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MODIFIED DYADIC DERIVATIVES AND INTEGRALS OF
FRACTIONAL ORDER ON R+

B.I. GOLUBOV

Dedicated to the 60th birthday of Professor W.R. Wade

Abstract. We give a brief review of the known results on pointwise and
strong dyadic differentiation and integration of real functions. In section 3
some new results on modified dyadic fractional differentiation and integration
are formulated.

Introduction

Following the concept of J.E. Gibbs [1] P.L. Butzer and H.J. Wagner [2] defined
dyadic strong derivative D. After that they introduced dyadic pointwise derivative
d and dyadic strong integral I (see [3]− [5]). Their definitions concerns to functions
defined on dyadic group G or dyadic field K. Dyadic group G and dyadic field
K are isomorphic to modified segment [0, 1]∗ and modified positive half-line R∗+ =
[0,+∞)∗ respectively. The characters of dyadic group G and dyadic field K are
Walsh-Paley functions wn(·), n ∈ Z+ = {0, 1, 2, . . . } and generalized Walsh
functions ψy(·), y ∈ R+ respectively. P.L. Butzer and H.J. Wagner proved the
equalities Dwn = nwn and dwn(x) = nwn(x) for n ∈ Z+, x ∈ G and dψy(x) =
|y|ψy(x) for x, y ∈ K.

C.W. Onneweer [6] introduced modified pointwise and strong dyadic derivatives
for functions defined on dyadic group G or dyadic field K. He proved that the
characters of dyadic group G or dyadic field K are differentiable in his sense and
they are eigenfunctions of modified differential operator δ. For example, he proved
the equalities

δ(w0) (x) ≡ 0, δ(wn) (x) = 2kwn(x), 2k ≤ n < 2k+1, k ∈ Z+, x ∈ D.
In another article [7] C.W. Onneweer introduced modified fractional differenti-

ation and integration on compact Vilenkin groups Gp of order p ≥ 2 and proved
fundamental theorem of dyadic calculus.

In this paper we give a brief outline of known results concerning dyadic deriva-
tives and integrals.

We also define modified dyadic strong and pointwise integrals and derivatives of
fractional order on R+ and formulate some results concerning their properties.
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1. Notations and definitions

For a number x ∈ R+ ≡ [0,+∞) we consider dyadic expansion

x =
+∞∑

n=−∞
2−n−1xn,

where xn equals to 0 or 1. Note that xn = 0 for n ≤ n(x), where n(x) ∈ Z =
{0, ±1, ±2, . . . }. If x is dyadic rational, then we take its finite expansion, i.e.
xn = 0 for n ≥ n0(x) > −∞. We define dyadic sum of two numbers x, y ∈ R+ by
the operation ⊕ as follows: x⊕ y = z, where zn = xn + yn (mod 2) for all n ∈ Z.

Let us put t(x, y) =
+∞∑

n=−∞
xny−n−1 and define the generalized Walsh functions

ψ(x, y) ≡ ψy(x) = (−1)t(x, y) for (x, y) ∈ R+ ×R+.

They were introduced by N.J. Fine [8]. It is evident that ψ(x, y) = ψ(y, x),
ψ(x, y) = ±1 for x, y ∈ R+. The functions wn(x) ≡ ψ(x, n), n ∈ Z+, are called the
Walsh-Paley functions. They are 1-periodic on R+. It is evident that w0(x) ≡ 1 on
R+. The system {wn(x)}+∞n=0 is orthonormal on [0, 1), i.e.

∫ 1

0

wm(x)wm(x) dx = δm,n,

where δm,n is Kronecker symbol, i.e. δm,n = 0 for m 6= n and δn, n = 1.

Let be given a function f ∈ L[0, 1). We denote by
+∞∑
n=0

f̂(n)wn(x) its Fourier

series with respect to the Walsh-Paley system, where f̂(n) =
∫ 1

0
f(x)wn(x) dx,

n ∈ Z+, are Walsh-Fourier coefficients of the function f .
For the function f ∈ L(R+) N.J. Fine [8] introduced its Walsh transform by the

equality

F [f ] (x) ≡ f̃(x) =
∫

R+

ψ(x, y) f(y) dy.

