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STATISTICAL CONVERGENCE OF WALSH-FOURIER SERIES

FERENC MÓRICZ

Dedicated to Professor William R. Wade on his 60th birthday

Abstract. This is a brief and concise account of the basic concepts and re-
sults on statistical convergence, strong Cesàro summability and Walsh-Fourier
series. To emphasize the significance of statistical convergence, for example
we mention the fact that the one-dimensional Walsh-Fourier series of an inte-
grable (in Lebesgue’s sense) function may be divergent almost everywhere, but
it is statistically convergent almost everywhere. The case of multi-dimensional
Walsh-Fourier series is also considered. For future research, we raise two open
problems and formulate two conjectures.

1. Statistical convergence of sequences. The concept of statistical convergence
was first introduced and studied by Fast [2] in 1951. We note that in the first
edition (1935) of the book “Trigonometric Series” by Anthony Zygmund one can
find two theorems involving the concept of almost convergence (see [12, Vol. 2, on
pp. 181 and 188]), which turned out to be equivalent to the concept of statistical
convergence.

A sequence (sk : k = 1, 2, . . .) of real or complex numbers is said to be statistically
convergent to some finite number L, if for every ε > 0 we have

(1.1) lim
n→∞

n−1|{k ≤ n : |sk − L| > ε}| = 0,

where by k ≤ n we mean k = 1, 2, . . . , n, and by |S| the cardinality of the set S ⊆ P,
the set of positive integers. Clearly, the statistical limit L is uniquely determined.

The following concept is due to Fridy [3]. A sequence (sk) is said to be statistically
Cauchy if for every ε > 0 there exists an integer m such that

lim
n→∞

n−1|{k ≤ n : |sk − sm| > ε}| = 0;

and he proved that (sk) is statistically convergent if and only if it is statistically
Cauchy.

The concept of statistical convergence can be reformulated in terms of natural
density. To this end, we recall (see, e.g. [6, on p. 290]) that the natural (or
asymptotic) density of a set S ⊆ P is defined by

d(S) := lim
n→∞

n−1|{k ≤ n : k ∈ S}|,
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provided that this limit exists. Now, definition (1.1) can be equivalently rewritten
in the following form: for every ε > 0 we have

d({k ∈ P : |sk − L| > ε}) = 0.

Connor [1] proved the so-called decomposition theorem: A sequence (sk) is sta-
tistically convergent to a limit L if and only if there exists a sequence (tk) which is
convergent to L in the ordinary sense:

(1.2) lim
k→∞

tk = L

and

(1.3) d({k ∈ P : sk 6= tk}) = 0.

Moreover, if (sk) is bounded, then (tk) is also bounded.
Taking into account that a set S ⊆ P has natural density 0 if and only if its

complement Sc := P\S has natural density 1, by (1.2) and (1.3) the following
statement is obvious. A sequence (sk) is statistically convergent to a limit L if and
only if there exists an increasing sequence (k` : ` = 1, 2, . . .) ⊆ P of density 1 such
that

(1.4) lim
`→∞

sk`
= L.

If was Zygmund [12, Vol. 2, on p. 181] who introduced the concept of almost
convergence in the sense of (1.4). By virtue of the decomposition theorem, the
concepts of statistical convergence and almost convergence are equivalent.

The concept of statistical convergence can be extended to multiple sequences
of real or complex numbers in a straightforward way. For instance, a double se-
quence (sj,k : j, k = 1, 2, . . .) of real or complex numbers is said to be statistically
convergent to a finite number L if for every ε > 0 we have

lim
m,n→∞

m−1n−1|{j ≤ m and k ≤ n : |sj,k − L| > ε}| = 0,

where m and n tend to infinity independently of one another. Theorems are valid
for the statistical convergence of multiple sequences which are analogous to those
for single sequences presented above. (See [5] for details.)

2. Strong Cesàro summability of sequences. This concept goes back to Hardy
and Littlewood [4]. Let p be a positive real number. A sequence (sk) of real or
complex numbers is said to be strongly p-Cesàro summable to a finite limit L if

lim
n→∞

n−1
n∑

k=1

|sk − L|p = 0.

The following theorem (see, e.g. [12, Vol. 2, (7.2) Theorem on p. 181, where
the term ‘summable Hp’ is used]) expresses the intimate connection between the
concepts of strong Cesàro summability and statistical convergence:

(i) If (sk) is strongly p-Cesàro summable to L for some p > 0, then (sk) is
statistically convergent to L.

(ii) Conversely, if (sk) is statistically convergent to L and is bounded, then (sk)
is strongly p-Cesàro summable for every p > 0.

