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ON ORTHONORMAL PRODUCT SYSTEMS

Schipp Ferenc

Dedicated to the 60th birthday of Professor W. R. Wade

Abstract. In this paper we collected the most significant results concerning product
systems. In addition to that we formulate some open problems. Our purpose is to call
the attention to this field which is connected to several other fields of mathematics
and which was developed from dyadic analysis.

0. Introduction

Expansions by orthogonal and biorthogonal systems play an important role in
mathematics and its applications. Several methods are available for constructing
such systems. In a Hilbert space, for instance, the Gram-Schmidt method transforms
a linearly independent system into an orthonormed one [A,1]. Orthogonal polyno-
mials, the Franklin–system and its generalizations, orthogonal systems consisting
of rational functions (discrete Laguerre, Kautz, Malmquist–Takenaka systems) are
examples that can be derived this way [G;1,2,4].

On the other hand, orthonormed systems formed by eigenfunctions of differen-
tial operators are extensively used in mathematical physics. Another well known
method is to take the character system of some groups. Then the tools of harmonic
analysis, such as Haar measure, convolution etc., can be used. The trigonometric,
the Walsh and more generally the Vilenkin systems can be viewed as character
systems [A;2,5,6,7,8].

At the end of the sixties in the last century G. Alexits introduced the various
concepts of multiplicative systems. The definition relies on the concept of product
systems [A;1], [C;1-3]. The product system is formed by the collection of the finite
products of the members of the original systems. The relation between the Walsh
and the Rademacher systems served as a model for the definition. Using this termi-
nology, the Walsh system is the product system of the Rademacher system in the
Paley enumeration. By using appropriate conditions on the product system one
can define the concepts of multiplicative, strongly multiplicative and weakly multi-
plicative systems. Namely, if the product system is orthogonal then the oroginal
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system is called strongly multiplicative. If the integrals of the members of the prod-
uct system, except from the one with index 0, are all equal to 0 then the system
is called weakly multiplicative. Many of the theorems originally proved for inde-
pendent random variables were transferred to multiplicative systems. Among them
are the theorems on the strong law of large numbers and on iterated logarithms
[C;4-6,17]. Haar like systems, that share the good convergence properties of the
Haar system, can be constructed by means of product systems [F;1-3].

In the middle of the 1970’s the author generelizing the concept of product system
introduced a new method for constructing orthogonal systems starting from some
conditionally orthogonal functions [C;7-10]. Several classical systems, including the
trigonometric system in a certain rearrangement, the Walsh system or the Vilenkin
system, character systems of additive and multiplicative groups of local fields and
UDMD–systems, can all be constructed using this method [A;6-7], [C;24]. Walsh–
similar systems (WSS) recently introduced by Sendov [E;6,7] belongs to this class if
we slightly modify the original concept. Moreover, some generalizations, introduced
by G. Gát [C;26] can be obtained in this way. Orthonormed wavelet packets (see
e.g. [C;24]) can also be originated by our method.

On of the key concept in our construction is the notion of product systems of
conditionally orthogonal systems. Investigating such systems we can apply concepts
and methods of probability theory, especially those from the area of martingales
[C;8-23]. These systems have important theoretical properties that are useful in
numerical computations, too. For instance Fourier–coefficients and partial sums can
be computed applying fast algorythms similar to FFT [D;1-4]. Discrete orthonormal
product systems of rational functions are introduced and applied in cotrol theory
[G;1-6]. Moreover, applying some restrictions, the analogue of M. Riesz’s on Lp

norm convergence and Carleson’s theorem on a.e. convergence of trigonometric
Fourier–series also hold [A;9], [C;9,10,11]. Haar-like systems can be defined, starting
from certain product systems [F;1,3].

Here we are not concerned with the summation processes related to product
systems although quite a number of nice results have been proved in this area. For
instance G. Gát [C;25] has solved a long standing problem posed by M. Taibleson
in his book [A;8]. Namely, he proved that the statement analogous to Lebesgue’s
theorem on (C, 1) summability of trigonometric Fourier series is true for the char-
acter system of 2-adic field. For furher results on summation we refer the reader to
the book of F. Weisz [A;10] and to the paper [C;26].

1. Conditional expectation

In this paper we investigate conditionally orthonormal systems and introduce
the notion of product systems. To this end we fix a measure space (Ω,A, µ). The
conditional expectation (CE) of the function f with respect to the sub-σ-algebra
B ⊆ A is denoted by EBf . The Lp-space of B-measurable functions will be denoted
by Lp(B) := Lp(Ω,B, µ). Instead of Lp(Ω,A, µ) we write Lp and ‖ · ‖p (0 < p ≤ ∞)
stands for the Lp-norm or Lp-quasinorm.