If f ∈ Lp(R+), 1 < p ≤ 2, then its Walsh transform is defined as the limit as

n→ +∞ of the sequence
2n∫
0

f(y)ψ(x, y) dy in the norm of the space Lq(R+), where

1/p+ 1/q = 1.
For f ∈ L(R+), g ∈ Lp(R+), 1 ≤ p ≤ +∞, we set

(f ∗ g)(x)
∫

R+

= f(x⊕ y)g(y) dy, x ∈ R+,

i.e. f ∗ g is dyadic convolution of f and g. Let us note that f ∗ g ∈ Lp(R+),
(f ∗ g)̃ = f̃ g̃.

The function f ∈ L(R+) is called W−continuous at the point x ∈ R+, if for
every ε > 0 there exists δ > 0 such that |f(x ⊕ y) − f(x)| < ε for 0 < y < δ (see
[9], Chapter 1).

Let us note that the Wash-Fourier transform f̃ of every function f ∈ L(R+) is
W -continuous on R+ (see [9], Theorem 6.1.5).

We call the point x ∈ R+ dyadic Lebesgue point of local integrable function f ,
if f is defined at the point x and

lim
n→+∞

2n

∫ 2−n

0

|f(x⊕ t)− f(x)| dt = 0.
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Almost all points of local integrable function are its dyadic Lebesgue points. If
a function f is W−continuous at the point x ∈ R+, then x is its dyadic Lebesgue
point. (There is also a concept of Walsh-Lebesgue point of an integrable on [0, 1)
function, see [26], [27]).

Let us define the generalized Walsh-Dirichlet integral of the function f ∈ L(R+)
by the equality

Sy(f) (x) =
∫ y

0

f̃(t)ψ(x, t) dt.

Theorem. If x ∈ R+ is dyadic Lebesgue point of the function f ∈ L(R+), then

lim
n→+∞

S2n(f)(x) = f(x).

The statement of this theorem was proved at the page 430 in [10] for the points
of W−continuity of the function f . But the proof is valid also for dyadic Lebesgue
points.

It follows from this theorem that if f, f̃ ∈ L (R+), then f(x) =
∫

R+

ψ(x, y) f̃(y) dy

almost everywhere (a.e.) on R+.
Let ∆ = {∆k

n} denote the set of all dyadic intervals ∆k
n ≡ [k2−n, (k + 1)2−n),

k ∈ Z+, n ∈ Z. Let us introduce dyadic maximal function

Md(f)(x) = sup
x∈I∈∆

∣∣∣∣
1
|I|

∫

I

f(t) dt
∣∣∣∣ , x ∈ R+,

and dyadic Hardy space

H(R+) = {f ∈ L(R+) : Md(f) ∈ L(R+)}.
The norm on H(R+) is ‖f‖H(R+) = ‖Md(f)‖L(R+).

By similar way dyadic Hardy space H([0, 1)) is defined.
Below CW (R+) is the space of uniformly W−continuous functions on R+. The

norm on the CW (R+) is ‖f‖CW (R+) = sup
x∈R+

|f(x)|. The symbol CW [0, 1) will

denote the space of uniformly W−continuous functions on [0, 1) with the norm
‖f‖CW [0,1) = sup

x∈[0,1)

|f(x)|. For the sake of convenience we shall consider the spaces

CW [0, 1) and CW (R+) as the spaces Lp[0, 1) or Lp(R+) respectively for p = +∞.

2. The known concepts of dyadic derivatives and integrals

Dyadic derivatives. P.L. Butzer and H.J. Wagner [4] defined dyadic pointwise de-
rivative as follows.

Definition 2.1. Let be given the function f ∈ L[0, 1) and a point x ∈ [0, 1). If
there exists finite limit

d(1)f(x) = lim
n→+∞

n∑
m=0

2m−1
[
f(x)− f(x⊕ 2−m−1)

]
,

then d(1)f(x) is called dyadic derivative of the function f at the point x. The dyadic
derivatives of higher order are defined by recurrence formulae

d(m)f(x) = d(1)(d(m−1)f) (x), m = 2, 3, . . .

