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STABLE ITERATION SCHEMES FOR LOCAL STRONGLY
PSEUDOCONTRACTIONS AND NONLINEAR EQUATIONS
INVOLVING LOCAL STRONGLY ACCRETIVE OPERATORS

Z. LIU AND J.S. UME

Abstract. Let T be a local strongly pseudocontractive and uniformly con-
tinuous operator from an arbitrary Banach space X into itself. Under certain
conditions, we establish that the Noor iteration scheme with errors both con-
verges strongly to a unique fixed point of T and is almost T -stable. The related
results deal with the convergence and almost stability of the Noor iteration
scheme with errors of solutions of nonlinear equations of the local strongly
accretive type.

1. Introduction

Let X be an arbitrary Banach space, X∗ be its duel space and 〈x, f〉 be the
generalized duality pairing between x ∈ X and f ∈ X∗. The mapping J : X → 2X∗

defined by

J(x) = {f ∈ X∗ : Re〈x, f〉 = ‖x‖ · ‖f‖, ‖f‖ = ‖x‖}, ∀ x ∈ X,

is called the normalized duality mapping. An operator T with domain D(T ) and
range R(T ) in X is said to be local strongly pseudocontractive if for each x ∈ D(T )
there exists tx > 1 such that for all y ∈ D(T ) and r > 0

(1.1) ‖x− y‖ ≤ ‖(1 + r)(x− y)− rtx(Tx− Ty)‖.
An operator T is called local strongly accretive if given x ∈ D(T ) there exists
kx ∈ (0, 1) such that for each y ∈ D(T ) there is j(x− y) ∈ J(x− y) satisfying

(1.2) Re〈Tx− Ty, j(x− y)〉 ≥ kx‖x− y‖2.
In particular, the operator T is called strongly pseudocontractive (respectively,
strongly accretive) if tx ≡ t (respectively, kx ≡ k) is independent of x ∈ D(T ). In
the sequel, we denote by I, F (T ) and S(T ) the identity mapping on X, the set of all
fixed points of T , and the set of all solutions of the equation Tx = f , respectively.

Clearly, each strongly pseudocontractive operator is local strongly pseudocon-
tractive and each strongly accretive operator is local strongly accretive. It is known
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that T is local strongly pseudocontractive if and only if I − T is local strongly ac-
cretive and kx = 1− 1

tx
, where tx and kx are the constants appearing in (1.1) and

(1.2), respectively.
Suppose that T is an operator on X. Assume that x0 ∈ X and xn+1 = f(T, xn)

defines an iteration scheme which produces a sequence {xn}∞n=0 ⊂ X. Suppose,
furthermore, that {xn}∞n=0 converges strongly to q ∈ F (T ) 6= ∅. Let {yn}∞n=0 be
any sequence in X and put εn = ‖yn+1 − f(T, yn)‖.
Definition 1.1 ([14]). (i) The iteration scheme {xn}∞n=0 defined by xn+1 = f(T, xn)
is said to be T - stable if limn→∞ εn = 0 implies that limn→∞ yn = q;

(ii) The iteration scheme {xn}∞n=0 defined by xn+1 = f(T, xn) is said to be
almost T - stable if

∑∞
n=0 εn < ∞ implies that limn→∞ yn = q.

Note that {yn}∞n=0 is bounded provided that the iteration scheme {xn}∞n=0 de-
fined by xn+1 = f(T, xn) is either T -stable or almost T -stable. Therefore we revise
Definition 1.1 as follows:

Definition 1.2. (i) The iteration scheme {xn}∞n=0 defined by xn+1 = f(T, xn)
is said to be T - stable if {yn}∞n=0 is bounded and limn→∞ εn = 0 implies that
limn→∞ yn = q;

(ii) The iteration scheme {xn}∞n=0 defined by xn+1 = f(T, xn) is said to be almost
T - stable if {yn}∞n=0 is bounded and

∑∞
n=0 εn < ∞ implies that limn→∞ yn = q.

Definition 1.3 ([49, 50, 56]). Let K be a nonempty convex subset of an arbitrary
Banach space X and T : K → K be an operator.

(i) For any given xn ∈ K the sequence {xn}∞n=0 defined by
xn+1 =anxn + bnTyn + cnun,

yn =a′nxn + b′nTzn + c′nvn,

zn =a′′nxn + b′′nTxn + c′′nwn, ∀ n ≥ 0,

is called the Noor iteration sequence with errors, where {un}∞n=0, {vn}∞n=0, and
{wn}∞n=0 are arbitrary bounded sequences in K and {an}∞n=0, {bn}∞n=0, {cn}∞n=0,
{a′n}∞n=0, {b′n}∞n=0, {c′n}∞n=0, {a′′n}∞n=0, {b′′n}∞n=0 and {c′′n}∞n=0, are real sequences in
[0, 1] such that an + bn + cn = a′n + b′n + c′n = a′′n + b′′n + c′′n for all n ≥ 0;

(ii) If b′′n = c′′n = 0 for all n ≥ 0 or b′n = c′n = b′′n = c′′n = 0 for all n ≥ 0, then the
sequence {xn}∞n=0 defined by (i) is called the Ishikawa or Mann iteration sequence
with errors, respectively;

(iii) If cn = c′n = c′′n = 0 for all n ≥ 0, or cn = c′n = c′′n = b′′n = 0 for all n ≥ 0, or
cn = c′n = c′′n = b′n = b′′n = 0 for all n ≥ 0, then the sequence {xn}∞n=0 defined by
(i) is called the Noor, or Ishikawa or Mann iteration sequences, respectively.