An analogous theorem is valid for multiple sequences. (See again [5] for details.)
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3. Walsh-Fourier series. Concerning the Walsh system (wj(x) : j = 0, 1, . . .), x ∈
[0, 1), in the Paley enumeration, we refer to the monograph [10, on pp. 1 and 2].
Given a function f integrable in Lebesgue’s sense on the interval [0, 1), in symbol:
f ∈ L1[0, 1), its Walsh-Fourier series is defined by

(3.1) f(x) ∼
∞∑

j=0

f̂(j)wj(x), where f̂(j) :=
∫ 1

0

f(x)wj(x)dx.

Denote the partial sums of the series in (3.1) by

sn(f ; x) :=
n−1∑

j=0

f̂(j)wj(x), n ∈ P.

It was Stein [11] (see also [10, Theorem 14 on p. 298]) who first proved that
there exists a function f ∈ L1[0, 1) whose Walsh-Fourier series is divergent almost
everywhere.

The multiple Walsh-Fourier series on the N -dimensional cube [0, 1)N , N ∈ P,
can be defined analogously. For simplicity in writing, let N = 2. The double
Walsh-Fourier series of a function f ∈ L1[0, 1)2 is defined by

(3.2) f(x, y) ∼
∞∑

j=0

∞∑

k=0

f̂(j, k)wj(x)wk(y),

where

f̂(j, k) :=
∫ 1

0

∫ 1

0

f(x, y)wj(x)wk(y)dxdy.

Denote the rectangular partial sums of the double series in (3.2) by

sm,n(f ; x, y) :=
m−1∑

j=0

n−1∑

k=0

f̂(j, k)wj(x)wk(y), (m, n) ∈ P2.

The convergence of series (3.2) is meant in Pringsheim’s sense, that is, the conver-
gence of the double sequence (sm,n(f ;x, y) : m, n = 1, 2, . . .) as both m and n tend
to infinity, independently of one another.

Let f ∈ L1[0, 1). The strong p-Cesàro summability of the sequence (sn(f ; x) :
n = 1, 2, . . .) of the partial sums of the series in (3.1) to f(x) at almost every
point x ∈ [0, 1) was proved by Schipp [9] in the case p = 2; and by Rodin [7]
in the general case 0 < p < ∞ (even in the more general case of BMO means).
In the case of N -dimensional Walsh-Fourier series, N ∈ P, Rodin [8] proved the
following theorem: If f ∈ L1(log+ L)N−1[0, 1)N , then the N -multiple sequence of
the rectangular partial sums (sn1,...,nN

(f ; x1, . . . , xN ) : n1, . . . , nN = 1, 2, . . .) of
the Walsh-Fourier series of f are strongly p-Cesàro summable to f(x1, . . . , xN ) at
almost every point (x1, . . . , xN ) ∈ [0, 1)N for any 0 < p < ∞.

Combining these results with those in Section 2 yields the following remarkable
result.

Theorem. If f ∈ L1(log+ L)N−1[0, 1)N , then the Walsh-Fourier series of f is sta-
tistically convergent to f(x1, . . . , xN ) at almost every point (x1, . . . , xN ) ∈ [0, 1)N .

In particular, if f ∈ L1[0, 1), then the Walsh-Fourier series of f is statistically
convergent almost everywhere.

Two questions arise naturally.
(i) What is the situation if f ∈ L1[0, 1)N , but f 6∈ L1(log+ L)N−1[0, 1)N? On

the basis of a result of Jessen, Marcinkiewicz and Zygmund (see, e.g. [12, Vol. 2,
(2.14) Theorem on p. 308]), we formulate the following conjecture.
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Conjecture 1. Given any function ϕ(u), positive and increasing on the interval
(0,∞) and o(u logN−1 u) as u → ∞, there exists a function f ≥ 0 such that
f ∈ L1[0, 1)N and ϕ(f) ∈ L1[0, 1)N , but the multiple Walsh-Fourier series of f is
nowhere statistically convergent.

(ii) What is the situation if f is a W -continuous function? We recall (see [10, on
p. 11 for the case N = 1]) that a real-valued function f defined on [0, 1)N is said
to be W -continuous there if it is continuous from the (product) dyadic topology to
the usual topology.

Conjecture 2. If f is a W -continuous function on [0, 1)N , then the Walsh-Fourier
series of f is statistically convergent to f(x1, . . . , xN ) uniformly in

(x1, . . . , xN ) ∈ [0, 1)N .

According to Section 2, in order to justify Conjecture 2 it would be enough to
prove that every W -continuous function on [0, 1)N is strongly p-Cesàro summable
to f uniformly on [0, 1)N for some 0 < p < ∞. We guess that this claim is true
even for every 0 < p < ∞.

References

[1] J. Connor. The statistical and strong p-Cesàro convergence of sequences. Analysis, 8:47–63,
1988.

[2] H. Fast. Sur la convergence statistique. Colloq. Math., 2:241–244, 1951.
[3] J. Fridy. On statistical convergence. Analysis, 5:301–313, 1985.
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