P.L. Butzer and H.J. Wagner proved that each Walsh-Paley function has dyadic
derivative at each point x ∈ [0, 1) and d(1)wn(x) = nwn(x) for n ∈ Z+.

The notion of strong dyadic Lp-derivative was introduced by P.L. Butzer and
H.J. Wagner [2] by the following way.
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Definition 2.2. If for the function f ∈ Lp[0, 1), 1 ≤ p ≤ +∞, the limit

D(1)(f)Lp ≡ (Lp)− lim
n→+∞

n∑
m=0

2m−1[f(·)− f(·+ 2−m−1)]

exists in the norm of the space Lp[0, 1), then it is called Lp[0, 1)− derivative of
the function f . The strong dyadic Lp−derivatives of higher order are defined by
recurrence formula D(m)(f)Lp = D(1)((D(m−1)f )Lp)Lp , m = 2, 3, . . .

It is proved in [2] that every Walsh function has strong dyadic Lp[0, 1)−derivative
of arbitrary order r ∈ N for each 1 ≤ p ≤ +∞ and D(r)(wn)Lp = nrwn for n ∈ Z+.

P.L. Butzer and H.J. Wagner [2] proved the following

Theorem 2.1. If a function f ∈ Lp[0, 1), 1 ≤ p ≤ +∞, has strong dyadic Lp[0, 1)-
derivative D(r)(f)Lp = g, then ĝ(n) = nrf̂(n), n ∈ Z+, where f̂(n) are Walsh-
Fourier coefficients of the function f .

C.W. Onneweer [11] generalized the concepts of pointwise dyadic derivative and
strong dyadic Lp[0, 1)-derivative to functions defined on Vilenkin groups.

For functions f defined on R+ the natural analogue of pointwise dyadic derivative
d(1)f(x) is

df(x) = lim
n→+∞

n∑
m=−n

2m−1(f(x)− f(x⊕ 2−m−1)).

(see [3]). P.L. Butzer and H.J. Wagner [3] proved that the generalized Walsh
functions have dyadic derivative at each point. More precisely dψy(x) = yψy(x),
x ∈ R+.

For the functions f ∈ Lp[0, 1), 1 ≤ p ≤ +∞ the strong dyadic Lp(R+)-derivative
is defined as follows:

D (f)L p(R+) = lim
n→∞

n∑
m=−n

2m−1[f(·)− f(· ⊕ 2−m−1)],

where the limit is taken in the norm of the space Lp(R+) (see [5]). The notion of
Lp(R+)-derivative D(r)(f)Lp(R+) of higher order r = 2, 3, . . . is defined by recur-
rence formula.

It is known that if f ∈ Lp(R+), p = 1 or 2, and D (f)L p(R+) exists, then
D (f̃)L p(R+)(x) = x f̃(x). (For p = 1 it was proved by P.L. Butzer and H.J. Wag-

ner [3]; for p = 2 see J. Pál [12]). C.W. Onneweer [6] introduced modified pointwise
and strong dyadic derivatives for functions defined on dyadic group G or dyadic
field K. (The characters of dyadic field K are generalized Walsh functions ψy(·),
y ∈ R+, and the characters of the group G are Walsh-Paley functions wn, n ∈ Z+).
He proved that the characters of dyadic group G or dyadic field K are differen-
tiable in his sense at each point and they are eigenfunctions of modified differential
operator δ. For example, he proved the equalities

δ(w0) (y) ≡ 0, δ(wn) (y) = 2kwn(y), 2k ≤ n < 2k+1, k ∈ Z+, y ∈ D.
In another article [7] C.W. Onneweer introduced modified fractional differenti-

ation and integration on compact groups of order p ≥ 2 and proved fundamental
theorem of dyadic calculus.
Dyadic integrals. The dyadic integral for functions defined on the interval [0, 1) was
introduced by P.L. Butzer and H.J. Wagner [2] as follows. Let us set

Wr(x) = 1 +
+∞∑
n=1

wn(x)
nr

, r ∈ N.
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It is evident that Wr ∈ L[0, 1), r ∈ N . If f ∈ Lp[0, 1), 1 ≤ p ≤ +∞, then there
exists dyadic convolution

Ir(f) = (f ∗Wr) (x) ≡
∫ 1

0

f(y)Wr(x⊕ y) dy, r ∈ N (∗)

and Ir(f) ∈ Lp[0, 1). The function Ir(f) is called dyadic strong integral of order r
of the function f in the space Lp[0, 1).