The conditional expectation can be characterised by the following two properties:

(1.1) i) EBf ∈ L1(B), ii)
∫

B

EBf dµ =
∫

B

f dµ

for every f ∈ L1 and every B ∈ B [A;9]. It is well-known that Lp 3 f → EBf is a
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bounded linear projection onto Lp(B) for every 1 ≤ p ≤ ∞ and

(1.2) ‖EBf‖p ≤ ‖f‖p (1 ≤ p ≤ ∞).

The operator EB is B-homogeneous, i.e. if λ is B-measurable and f, λf ∈ L1 then

(1.3) EB(λf) = λEBf.

Furthermore, if C ⊆ B ⊆ A are sub-σ-algebras of A then

(1.4) EB(ECf) = EC(EBf) = ECf

for any f ∈ L1. We note that if B := {Ω, ∅} is the trivial σ-algebra then

(1.5) EB(f) =
∫

Ω

f dµ,

i.e. CE is a generalization of the integral (see e.g. [A;9]).
The conditional expectation operator has a simple form if B is an atomic σ-

algebra, i.e. if B is generated by the collection of pairwise disjoint subsets Bj ∈
A (j = 1, 2, · · · ,m) of Ω :

B : = σ{Bj : j = 1, 2, · · · ,m}, Bi ∩Bj = ∅
(1 ≤ i < j ≤ m), µ(Bj) <∞ (1 5 j 5 m).

The sets Bj (j = 1, · · · ,m) are called the atoms of B and the B-measurable
functions are exactly the step functions, constant on the Bj ’s and wanishing autside
∪n

j=1Bj . We denote this m-dimensional subspace of L1 by L(B). Obviously in this
case Lp(B) = L(B) (0 < p ≤ ∞) and the conditional expectation is of the form

E(f |B)(x) =
1

µ(Bj)

∫

Bj

f dµ (x ∈ Bj).

The fact that CE has properties similar to those of integral makes it possible
to extend several concepts connected with the integral to CE. For example a finite
or infinite system of functions ϕn ∈ L2 (n ∈ N ) is called a B-orthonormal system
(EB-ONS) with respect the positive, A measurable weight function ρ, if

(1.6) EB(ϕkϕ`ρ) = δk` (k, ` ∈ N ),

where δk` is the Kronecker-symbol. If B := {Ω, ∅} is the trivial σ-algebra then we
get the usual definition of ONS. Moreover (1.4) implies that each EB-ONS is an
ONS in the usual sense.

Replacing the integral by CE in the definitions of Fourier-coefficients and Fourier
partial sums we get the following: The function EB(fϕnρ) is called the n-th B-
Fourier coefficient of the function f with respect to the system (ϕn, n ∈ N ). The
n-th partial sum of the B-Fourier-series of f is defined by

(1.7) SB0 f := 0, SBn f :=
∑

k∈N ,k<n

EB(fϕnρ)ϕn (n ∈ N∗ := {1, 2, · · · }).

In the case B := {Ω, ∅} these notions coincide with the usual definitions of
Fourier-coefficient and Fourier partial sums. The system Φ is called B-complete
with respect to the set of functions F , if f ∈ F and EB(fϕn) = 0 (n ∈ N ) imply
f = 0. The concept of B-biorthogonal systems and B-biorthogonal expansions can
be defined in a similar way.
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2. Product systems

To define product system we fix a collection of function systems

(2.1) Φk := {ϕ`
k : ` = 0, 1, · · · ,mk − 1} ⊂ L2, with ϕ0

k = 1 (k ∈ N),

where (mk, k ∈ N) is a sequence of numbers for (k ∈ N := {0, 1, · · · }) satisfying
mk ≥ 2,mk ∈ N. We shall use the Cantor-expansion of natural numbers with
respect to the base

(2.2) M0 := 1, Mk := m0m1 · · ·mk−1 (k ∈ N∗).

It is well-known that every number n ∈ N can be written uniquely in the form

(2.3) n =
∞∑

k=0

nkMk,

where nk ∈ {0, 1, · · ·mk − 1} (k ∈ N). Then for every n we define the (finite)
product

(2.4) ψn :=
∞∏

k=0

ϕnk

k (n ∈ N).

The system Ψ = {ψn : n ∈ N} is called the product system of the systems
Φk (k ∈ N). This type of product systems was introduced by the author in [C;9].
In the special case mk = 2 (k ∈ N) we have Mk = 2k (k ∈ N) and (2.3) is the dyadic
reprezentation of n ∈ N. In this case we write ϕk instead of ϕ1

k. The product system
corresponding to this special case, i.e. the system

(2.5) ψn :=
∏

nk=1

ϕk (n =
∞∑

k=0

nk2k ∈ N, nk = 0, 1)

was introduced by Alexits in [A;1] and will be called the binary product system of
(ϕn, n ∈ N).

