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A NOTE ON THE DIOPHANTINE EQUATION D1x
2 + D2 = akn

R.A. MOLLIN

Abstract. We consider the Diophantine equation of the title which was re-
cently solved, in terms of the number of solutions to it for a ∈ {1, 2, 4}, in [1].
However, a counterexample was provided in [6]. We provide another coun-
terexample and show that both the example herein and the one in [6] are
results of Ljunggren [7] from the early 1940s. Given that these are all the
omissions from [1], this secures the study of the equation in the title.

For relatively prime D1, D2 ∈ N (the natural numbers), D = D1D2, k ∈ N,
prime to D, λ ∈ {1,

√
2, 2}, with λ = 2 if k is even, the Diophantine equation

(1) D1x
2 + D2 = λ2kn; x, n ∈ N

has a long and distinguished history as outlined in [1], for instance. Therein, the
authors present results on the number of solutions (x, n) ∈ N2 of (1), which is
denoted by N (λ,D1, D2, k). A counterexample to one case was presented in [6].
In this note, we provide another counterexample to a different case, but show that
both of these examples are consequences of work of Ljunggren, who completely
solved the Diophantine equation

(2) x2 =
yn − 1
y − 1

for x, y > 1, and n ≥ 3.

We begin by observing that for

(3) D = kn(k − 1) = ((k − 1)x)2 + k − 1

where k, x, n ∈ N with k > 2, the period length of the simple continued fraction
expansion of

√
D, ` = `(

√
D) = 2 (which is well-known since D is a so-called

Richaud-Degert type, see [9, Theorem 3.2.1, p. 78], for instance). However, by work
of Ljunggren [7] in the 1940s, if D is of the form in (3), then ` = 2 if and only if

(4) (n, k, x) ∈ {(1, 3, 1), (2, 3, 2), (5, 3, 11), (1, 7, 1), (4, 7, 20)}.
The case k = 3 is the result presented in [6] (wherein algebraic number theory

in quadratic fields and binary linear recurrences were used in the proof), is merely
a footnote to the work of Ljunggren, since 2x2 + 1 = 3n can be rewritten as
x2 = (3n − 1)/(3− 1), which, in turn, is of the form (2). This is a counterexample
to the results in [1] since therein they claim that N (1, 2, 1, 3) ≤ 2, but by the above,
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N (1, 2, 1, 3) = 3. The authors of [1] cited Le [5] for the claim that N (1, 2, 1, 3) ≤ 2,
but no proof exists therein. Instead Le references [3]–[4] as the place to find the
proof. Yet, as the authors of [6] note, they could find no such proof, and indeed
the claim is incorrect, as the above shows.

The second case k = 7 is another counterexample to the results in [1], since
the authors claim that N (1, 6, 1, 7) ≤ 1. However by the above, N (1, 6, 1, 7) = 2.
Observe that 6x2 + 1 = 7n can be rewritten as x2 = (7n − 1)/(7 − 1), again the
form in (2).

A similar remark can be made for other Diophantine equations considered in [1],
such as the following, which holds since these D are of Richaud-Degert type as well.
If D is of the form

(5) D = 4kn(4k − 1) = (4k − 1)2x2 + 4k − 1, with k, n, x ∈ N,

then ` = `(
√

D) = 2. Thus, by [1], for D given in (5), with n > 1,

(6) ` = 2 if and only if (k, n, x) = (2, 4, 3), namely for D = 448.

Note that an application of the above is the following. It is clear that

Q(
√

4kn − 1) = Q(
√

4k − 1)

if and only if there is an x ∈ Q such that

(7) (4kn − 1)/(4k − 1) = x2.

For instance for (k, n, x) = (2, 4, 3), we get Q(
√

63) = Q(
√

7). For n > 1, this is the
only possible integral x by (6). Moreover, if n is odd, then by the following result,
there are no solutions to Equation (7) for any x ∈ Q.