It follows from (∗) that for f ∈ Lp[0, 1), 1 ≤ p ≤ +∞ its dyadic integral Ir(f)
has Walsh-Paley series of the form

f̂(0) +
+∞∑
n=0

f̂(n)
nr

wn.

P.L. Butzer and H.J. Wagner [2] proved the following fundamental theorem of
dyadic calculus.

Theorem 2.2. Let f ∈ Lp[0, 1), 1 ≤ p ≤ +∞ and f̂(0) = 0.
a) If there exists Lp[0, 1)-derivative D(r)(f)Lp of some order r ∈ N , then
Ir(D(r)(f)Lp) = f .
b) One has D(r)(Ir(f))Lp = f for all r ∈ N .

J. Pál and P. Simon [13] generalized the concept of strong dyadic Lp[0, 1)-integral
to functions defined on Vilenkin groups. They proved a generalization of the Theo-
rems 2.1 (for p = 1) and 2.2, using the concept of strong dyadic Lp[0, 1)-derivative
for functions defined on Vilenkin groups due to C.W. Onneweer.

F. Schipp [14] proved that dyadic strong integral has pointwise dyadic derivative
a.e. More precisely the following theorem is valid.

Theorem 2.3. If f ∈ L[0, 1), then d(1)(I1(f)) (x) = f(x) a.e. on [0, 1), where
I1(f) is dyadic strong integral of first order of the function f in the space L[0, 1).

For the functions f ∈ Lp(R+), 1 ≤ p ≤ +∞, the strong dyadic integral was
defined by H. J. Wagner [5] as follows. For n ∈ Z+ we set

Wn(x) = lim
k→+∞

∫ 2k

2−n

1
t
ψx(t) dt, x ∈ R+.

It has been proved in [5] that this limit exists a.e. on R+ and also in L(R+)-
metric. Therefore there exists dyadic convolution

(f ∗Wn)(x) =
∫

R+

f(t)Wn(x⊕ t) dt, n ∈ Z+, (∗∗)

and f ∗Wn ∈ Lp(R+), if f ∈ Lp(R+), 1 ≤ p ≤ +∞.

Definition 2.3. If for a function f ∈ Lp(R+), 1 ≤ p ≤ +∞, the sequence (∗∗)
converges in Lp(R+)-metric to a function g ∈ Lp(R+) as n → +∞, then g ≡ I(f)
is called strong dyadic integral of the function f in the space Lp(R+) or shortly
Lp(R+)-integral of the function f .

The notion of Lp(R+)-integral Ir(f) of higher order r = 2, 3, . . . is defined by
recurrence formula.

The following results were proved by H.J. Wagner [5]:

Theorem 2.4. For two functions f, g ∈ L(R+) the equality g = I(f) holds if and
only if g̃(0) = 0 and g̃(x) = f̃(x)/x, x > 0, where I(f) is L(R+)-integral of the
function f .
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Theorem 2.5. Let be given a function f ∈ L (R+).
a) If L(R+)-integral I(f) exists, then D(I(f))L(R+) = f .
b) If L(R+)-derivative D(f)L(R+) exists and f̃(0) = 0, then I(D(f)L(R+)) = f .

J. Pál and F. Schipp [15] proved the following theorem.

Theorem 2.6. If a function L(R+) has strong dyadic integral g = I(f) in the space
L(R+), then I(f) has pointwise dyadic derivative a.e. on R+ and d(I(f))(x) = f(x)
a.e. on R+.

3. Modified dyadic integral
and derivative of fractional order on R+

Strong and pointwise derivatives and integrals of fractional order on R+. . In this
subsection we formulate our results most of which are analogues of the results of
C.W. Onneweer [7] concerning the functions defined on compact groups Gp of order
p = 2, 3, . . .

For x > 0 we set h(x) = 2−n, 2n ≤ x < 2n+1, n ∈ Z. It is evident that
x−1 ≤ h(x) < 2x−1.