To get orthonormed product systems we fix a stochastic basis, i.e. an increasing
sequence of sub-σ-algebras of A:

(2.6) A0 := {Ω, ∅} ⊂ A1 ⊂ · · · ⊂ An ⊂ · · · ⊂ A

and a sequence Φk (k ∈ N) of adapted conditionally orthonormal systems (AC-
ONS) with respect to the sequence (ρn, n ∈ N) of weight functions. This means
that the functions in Φk are Ak+1-measurable and Φk is Ak- or Ek-orthonormed
with respect to ρk:

(2.7)
i) Φk ⊂ L2

ρk
(Ak+1) (k ∈ N),

ii) Ek(ϕi
kϕ

j
kρk) = δij (0 ≤ i, j < mk, k ∈ N),

where Ek denotes the conditional expectation with respect to Ak and L2
ρk

(Ak+1)
is the space of Ak+1-measurable functions, satisfying

∫
Ω
|f |2ρk dµ <∞.
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To get orthonormal product system we need some additional condition for the
sequence of weigths. We will suppose that the sequence (ρk, k ∈ N) consists of
positive, adaptive and conditionally normalized functions, i.e.

(2.8) ρk > 0, ρk ∈ L1(Ω,Ak+1, µ), Ekρk = 1 (k ∈ N).

In this case the sequence

(2.9) Rn :=
n−1∏

k=0

ρk (n ∈ N∗)

forms a martingale with respect to (An, n ∈ N), i.e. Rn is An-measurable and

(2.10) EnRs = Rn (n < s, n, s ∈ N).

Indeed by (1.3) and (1.4) in the case s > n we have

En(Rs) = En

(
Es−1(Rs−1ρs−1)

)
= En

(
Rs−1Es−1ρs−1

)
= EnRs−1.

Hence we get

En(Rs) = EnRn+1 = En

(
Rnρn

)
= RnEnρn = Rn

and (2.10) is proved. The martingale (Rn, n ∈ N) is L1-bounded and consequently
conveges µ a.e. Namely from (2.10) we get

∫

Ω

Rs dµ = E0(E1Rs) = E0(R1) = E0(ρ0) = 1 (s ∈ N).

In this paper we will suppose that the partial products (Rn, n ∈ N) form a
positive, regular martingele, i.e. there exists a function ρ > 0, ρ ∈ L1 with

∫
Ω
ρ dµ =

1 such that

(2.11) Rn = Enρ, or equivalently ρn =
En+1ρ

Enρ
(n ∈ N).

In this case we call the sequence (ρk, k ∈ N) of weight regular. It is easy to see
that the regular (ρk, k ∈ N) weights satisfy (2.8), in addition

(2.12) En

( ∞∏

k=n

ρk

)
= 1 (n ∈ N).

Indeed, in this case Rs → ρ as s→∞ in L1-norm and consequently

Rn = lim
s→∞

EnRs = Enρ = RnEn

( ∞∏

k=n

ρk

)
.

Product systems of AC-ONS with ρn = 1 (n ∈ N) has been introduced and
investigated in [C;9].

It can be shown that if the sequence (ρk, k ∈ N) is regular, then the product
system Ψ is an ONS with respect to the weight function ρ.

189



Theorem 1. Suppose that the (ρn, n ∈ N) sequence of weigts is regular and satisfy
(2.11). Let Ψ be the product system of AC-ONS satisfying (2.7). Then Ψ is an
orthonormed system with respect to ρ :=

∏∞
k=0 ρk, i.e.

(2.13)
∫

Ω

ψnψm ρ dµ = δmn (m,n ∈ N).

By (1.3) and (1.4) it is easy to see that the n-th Fourier-coefficient of f ∈ L2

with respect to the system Ψ can be written in the form

∫

Ω

fψn ρ dµ = E0(ϕn0
0 ρ0E1(ϕn1

1 ρ1 · · ·Es−1(ϕ
ns−1
s−1 ρs−1Es(fθs)))

0 ≤ n < Ms),

(2.14)

where

θs :=
∞∏

k=s

ρk (s ∈ N).

The formula (2.14) is the basis of all FFT-algorithms (for details see [D;1-4]).
It can be proved (see [C;7-9]) that if the system Φn is An-complete with respect

to L2(An+1), and the stochastic basis (An, n ∈ N) generates A then the product
system Ψ is complete with respect to L2. Especially, if the An’s are atomic σ-
algebras generatingA and the systems Φn areAn-complete with respect to L(An+1)
then terms of the product system are bounded functions and the system itself is
complete with respect to Lp for 1 ≤ p <∞.

