1, α(k + (l + 1)j − 1) := k + lj,

for all l < N, l ∈ N. Then define the Vilenkin group Gj,k
m as:

Gj,k
m =

∞×
l=0
Zmα(l) .

We give a measure preserving bijection between the two Vilenkin groups. We denote
it by β, or more precisely (if it is needed) by βj,k. It will not cause any confusion.
That is,

β = βj,k : Gm → Gj,k
m ,
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and let the nth coordinate of the sequence βj,k(x) ∈ Gj,k
m be xα(n). That is,

(β(x))n = xα(n) (n ∈ N).

Consequently, we have a finite permutation of the coordinates. This is very im-
portant for us, since when we discuss the operator H1 on the Vilenkin group Gj,k

m ,
then we can apply the result given (H1 is of type (1)) for the operator HN

j,k on the
Vilenkin group Gm.

Denote by m̃ the sequence for which m̃l = mα(l). Introduce the notations x̃ :=
β(x) (x ∈ Gm), r̃l := rα(l) (l ∈ N). Recall that A ≡ k mod j. Then we have

1− rA−j(y − x) = 1− exp
(

2πı
yA−j − xA−j

mA−j

)

= 1− exp
(

2πı
ỹA−1 − x̃A−1

mA−j

)

= 1− exp
(

2πı
ỹA−1 − x̃A−1

m̃A−1

)

= 1− r̃A−1(ỹ − x̃).

Moreover, denote by M̃ the sequence of the generalized powers with respect to the
sequence m̃. This gives

M̃A−1 = m̃0 . . . m̃A−2

= m0m1 . . .mA−j−1mA−j+1 . . .mA−1

=
m0 . . .mA−1

mA−j

= MA−j
mA−jmA−j+1 . . .mA−1

mA−j

= MA−jmA−j+1 . . .mA−1.

This gives MA−j ≤ M̃A−1/2j−1. By the above written we get
∣∣∣∣∣MA−j

∫
S

xA−j 6=yA−j
IA(y0,...,yA−j−1,xA−j ,...,yA−1)

f(x)
1

1− rA−j(y − x)
dx

∣∣∣∣∣

=

∣∣∣∣∣MA−j

∫
S

x̃A−1 6=ỹA−1
IA(ỹ0,...,ỹA−2,x̃A−1)

f̃(x̃)
1

1− r̃A−1(ỹ − x̃)
dx̃

∣∣∣∣∣

≤ 1
2j−1

H1f̃(ỹ),

where the function f̃ is defined on Gj,k
m by f(x) = f̃(x̃) for all x ∈ Gm. The

definition of HN
j,k gives

HN
j,kf(y) ≤ 1

2j−1
H1f̃(ỹ).

So, let the function a be an atom on Gm, the interval corresponding the support
of this atom is denoted by I. We give an upper bound for the Hardy norm of ã.
Since the supremum norms of a and ã equals, that is, finite, then ã is in the Hardy
space H(Gj,k

m ), and consequently, belongs to the Lebesgue space Lp for all p > 1.
The Lp norms of the function a and ã also equals, so:

‖ã‖H(Gj,k
m ) ≤ ‖ã‖Lp(Gj,k

m ) = ‖a‖Lp(Gm) ≤ µ1/p−1(I)
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for all 1 < p <∞. This gives ‖ã‖H(Gj,k
m ) ≤ 1. By the above we have

‖HN
j,ka‖1 ≤

C

2j

∫

Gj,k
m

H1ã(ỹ)dµ(ỹ) ≤ C

2j
‖ã‖H(Gj,k

m ) ≤
C

2j
.

This implies that (2) for any f ∈ H(Gm).
In [10, Proof of Theorem 2.1] one can read

|σMA
f(y)| ≤ |f |∗(y) +

∞∑

j=1

Hjf(y),

where f is any integrable function, and f∗ := supn |Enf |. That is, for the maximal
operator σ† := supA |σMA | we have

σ†f ≤ |f |∗ +
∞∑

j=1

Hjf.

So, by (2) we have that the proof of the Theorem 1 is complete. ¤
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to unbounded Vilenkin systems. Journal of Approx. Theory, 128(1):69–99, 2004.
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