Lemma 3.1. If α > 0 and n ∈ Z, then for each x > 0 there exists finite limit

Wα
n (x) = lim

m→+∞

∫ 2m

2−n

(h(y))α ψx(y) dy.

More precisely, Wα
n (x) = −2(α−1) n for 2n−1 ≤ x < 2n,

Wα
n (x) = −2(α−1) n + 2(1− 2−α)

k∑

i=0

2(n−i) (α−1)

for 2n−k−2 ≤ x < 2n−k−1, k = 0, 1, . . . and Wα
n (x) = 0 for x ≥ 2n.

We shall write f(x) ≈ g(x), x → a, if f(x) = O(g(x)), x → a, and g(x) =
O(f(x)), x→ a. Then we have the following corollary from the lemma 3.1.

Corollary 3.1. 1) If 0 < α < 1, n ∈ Z, then Wα
n (x) ≈ xα−1, x→ +0;

2) W 1
n(x) ≈ log2(x−1), x → +0; 3) if α > 1, then Wα

n (x) is bounded on R+;
4) Wα

n ∈ L(R+) for all α > 0, n ∈ Z.

Definition 3.1. If α > 0, f, g ∈ Lp(R+), and lim
n→+∞

‖f ∗Wα
n − g‖Lp(R+) = 0, then

the function g = Jα(f) is called modified strong dyadic integral (MSDI) of order α
of the function f in the space Lp(R+).

Theorem 3.1. Let f, g ∈ L(R+) and α > 0. Then the function g is MSDI of
order α of the function f in the space L(R+), if and only if g̃(0) = 0 and g̃(x) =
f̃(x) (h(x))α for x > 0.

Let us set for α > 0, n ∈ Z:

Λα
n(x) =

∫ 2n

0

(h(t))−αψ(x, t) dt, x ∈ R+ .

Lemma 3.2. For α > 0, n ∈ Z we have Λα
n ∈ L(R+) ∩ L∞(R+).

Definition 3.2. If α > 0, f, ϕ ∈ Lp(R+), 1 ≤ p ≤ +∞, and

lim
n→+∞

‖f ∗ Λα
n − ϕ‖Lp(R+) = 0,

then the function ϕ = Dα(f) is called modified strong dyadic derivative (MSDD)
of order α of the function f in the space Lp(R+).
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Theorem 3.2. Let α > 0 and f, ϕ ∈ Lp(R+), 1 ≤ p ≤ 2. Then the function ϕ is
MSDD of order α of the function f in the space Lp(R+) if and only if

ϕ̃(x) = f̃(x) (h(x))−α

a.e. on R+.

This theorem is a corollary from the R+-version of a theorem of C.W. Onneweer
(see [22], Theorem 3).

Theorem 3.3. Let α > 0 and the function f ∈ L(R+) has MSDD Dα(f) of order
α in the space L(R+). If f̃(0) = 0, then the equality Jα(Dα(f)) = f holds.

Theorem 3.4. Let α > 0 and the function f ∈ L(R+) has MSDI Jα(f) of order
α in the space L(R+). Then the equality Dα(Jα(f)) = f is valid.

The Theorems 3.3 and 3.4 are R+-version of fundamental theorem of dyadic
calculus (see Theorem 2.2 above).

Theorem 3.5. Let α > 0, β > 0 and f ∈ L(R+). Then Dα(Dβ(f)) = Dα+β(f)
(respectively Jα(Jβ(f)) = Jα+β(f)), if the left side of this equality exists.

Theorem 3.6. The functions am,n(x) = ψ(x,m2−n))X[0,2n)(x), m ∈ N , n ∈ Z,
for each α > 0 are eigenfunctions of the operators Jα and Da with eigenvalues 2−rα

and 2r α respectively. Here XE is indicator function of the set E and r = r (m,n) ∈
Z is uniquely determined by the imbedding [m2−n, (m+ 1)2−n] ⊂ [2r, 2r+1).

Let us denote by LJα(R+) or LDα(R+) the natural domain of the operator Jα

or Dα respectively, i.e. the set of all functions f ∈ L(R+) for which Jα(f) or Dα(f)
respectively exists. It is evident that LJα(R+) and LDα(R+) are linear subspaces
in L(R+).