The conditions on Φn can be relaxed. Namely, ϕ0
k = 1 (k ∈ N) can be omitted. In

that case (2.4) becomes an infinite products. We must guarantee that this product
converges to a function in L2. Let us assume for example that

(2.15) iv)
∞∏

k=n0

φ0
k converges, and sup

s≥n0

s∏

k=n0

|φ0
k| ∈ L2 (n0 ∈ N)

holds for the system

Φ′k := (φ`
k : 0 5 ` < mk) (k ∈ N),

which is an AC-ONS for the weight function ρk = 1 (k ∈ N). Thus one can define
the product system

ψ′n :=
∞∏

k=0

φnk

k (n ∈ N).

ψ′0 is called the starting function of the product system.
This general concept of product systems has been introduced in [C;24], [E;4].

It can be shown that also in this case the product system Ψ′ = (ψ′n, n ∈ N) is
orthogonal with respect to the weight function ρ = 1.

We note that this concept is equivalent to the original one. Indeed, let

ρk := |φ0
k|2 > 0 (k ∈ N).
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if

ϕ`
k :=

φ`
k

φ0
k

(0 5 ` < mk, k ∈ N)

then ϕ0
k = 1 (k ∈ N). Moreover

(2.16) Ek(φi
kφ

j
k) = Ek(ϕi

kϕ
j
kρk) = δij (0 5 i, j < mk).

It follows from the connection between the system Ψ and Ψ′ that

(2.17)
∫

Ω

ψ′rψ′s dµ =
∫

Ω

ψrψs ρ dµ = δst (s, t ∈ N).

On the basis of this observation it is enough to study product systems with finite
many factors utilizing the transition from Ψ′ to Ψ. Then we obtain an orthonormal
system in Hilbert space L2(Ω,A, µ) rather then in L2

ρ(Ω,A, µ).
Even if the measure space (Ω,A, µ) is fixed we have infinitely many possibilities

to construct product systems. Namely, we are free to choose the weight function ρ,
the stochastic basis (An, n ∈ N), and the AC-ONS system Φn (n ∈ N).

The (An, n ∈ N) stochastic basis is called atomic if the σ-algebra An (n ∈ N)
are generated by finite many atoms. Clearly, the atoms in An can be decomposed
as finite unions of An+1 type atoms. If every one of them is the union of exactly p
pairwise different An+1 atoms then the stochastic basis is called p-adic. In partic-
ular, if p = 2 then it is called dyadic. Such a stochastic basis is called homogeneous
if the µ measure of every An atom is the same.

By the application of stopping times one can redefine the initial stochastic basis
and so adjust it to the particular problem. Recall that the function τ : Ω → N∪{∞}
is called a stopping time with respect to the stochastic basis (An, n ∈ N) if for every
n ∈ N we have

{τ = n} = {ω ∈ Ω : τ(ω) = n} ∈ An.

Then
Aτ := {A ∈ A : A ∩ {τ = n} ∈ An (n ∈ N)}

is a sub σ-algebra of A. In the case of the constant stopping time τ(ω) = n (ω ∈ Ω)
we obtain that Aτ = An. It can be shown, that if τ1 5 τ2 holds for the stopping
times τ1, τ2 then Aτ1 ⊆ Aτ2 . Therefore by taking a sequence τ1 5 τ2 5 · · · 5 τn 5
· · · of stopping times we can switch to the generated stochastic basis

Aτ1 ⊆ Aτ2 ⊆ · · · ⊆ Aτn ⊆ · · · .

This socalled stopping time technique is widely used in the theory of probability.
It turned to be a successful method also in harmonic analysis [A;9]. We note that
this is an effective method in image procession and image compression as well.
Namely, using stopping times one can construct stochsatic basis and orthogonal
system that are adapted to the image.

Sometimes instead of starting from a stochastic basis we take a system of func-
tions ηk ∈ L2(Ω,A, µ) (k ∈ N) and take the monotonically increasing sequence
Ak := σ{η` : 0 5 ` < k} of σ-algebras. Let us standardize ηk:

(2.18) ϕk :=
ηk − Ek(ηkρk)√

Ek|ηk − Ek(ηkρk)|2ρk

(k ∈ N).
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Then for the systems Φk := {1, ϕk} (k ∈ N) condition (2.7) is satisfied. Thus
the binary product system is orthogonal with respect to the weight function ρ.
In particular, if ηk (k ∈ N) is a sequence of independent random variables with
expectation 0 and variance 1 then

Ek(ηk) =
∫

Ω

ηk dµ = 0, Ek(|ηk|2) =
∫

Ω

|ηk|2 dµ = 1.