Theorem 1. If a, k,m, r ∈ N with k > 1, then there exists an x ∈ Q such that

(8)
akr+2m − 1

akr − 1
= x2

if and only if m is even, a = 1
4 (3m−1 + 1), k = 3, r = 1, and x = 3m + 2.

Proof. This is [2, Proposition 14]. ¤

Theorem 1 allows us to look at more general results than that given above, again
by looking at Richaud-Degert types, as follows.

Suppose that a, k, x ∈ N with k > 1 and D is not a perfect square, where

(9) D = akn(ak − 1) = x2(ak − 1)2 + ak − 1.

Then ` = `(
√

D) = 2. Therefore, if D is given as in (9), then ` = 2 if and only if
k = 3 and there exists and s ∈ N such that n = 4s + 1, a = (32s−1 + 1)/4, and
x = 32s + 2.

Other than the two counterexamples cited herein to [1], there are no others.
Moreover, the power of the results in [1] may be illustrated by the following gener-
alization of some results in [8], as follows.

Theorem 2. Suppose that k,m, n, x ∈ N, with k a non-trivial prime power, x > 1,
m > n ≥ 0, and (m,n) 6= (1, 0). Then the Diophantine equation

x2 = 4km − 4kn + 1

has solutions if and only if

(k, m, n, x) ∈ {(7, 3, 0, 37), (2, 3, 1, 5), (2, 5, 1, 11),
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(2, 13, 1, 181), (3, 5, 1, 31), (5, 7, 1, 559)}
Proof. This follows from the results in [1] since 4kn − 1 = D1 = 4km − x2. ¤

Remark 1. For the benefit of the reader, we employ this remark to point out where
the errors lie in [1], and where they do not, so that those working in the area may
be aware of what is valid for use. Fortunately, as noted above, it appears that only
the two aforementioned counterexamples apply. In other words, the reference to
Le’s works [3]–[5], and the attendant incorrect claim that N (1, 2, 1, 3) ≤ 2, when
in fact N (1, 2, 1, 3) = 3, is the first mistake. The second is of the authors’ own
making as follows. With respect to N (1, 6, 1, 7), the error occurs on page 71, line
-6 of [1], wherein the authors state: “The case t6 = 4 implies that λ = 2 and
(D1, D2, k) = (7, 1, 2).” In fact, there is another (overlooked) case, namely λ = 1
and (D1, D2, k) = (6, 1, 7), which is our counterexample. In the authors’ notation
from [1], for the nontrivial case (namely (n, k, x) = (4, 7, 20), the trivial case being
(n, k, x) = (1, 7, 1)):

λ = λ′ = λ1
′ = λ′2 = x1 = X1 = Y1 = Z1 = t′6 = n1 = 1;

λ1 =
√−1, λ2 = −1, t = n = t6 = 4, k = 7, x = 20;

ε1 =
√

6 +
√−1; ε1 =

√
6−√−1;

and

20
√

6 +
√−1 =

√−1 · ε1;

where ε1 is the minimal solution in its class and 20
√

6 +
√−1 is the other solution

of 6x2 + 1 = 7n, namely for (x, n) = (20, 4). Moreover, the solutions are not in
any of the classes F , G, or H, which the authors cite as the only other possibilities
in [1, Theorem 1, p. 58]. Hence,the aforementioned two counterexamples close the
door on the investigation of the Diophantine equation of the title.

The following result will provide a segue to the conclusion of this note.

Proposition 1. Let k, x ∈ N with k > 2 and let p be an odd prime. Then

D = (k − 2)x2 + 1 = kp − x2

if and only if p = 5, x = 11, and k = 3, namely D = 122.

Proof. This is a consequence of Theorem 1, since (kp − 1)/(k − 1) = x2. ¤

The interesting thing about Proposition 1 is that it has, as a consequence, the
only solution of 3p = 2x2 + 1 is that given therein. This takes us full circle to the
counterexample to [1] given in [6], which, as we have seen, is actually a consequence
of results from Ljunggren in the early 1940s. Hence, this is a fitting place to conclude
our discussion.
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