It follows from the Theorem 3.6 that

Jα(a1, n) = 2n αa1, n, Dα(a1, n) = 2−n αa1, n, n ∈ Z, α > 0.

Therefore we have

Corollary 3.2. The linear operators Jα : LJα(R+) → L(R+) and Dα : LDα(R+) →
L(R+) are unbounded for each α > 0.

Let us define the pointwise dyadic derivative of fractional order. According to
the lemma 3.2 we have Λα

n ∈ L∞(R+) ∩ L(R+) for α > 0, n ∈ Z. Therefore the
dyadic convolution (Λα

n ∗ f) (x) exists at each point x ∈ R+ for all α > 0, n ∈ Z, if
f ∈ L(R+) or f ∈ L∞(R+). Taking into account this fact we may to introduce the
following definition.

Definition 3.3. Let α > 0, x ∈ R+ and f ∈ L(R+) or f ∈ L∞(R+). If there exists
finite limit dα(f) (x) ≡ lim

n→+∞
(Λα

n ∗ f)(x), then we shall say that the function f has

the modified dyadic derivative (MDD) dα(f)(x) of order α at the point x.

Theorem 3.7. For each α > 0 and fixed y ∈ R+ the Walsh generalized function
ψy(·) has MDD of order α at each point x ∈ R+. More precisely, dα(ψ0)(x) ≡ 0 on
R+ and dα(ψy)(x) = (h(y))−αψy(x) for x ∈ R+, y > 0.

For the case α = 1 these results were published in [21].

Theorem 3.8. If α > 0 and the function f ∈ L(R+) is such that (h(x))−αf̃(x) ∈
L(R+), then at each point x ∈ R+ it has MDD of order α equal to∫ +∞
0

(h(y))−αf̃(y)ψ(x, y) dy.

Theorem 8 is an analogue of the following theorem of P.L. Butzer and H.J. Wag-
ner [4].
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Theorem 3.9. Under the assumption
∞∑

n=0
n|αn| < +∞ the series

∞∑
n=0

anwn(x) is

absolutely and uniformly convergent on [0, 1) to a function f , which has dyadic

derivative d(1)f(x) for all x ∈ [0, 1) and d(1)f(x) =
+∞∑
n=0

nanwn(x).

Pointwise and strong dyadic term by term differentiation of Walsh series was
investigated by W.R. Wade [23], V.A. Skvorc̆ov and W.R. Wade [24], C.H. Powell
and W.R. Wade [25].

Let us define the pointwise dyadic integral of fractional order. According to the
corollary 3.1 we have Wα

n ∈ L(R+). Therefore the dyadic convolution (Wα
n ∗ f)(x)

exists at each point x ∈ R+ for all α > 0, n ∈ Z, if f ∈ L∞(R+). Taking into
account we may to introduce the following definition.

Definition 3.4. If α > 0, x ∈ R+ and for a function f ∈ L∞(R+) there exists
finite limit jα(f)(x) ≡ lim

n→+∞
(f ∗ Wα

n )(x), then we say that the function f has

modified dyadic integral (MDI) of order α at the point x equal to jα(f)(x).

Theorem 3.10. For each α > 0 and fixed y ∈ R+ the generalized Walsh function
ψy(·) has MDI of order α at each point x ∈ R+. More precisely, jα(ψ0)(x) ≡ 0 on
R+ and jα(ψy)(x) = (h(y))αψy(x) for x ∈ R+, y > 0.

Definition 3.5. Let α > 0 and x ∈ R+. If for the function f ∈ L(R+) there exists
finite limit

d(α)(f)(x) ≡ lim
n→+∞

∫ 2n

0

(h(y))−αf̃(y)ψ(x, y) dy,

then we shall call it dyadic α-derivative of the function f at the point x.

If f ∈ L(R+) and (h)−αf̃ ∈ L(R+), then dyadic α-derivative of the function f

exists at every point x ∈ R+ and d(α)(f)(x) =
∫

R+
(h(y))−αf̃(y)ψ(x, y) dy.