Consequently, (2.7) holds for the system ηk (k ∈ N) with ρk = 1 (k ∈ N). Thus the
binary product system is orthonormal.

Let ηj
k ∈ L2

ρk
(Ω,Ak+1, µ) (0 5 j < mk) be linearly independent with respect to

Ak+1. Using an ortogonalization process, similar to the Schmidt procedure, we can
construct an AC-ONS system Φk (k ∈ N) satisfying (2.7).

Using these constructions we can obtain the Vilenkin systems [A;2,5,6] and their
generalization introduced by G. Gát [C;26]. In the next chapter we will investigate
only binary product systems.

3. Examples

In this section we give examples for AC-ONR systems taking the dyadic stochas-
tic basis and choosing the sequence (ρk, k ∈ N) in a special way.

Let Ω := I := [0, 1), A the collection of Lebesgue-measurable subset in [0, 1) and
µ the Lebesgue-measure. The atoms of An are the dyadic intervals

Jn := {[k2−n, (k + 1)2−n) : 0 5 k < 2n}.

Several classic orthonormal system can be obtained as a binary product system of
systems of the form Φk = {1, ϕk} (k ∈ N) satisfying (2.7).

Denote rn (n ∈ N) the Rademacher system on [0, 1), i.e.

(3.1) rn(x) = (−1)xn

(
x =

∞∑
n=0

xn2−(n+1) ∈ [0, 1), xn = 0, 1
)
.

Obviously rn is An+1-measurable and En(rn) = 0. Then binary product system of
the sequence (rn, n ∈ N) is the Walsh-Paley system.

In the case ϕ0 := r0, ϕn := rnrn−1 (n ∈ N∗) we get another AC-ONS and the
binary product system is the system introduced by J. L. Walsh in 1923. We note that
this is a rearrangement of the Walsh-Paley system (see [A;6]). Other rearangement
of the Walsh-system (see [A;7], [E;1]) can be obtained in this way too.

Many orthogonal systems in dyadic harmonic analysis are binary product sys-
tems of dyadic martingale differences. Let ϕn : [0, 1) → C (n ∈ N) be a sequence
of functions satisfying

(3.2) i) |ϕn| = 1, ii) ϕn ∈ L(An+1), iii) En(ϕn) = 0 (n ∈ N).

Thus (ϕn, n ∈ N) is a sequence of dyadic martingale differences of modulus 1,
which is called unitary dyadic martingale difference (UDMD) system [A;7], [C;22].
It is obvious, that the functions ϕn are of the form

ϕn = rnκn, where κn ∈ L(An), and |κn| = 1 (n ∈ N).
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The characters of the additive and multiplicative groups of 2-adic and 2-series
field can be obtained as product systems of UDMD-systems [A;7]. Especially, the
characters of the additive group of 2-series field are the Walsh functions. In the
case of the 2-adic field the additive characters are generated by the UDMD system
where

(3.3) ϕn(x) := exp
(
2πi(

xn

2
+
xn−1

22
+ · · ·+ x0

2n+1
)
)

(n ∈ N, x ∈ [0, 1))

and the xn’s are the binary coefficients defined in (3.1).
The product systems of these systems are closely connected to the discrete

trigonometric system. For describing the characters of the multiplicative groups
of 2-adic and 2-series field see [A;7].

To define wighted Wals-functions fix the function ρ > 0, ρ ∈ L1 and consider the
sequence of regular weight (ρk, k ∈ N), defined in (2.11). Taking the standardized
sequence of the Rademacher functions defined by (2.18), we get

(3.4) rρ
k =

rk − Eρ
k(rk)√

1− |Eρ
k(rk)|2 , where Eρ

k(rk) :=
Ek(rkρ)
Ek(ρ)

(k ∈ N),

wich is called the weighted Rademacher-system. The binary product-system of
(rρ

n, n ∈ N) is called the weighted Walsh system and will be denoted by (wρ
n, n ∈ N).

For weight function ρ of the form

ρ :=
∞∏

k=0

(1 + akrk)
(
ak ∈ R, |ak| < 1 (k ∈ N),

∞∑

k=0

|ak| <∞
)

this class coincides with the set of Wals-similar functions, introduced by Sendov
[E;6,7]. The general class was introduced end investigated in [C;24], [E;4]. By
Theorem 1 we have that {wρ

k : k ∈ N} is an ONS in L2
ρ[0, 1).