It is clear that the Noor, Ishikawa and Mann iteration sequences are all special
cases of the Noor, Ishikawa and Mann iteration sequences with errors, respectively.

Chidume [3] studied the Mann iteration sequence in Lp(or lp) and proved that
the sequence converges strongly to the unique fixed point of T in case T is a Lips-
chitz strongly pseudocontractive mapping from a bounded closed convex subset K
of Lp(or lp) into itself. Tan and Xu [54] extended the result of Chidume to both
p-uniformly smooth Banach space and the Ishikawa iteration method, and they es-
tablished that the Mann and Ishikawa iteration methods converge strongly to the
unique solution of the equation Tx = f in case T is a Lipschitzian and strongly
accretive operator from a p-uniformly smooth Banach space into itself. Recently,
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some researchers have generalized the results in [3] and [54] either to smooth Banach
spaces, uniformly smooth Banach spaces, Banach spaces or to the Mann iteration
method, the Mann iteration method with errors, the Ishikawa iteration method, the
Ishikawa iteration method with errors, the Noor iteration method, the Noor itera-
tion method with errors, or to strongly accretive operators, local strongly accretive
operators, strongly pseudocontractive operators, local strongly pseudocontractive
operators, φ-strongly accretive operators and φ-hemicontractive operators (cf. [1,
2, 4–13, 18, 20–47, 50, 51, 55, 57]).

A few stability results for certain classes of nonlinear mappings have been estab-
lished by several authors (see, e.g. [14–16, 18, 20, 24, 25, 28, 30, 31, 35, 39–41, 44,
46, 47, 51, 52]). Rhoades [53] proved that the Mann and Ishikawa iteration methods
may exhibit different behaviors for different classes of nonlinear mappings. Harder
and Hicks [15] revealed that the importance of investigating the stability of various
iteration procedures for various classes of nonlinear mappings. Harder [14] obtained
applications of stability results to first order differential equations. Osilike [51, 52]
studied the stability of certain Mann and Ishikawa iteration sequences for fixed
points of Lipschitz strong pseudocontractions and solutions of nonlinear accretive
operator equations in real q-uniformly smooth Banach spaces.

It is our purpose in this paper to establish the convergence and almost stability
of the Noor iteration scheme with errors for local strongly pseudocontractive op-
erators in arbitrary Banach spaces. The related results deal with the convergence
and almost stability of the Noor iteration scheme with errors of solutions of non-
linear equations of the local strongly accretive type. Our convergence results are
generalizations and improvements of the results in [1–7, 11, 14, 20, 55].

2. Preliminaries

Lemma 2.1 ([18]). Let X be an arbitrary Banach space and x, y ∈ X. Then
‖x‖ ≤ ‖x+ry‖ for every r > 0 if and only if there is f ∈ J(x) such that Re〈y, f〉 ≥ 0.

Lemma 2.2 ([22]). Suppose that {αn}∞n=0, {βn}∞n=0 and {ωn}∞n=0 are nonnegative
sequences such that

αn+1 ≤ (1− ωn)αn + βnωn, ∀ n ≥ 0,

with {ωn}∞n=0 ⊂ [0, 1],
∑∞

n=0 ωn = ∞ and limn→∞ βn = 0. Then limn→∞ αn = 0.

3. Main results

Our main results are as follows.

Theorem 3.1. Let X be an arbitrary Banach space and T : X → X be local strongly
pseudocontractive and uniformly continuous. Let F (T ) 6= ∅ and R(T ) be bounded.
Suppose that {un}∞n=0, {vn}∞n=0 and {wn}∞n=0 are arbitrary bounded sequences in X
and {an}∞n=0, {bn}∞n=0, {cn}∞n=0, {a′n}∞n=0, {b′n}∞n=0, {c′n}∞n=0, {a′′n}∞n=0, {b′′n}∞n=0,
{c′′n}∞n=0 and {rn}∞n=0 are any sequences in [0, 1] satisfying

an + bn + cn = a′n + b′n + c′n = a′′n + b′′n + c′′n = 1, ∀ n ≥ 0;(3.1)

cn(1− rn) = rnbn, ∀ n ≥ 0;(3.2)

lim
n→∞

rn = lim
n→∞

b′n = lim
n→∞

c′n = 0;(3.3)
∞∑

n=0

(bn + cn) = ∞.(3.4)
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Suppose that {xn}∞n=0 is the sequence generated from an arbitrary x0 ∈ X by
xn+1 = anxn + bnTyn + cnun,

yn = a′nxn + b′nTzn + c′nvn,

zn = a′′nxn + b′′nTxn + c′′nwn, ∀ n ≥ 0.