Definition 3.6. Let be given α > 0, x ∈ R+ and f ∈ L(R+). If there exists finite
limit

j(α)(f)(x) ≡ lim
n→+∞

∫ 2n

2−n

(h(y))αf̃(y)ψ(x, y) dy,

then we shall call it dyadic α-integral of the function f at the point x.

If f ∈ L(R+) and (h)αf̃ ∈ L(R+), then dyadic α−integral of the function f

exists at every point x ∈ R+ and j(α)(f)(x) =
∫

R+
(h(y))αf̃(y)ψ(x, y) dy.

The following theorem may be considered as a dyadic analogue of the classical
theorem of Lebesgue on pointwise differentiation of Lebesgue integral.

Theorem 3.11. Let α > 0 and the function f ∈ L(R+) has MSDI Jα(f) of order
α in the space L(R+). Then at each Lebesgue point x ∈ R+ of the function f , hence
a.e. on R+, the equality d(α)(Jα(f))(x) = f(x) holds.

Theorem 3.12. Let α > 0 and the function f ∈ L(R+) has MSDD D(α)(f) of
order α in the space L(R+). Then at each Lebesgue point x ∈ R+ of the function
f , hence a.e. on R+, the equality j(α)(D(α)(f))(x) = f(x) holds.

Dyadic integral in dyadic Hardy space. The following theorem of Hardy [16] is well
known.

Theorem 3.13. If the function f(z) =
∞∑

n=0
anz

n belongs to the Hardy space

H(|z| < 1) on the unit disc |z| < 1 of the complex plane C and f(ei t) is its
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boundary function on the unit circle |z| = 1, then
∞∑

n=0

|an|
n+ 1

≤ 1
2

∫ 2π

0

|f(eit)| dt.

An analogue of this theorem has been proved by E. Hille and J.D. Tamarkin
[17].

Theorem 3.14. If the function f(z) belongs to the Hardy space H(R2
+) on the

upper half-plane R2
+ = {z ∈ C : Im z > 0} and f̂(x) is Fourier transform of its

boundary function f(x) on real axis, then the following inequality holds
∫

R+

|f̂(x)|
x

dx ≤ 1
2

∫ +∞

−∞
|f(x)| dx.

An extension of the Theorem 3.14 on Hardy space Hp(R), 0 < p ≤ 1, is also
known.

Theorem 3.15. If f ∈ Hp(R), then∫

R+

|f̂(x)|pxp−2 dx ≤ Cp‖f‖p
Hp(R).

(See [18], p.342).

Problem. What are the least constants in right-hand sides of the inequalities of
the Theorems 3.13–3.15?

N.R. Ladhawala [19] proved a dyadic analogue of the Theorem 3.13 in the fol-
lowing form.

Theorem 3.16. If the function f belongs to dyadic Hardy space H([0, 1)), then
+∞∑
n=1

|f̂(n)|
n

≤ 12
√

2‖f‖H ,

where f̂(n) are Walsh–Fourier coefficients of the function f .

A dyadic analogue of the Theorem 3.14 was proved in [20]:

Theorem 3.17. If f ∈ H(R+), then the following inequality holds
∫

R+

|f̃(x)|
x

dx ≤ 50
√

2‖f‖H(R+).

Problem. 1) What is the least constant in right-hand side of the former inequality?
2) To extend this inequality on dyadic Hardy space Hp(R+), 0 < p < 1, i.e. to prove
dyadic analogue of the Theorem 3.15.

Definition 3.7. Let us define the functions (f ∗Wα
n )∗(x), n ∈ Z+, by the equality

(f ∗Wα
n )∗(x) ≡

∫

2−n≤t≤2n

(f ∗Wα
n )̃(t)ψx(t) dt

=
∫

2−n≤t≤2n

f̃(t)(h(t))αψx(t) dt, x ∈ R+,

where f ∈ L(R+). If there exists the limit

J∗α(f)(x) ≡ lim
n→+∞

(f ∗Wα
n )∗(x),

which is uniform on R+, then we say that the function f has uniform modified
dyadic integral (UMDI) of order α on R+.
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As a corollary from the Theorem 3.17 we obtain:

Theorem 3.18. Each function f ∈ H(R+) has UMDI of first order on R+. More
precisely, the operator J∗1 : H(R+) → Cw(R+) is bounded and

‖J∗1 (f)‖CW (R+) ≤ 100
√

2‖f‖H(R+).