It is easy to see that the AC-ONS property is invariant with respect to Kronecker-
product. Namely, suppose that for any k ∈ N the system

Φk = {ϕi
k : 0 ≤ i < mk} ⊂ L2(Ω,Ak+1, µ),

Φ̂k = {ϕ̂j
k : 0 ≤ j < m̂k} ⊂ L2(Ω̂, Âk+1, µ̂)

are adaptive conditionally orthonormal systems and denote

(f × g)(x, y) := f(x)g(y) (x ∈ X, y ∈ X̂)

the Kronecker product of the functions f and g. Then the Kronecker product

Φk × Φ̂k := {ϕi
k × ϕ̂j

k : 0 ≤ i < mk, 0 ≤ j < m̂k},
Φk × Φ̂k ⊂ L2(Ω× Ω̂,Ak+1 × Âk+1, µ× µ̂) (k ∈ N)

is an AC-ONS with respect to the stochastic basis Ak × Âk (k ∈ N). Denote Ψ
and Ψ̂ the corresponding product systems. Then Ψ × Ψ̂ is the product system of
(Φk × Φ̂k, k ∈ N).
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Especially, if (X,A, µ) = (X̂, Â, µ̂) is the Lebesgue-space on [0, 1), then d(µ ×
µ̂)(x, y) = dx dy is the two-dimensional Lebesgue-measure and A × Â is the col-
lection of Lebesgue-measurable subset in I2 := I × I. Let Ak = Âk the dyadic
σ-algebra. Then A2

k := Ak × Âk is the σ-algebra, generated by the dyadic squares

Jn × Jn := {I × J : I, J ∈ Jn} (n ∈ N).

In this case the conditional expectation is of the form

(Enf)(x, y) =
1

|In(x)× In(y)|
∫

In(x)×In(y)

f(s, t) ds dt (x, y ∈ [0, 1), n ∈ N),

where In(x) denotes the interval in Jn containing x.
The systems {1, rk × 1, 1 × rk, rk × rk} (k ∈ N) is AC-ONS with respect to the

stochastic basis (A2
k, k ∈ N) and A2

k-complete with respect to L(A2
k+1).

Taking the transform of this system by any orthogonal matrix Bk = [bkij ] of
A2

k-measurable functions bkij , the system

(3.5) ϕi
k = bki0 + bki1(rk × 1) + bki2(1× rk) + bki3(rk × rk) (i = 0, 1, 2, 3)

is A2
k+1-measurable and A2

k-orthonormal. The special case, if a1
k, a

2
k, a

3
k are real

numbers and

(3.6) Ak := M [ak] :=
1√

1 + |a1
k|2 + |a2

k|2 + |a3
k|2




1 a1
k a2

k a3
k

a1
k −1 a3

k −a2
k

a2
k −a3

k −1 a1
k

a3
k a2

k −a1
k −1




is the orhogonal matrix generated by the vector ak = (a1
k, a

2
k, a

3
k) has been investi-

gated in [C;24]. Obviously if a1
k, a

2
k, a

3
k are A2

k-measurable functions then the system
{ϕj

k : 0 ≤ j < 4} ⊂ L(A2
k+1) generated by M [ak] is Ak-orthonormal.

4. Dirichlet kernels, Paley’s formula, partial sum operators

In this section we investigate norm-convergence with respect to the product
system Ψ introduced in (1.11). For the Mn-th Dirichlet kernel of the product
system we have the following product reprezentation:

(4.1) DMn(s, t) :=
Mn−1∑

k=0

ψk(s)ψk(t) =
n−1∏

i=0

( mi−1∑

j=0

φj
i (s)φ

j

i (t)
)
.

This is the genaralization of the Paley’s identity proved for the Walsh system.
Denote L(Ψ) the linear hull of Ψ, i.e. the set of Ψ-polinomials.

Let the partial sums of the Fourier-series of f ∈ L2
ρ with respect to the system

Ψ be denoted by

(4.2) S0f := 0, Snf :=
n−1∑

k=0

[f, ψk]ψk (n ∈ N∗),
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where [f, g] :=
∫
I fg ρdµ is the usual scalar product in L2

ρ.
On the set of Ψ polynomials the operators SMn

can be expressed by the condi-
tonal expectation:

SMn
f = Enf (n ∈ N, f ∈ L(Ψ)).

The operator Sn can be expressed by the partial sums of the Ak-Fourier-series
with respect to the system Φk, i.e. by

(4.3) S0
kf := 0, Sj

kf :=
j−1∑

i=0

Ek(fϕi
kρk)ϕi

k (j = 1, 2, · · · ,mk, k ∈ N).

Theorem 2. Let Ψ be the product system of Φk (k ∈ N). Then the partial sum
operators with respect to the product system on L(Ψ) are of the form

(4.4) Snf =
∞∑

k=0

Snk

k (fψ
k+1

n )ψk+1
n (f ∈ L(Ψ), n ∈ N),

where

ψj
n :=

∞∏

i=j

φni
i .