In [21] the following theorem is proved.

Theorem 3.19. The functions ψ(x, m2−n)X[0, 2n)(x), m ∈ N , n ∈ Z, belong to
the space H(R+) and their linear hull L is dense in this space.

If a function f ∈ H(R+) has modified dyadic strong integral J1(f) in the space
L(R+), then J1(f)(x) = J∗1 (f)(x) a.e. on R+. But the functions

ψ(x, m2−n)X[0, 2n)(x), m ∈ N, n ∈ Z,
have modified strong dyadic integral of first order in the space L(R+) (see Theorem
3.6 above). Therefore by setting J̃1(f) ≡ J1(f̃) we can deduce from the Theorems
3.1, 3.17 and 3.19 the following result.

Theorem 3.20. The operator J̃1 : L→ L(R+) is bounded and his operator norm
does not exceed 100

√
2. Therefore it can be extended continuously on the space

H(R+) without changing its operator norm.

This theorem may be considered as a dyadic analogue of the Theorem 3.14.
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[14] F. Schipp. Über einen Ableitungsbegriff von P.L. Butzer und H.J. Wagner, Math. Balkanica.
4 (1974), p. 541-546.



DYADIC DERIVATIVES AND INTEGRALS OF FRACTIONAL ORDER 163

[15] J. Pál, F. Schipp. On the a.e. dyadic differentiability of dyadic integral on R+, “Theory and
applications of Gibbs derivatives”. Proc. First Intern. Workshop on Gibbs Derivatives, Sept.
26-28, 1989, Kupari-Dubrovnik. Beograd, Mat. Institute (1989), p. 103-113.

[16] G.H. Hardy, J.L. Littlewood. Some new properties of Fourier constants, Math. Annalen, 97
(1926), p. 159-209.

[17] E. Hille and J.D. Tamarkin. On the absolute integrability of Fourier transforms, Fund. Math.,
25 (1935), p. 329-352.

[18] J. Garcia-Cuerva, J.L. Rubio de Francia. Weighted norm inequalities and related topics,
North-Holland, Amsterdam - New York - Oxford, 1985.

[19] N.R. Ladhawala. Absolute summability of Walsh-Fourier series, Pacific J. Math., 65 (1976),
p. 103 -108.

[20] B.I. Golubov. On an analogue of Hardy‘s inequality for the Walsh-Fourier transform (in
Russian), Izvestiya RAN: Ser. Mat., 65, No. 3 (2001), p. 3-14.

[21] B.I. Golubov. A modified strong dyadic integral and derivative (in Russian), Mat. sbornik,
193, No. 4 (2002), p. 37-60.

[22] C.W. Onneweer. Fractional differentiation and Lipschitz spaces on local fields, Trans. Amer.
Math. Soc., 258, No. 1 (1980), p. 155-165.

[23] W.R. Wade. The Gibbs derivative and term by term differentiation of Walsh series, “Theory
and applications of Gibbs derivatives”. Proc. First Intern. Workshop on Gibbs Derivatives,
Sept. 26-28, 1989, Kupari-Dubrovnik. Beograd, Math. Inst. (1989), p. 59-72.

[24] V.A. Skvorc̆ov, W.R. Wade. Generalizations of some results concerning Walsh series and the
dyadic derivative, Analysis Math., 5 (1979), p. 249-255.

[25] C.H. Powell, W.R. Wade. Paley sets and term by term differentiation of Walsh series, Acta
Math. Acad. Sci. Hung., 62 (1993), No. 1-2, p. 89-96.

[26] F. Schipp. On the dyadic derivative, Acta Math. Acad. Sci. Hung., 28 (1976), p. 145-152.
[27] F. Weisz. Convergence of singular integrals, Ann. Univ. Sci. Budapest, Section Math., 32

(1989), p. 243-256.

Department of Higher Mathematics,
Moscow Engineering Physics Institute,
115409, Moscow, Kashirskoe shosse, 31,
Russia
E-mail address: golubov@mail.mipt.ru