If the system is unitary then the partial sums can be expressed by generalized
martingale transforms. Namely from (4.4) we get

Corollary 1. If the systems Φk (k ∈ N) are unitary, i.e. if |φj
k| = 1 (0 5 j <

mk, k ∈ N) then Sn is defined on L1
ρ and

(4.5) Snf = ψnTn(fψn) (n ∈ N, f ∈ L1
ρ),

where

(4.6) Tng =
∞∑

k=0

φnk

k Snk

k (gφ
nk

k ) (g ∈ L1
ρ)

is the generalized martingale transform operator.

5. Norm and a.e. convergence

The representation (4.5) and (4.6) can be used in convergence problems of Fourier
seriese with respect to product systems.

The operator T : Lp → Lp is called of strong type (Ak, p) if there exists a number
K > 0 such that for any f ∈ Lp

(5.1) (Ek(|Tf |p))1/p 5 K(Ek(|f |p))1/p

is satisfied. The infimum of the numbers K in (5.1) is called the (Ak, p)-norm of the
operator T and is denoted by ‖T‖(Ak,p). The usual Lp-norm is denoted by ‖ · ‖p.

The uniform conditional (Ak, p)-boundedness of the operators Sj
k implies the

uniform Lp-norm boundedness of the partial sum operators Sn if the systems Φk

are unitary [C;9]. This implies the Lp-norm convergence of the Fourier series with
respect to the product sysstem.
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Theorem 3. Suppose that the systems Φk (k ∈ N) are unitary and let ρk = 1 (k ∈
N). If for some 1 < p <∞

sup
05j<mk,k∈N

‖Sj
k‖(Ak,p) <∞,

then
sup

n
‖Sn‖p <∞.

This implies

Corollary 2. The Vilenkin systems are basis in Lp if 1 < p <∞.

In connection with these results we put

Problem 1. Under what conditions is Ψ a basis in Lp in the general case.

The a.e. convergence of the parial sums Snf depends on Lp boundedness of the
maximal operators

S∗f := sup
n
|Snf |, S∗kf := sup

05j<mk

|Sj
kf | (k ∈ N).

For bounded generating sequence (mk, k ∈ N) the analogue of Carleson-Hunt
theorem was proved in [C;10].

Theorem 4.. Suppose that the systems Φk (k ∈ R) are unitary and supk mk <∞.
Then S∗ is bounded on Lp if 1 < p <∞.

This implies

Corollary 3. If 1 < p < ∞ and f ∈ Lp then Snf (n ∈ N) converges a.e. In
particular for bounded Vilenkin systems Snf (n ∈ N) converges a.e.

In connection with these result we have the following open

Problem 2. Does the analogue of Theorem 2. hold for the maximal operators:

sup
k
‖S∗k‖(Ak,p) <∞ ⇒ ‖S∗‖p <∞?

Problem 3. Does Snf (n ∈ N) converge a.e. for arbitrary Vilenkin system if
f ∈ Lp (1 < p <∞)?

6. Binary product systems

In this section we investigate the special case mk = 2, ρk = 1 (k ∈ N). The
binary product system of the system Φk := {1, φk} (k ∈ N) is an ortonormal system
if (2.7) i) ii) are satisfied. In particular if the functions (φk, k ∈ N) are independent
and

(6.1)
∫

Ω

φk dµ = 0,
∫

Ω

|φk|2 dµ = 1 (k ∈ N),

then (2.7) i) ii) hold for the σ-field Ak := σ{φj : j < k} (k = 1, 2, . . . ).
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In the binary case condition (2.7) is equivalent to the fact that the sequnce
(φk, k ∈ N) forms a normalized martingale difference sequence with respect to the
stochastic basis (Ak+1, k ∈ N). Consequently the partial sums of the series

(6.2)
∑

k=0

akφk =
∑

k=0

akψ2k

form an L2 bounded martingale, if
∑∞

k=0 |ak|2 <∞. Thus the series (6.2) is µ a.e.
convergent, i.e. (ψ2k , k ∈ N) is a convergence system. This claim is a special case
of the Kolmogorov’s three series theorem which play an important part in the proof
of the general theorem.

The series (6.2) is a strongly lacunary subseries of the orthogonal series

(6.3)
∞∑

n=0

cnψn.

¿From theorem 4 it follows

Corollary 4. If (φn, n ∈ N) is a unitary martingale difference system, then its
binary product system is a convergence system.

In coonection with Corollary 4 we put

Problem 4. Under what condition with respect to the system (φk, k ∈ N) does

∞∑
n=0

|cn|2 <∞

impy the µ a.e. convergence of (6.3).

Similar claims for real, uniformly bounded weakly multiplicative systems are pro-
ved in [C;4-6]. For the summary this type of results see [C;17].

7. Walsh functions with respect to weights

Let Ω := [0, 1), A the collection of Lebesgue-measurable sets in [0, 1) and denote
µ the measure generated by the positive weight function ρ ∈ L1[0, 1]:

(7.1) µ(H) :=
∫

H

ρ(t) dt (H ∈ A) (ρ > 0,
∫ 1

0

ρ(t) dt = 1).

Starting from the dyadic stochastic basis Ak (k ∈ N) we can constract binary
product system, orthogonal with respect to ρ. Namely set

(7.2) φk := rρ
k :=

rk − Eρ
krk

(Eρ
k |rk −Eρ

krk|2)1/2

for standartization of the Rademacher system (rk, k ∈ N). Here

(7.3) (Eρ
kf)(x) =

∫
I
f ρdx∫

I
ρdx

(x ∈ I)
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is the condional expectation operator with respect to Ak and I denotes a dyadic in-
terval with the lenght 2−k. The system (rρ

k, k ∈ N) is a dyadic martingale difference
system in the space ([0, 1),A, µ), which coincides with the Rademacher system, if
ρ = 1.

The binary product system of this system is called the weighted Walsh system
and will be denoted by W ρ = (wρ

n, n ∈ N). In the special case

ρ :=
∞∏

k=0

(1 + akrk),
∞∑

k=0

|ak| <∞, |ak| < 1 (k ∈ N)

this system was introduced and investigated by Sendov and called Walsh similar
functions [E;6,7].

It was shown in [C;24] (see also [E;4,5,6])

Theorem 5. If

(7.4)
∞∑

k=0

‖Eρ
k(rn)‖∞ <∞

then the systems W ρ and W are eqivalent in Lp (1 5 p 5 ∞). Moreover the Fourier
series with respect to W ρ of any functions in Lp (1 < p <∞) converges in Lp norm
and a.e.

The special weights

(7.5) ρ(t) := tq (0 5 t 5 1, 0 < q 5 1)

was investigated in [E;5,8].

Theorem 6. Let ρ be the weight function introduced in (7.5) and set

(7.6) p0 :=
2 ln(2q+1)

ln((1 + 2q)/2)
(> 2), p1 :=

p0

p0 − 1
.

Then the system W ρ is not uniformly bounded. Moreover if 1 5 p 5 p1 or p ≥ p0

then W ρ is not a Schauder basis in Lp
ρ.

The next question is open.

Problem 5. Is weighted Walsh system W ρ generated by the weight function (7.5)
a Schauder basis in Lp

ρ, if p1 < p < p0 with p0 and p1 defined in (7.6) ?

Theorem 6 was generalized by P. Simon. Moreover he has proved [E;5]

Theorem 7. There exists a weight function ρ such that the system W ρ form a
Schauder basis in Lp

ρ exactly when p = 2.

7. Rational UDMD systems

Using Blaschke functions discret rational ortonormal product systems can be
construct. The Blaschke functions

Ba(z) :=
1− ā

1− a

z − a

1− āz
(a ∈ D := {z ∈ C : |z| < 1}, z ∈ C)
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are 1-1 maps on D and on T := {z ∈ C : |z| = 1} and Ba(1) = 1. The function

Aa(z) := Ba(z)B−a(z) = Ba2(z2)

is a twofold map of D and of T.
In order to define the UDMD systems in question we fix the sequence a = (an ∈

D, n ∈ N∗) and introduce the 2n-fold maps

φ0(z) := z, φn = Aan ◦ · · · ◦Aa1 (n = 1, 2, · · · )

and the sets

Xn := {z ∈ C : φn(z) = 1} = {xn
k : 0 5 k < 2n} (n ∈ N).

The points of Xn are easy to compute. Introduce on Xn the discrete measure
µ defined by µ({x}) := 2−n (xinXn). Then the finite system (φk, 0 5 k < n)
is a unitary dyadic martingale difference sequence (UDMD-system) on Xn. The
product system (ψm, 0 5 m < 2n) is a discrete orthonormal system with respect to
the scalar product

〈f, g〉 := 2−n
∑

x∈Xn

f(x)g(x)

It is clair that in the case a1 = a2 = · · · = 0 then we get the trigonometric
system.

The values of discrete Fourier coefficients 〈f, ψm〉 (m < 2n) and the partial sums

(S2nf)(x) :=
2n−1∑
m=0

〈f, ψm〉ψm(x)

at x ∈ Xn can be computed by using O(n2n) algebraic operations and the partial
sums S2nf interpolate the function f at Xn [G;3].
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