(3.5)

Let {fn}∞n=0 be any bounded sequence in X and define {εn}∞n=0 by
εn =‖fn+1 − anfn − bnTsn − cnun‖,
sn =a′nfn + b′nTtn + c′nvn,

tn =a′′nfn + b′′nTfn + c′′nwn, ∀ n ≥ 0.

(3.6)

Then there exist real sequences {hn}∞n=0, {gn}∞n=0 and constant M > 0 such that
(i) {xn}∞n=0 converges strongly to the unique fixed point q of T and

‖xn+1 − q‖ ≤
(
1− (bn + cn)kq

)
‖xn − q‖+

1
kq

(bn + cn)hn +
M

kq
cn, ∀ n ≥ 0,

where kq = 1− 1
tq

;
(ii)

‖fn+1 − q‖ ≤
(
1− (bn + cn)kq

)
‖fn − q‖+

1
kq

(bn + cn)gn +
M

kq
cn + εn, ∀ n ≥ 0;

(iii)
∑∞

n=0 εn < ∞ implies that limn→∞ fn = q, so that {xn}∞n=0 is almost
T -stable;

(iv) limn→∞ fn = q implies that limn→∞ εn = 0;
(v) limn→∞ hn = limn→∞ gn = 0.

Proof. Set pn = anfn + bnTsn + cnun, dn = bn + cn, d′n = b′n + c′n, ∀ n ≥ 0.
Since T is local strongly pseudocontractive and F (T ) 6= ∅, it follows that F (T ) is a
singleton and S = I − T is local strongly accretive. Let F (T ) = {q}. Put

M =sup{‖Tx− q‖ : x ∈ X}+ sup{‖fn − q‖ : n ≥ 0}
+ sup{‖un − q‖ : n ≥ 0}+ sup{‖vn − q‖ : n ≥ 0}+ ‖x0 − q‖.

It is easy to show that

sup{‖xn − q‖, ‖yn − q‖, ‖zn − q‖ : n ≥ 0} ≤ M ;(3.7)

sup{‖pn − q‖, ‖sn − q‖, ‖tn − q‖ n ≥ 0} ≤ M.(3.8)

It follows from (1.2) that there exists kq = 1− 1
tq

such that

Re〈Sx− Sq, j(x− q)〉 ≥ kq‖x− q‖2, ∀ x ∈ X,

which implies that

Re〈(S − kqI)x− (S − kqI)q, j(x− q)〉 ≥ 0, ∀ x ∈ X.

Thus Lemma 2.1 ensures that

(3.9) ‖x− q‖ ≤ ‖x− q + r
(
(S − kqI)x− (S − kqI)q

)
‖, ∀ x ∈ X, ∀ r > 0.

Using (3.1) and (3.5), we obtain that for all n ≥ 0,
(1− dn)xn =xn+1 − dnTyn − cn(un − Tyn)

=
(
1− (1− kq)dn

)
xn+1 + dn(S − kqI)xn+1

+ dn(Txn+1 − Tyn)− cn(un − Tyn),

(3.10)
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and

(3.11) (1− dn)q =
(
1− (1− kq)dn

)
q + dn(S − kqI)q.

It follows from (3.9)–(3.11) that for any n ≥ 0,

(1− dn)‖xn − q‖ ≥
(
1− (1− kq)dn

)
‖xn+1 − q

+
dn

1− dn(1− kq)
[(S − kqI)xn+1 − (S − kqI)q]‖

− dn‖Txn+1 − Tyn‖ − cn‖un − Tyn‖.

(3.12)

In view of (3.2),(3.7) and (3.12), we have for all n ≥ 0,

‖xn+1 − q‖ ≤ 1− dn

1− (1− kq)dn
‖xn − q‖

+
dn

1− (1− kq)dn
‖Txn+1 − Tyn‖

+
cn

1− (1− kq)dn
‖un − Tyn‖

≤(1− kqdn)‖xn − q‖+
1
kq

dnhn +
1
kq

Mcn,

(3.13)

where hn = ‖Txn+1 − Tyn‖. Note that

‖xn+1 − zn‖ ≤bn‖xn − Tyn‖+ cn‖un − xn‖
+ b′n‖xn − Tzn‖+ c′n‖vn − xn‖

≤2M(dn + d′n) → 0

as n →∞. Thus uniformly continuity of T means that

(3.14) hn = ‖Txn+1 − Tyn‖ → 0 as n →∞.

Put αn = ‖xn − q‖, ωn = kqdn, βn = (hn + Mrn)k−2
q , ∀ n ≥ 0. Then (3.13),

(3.14), (3.1)–(3.4) and Lemma 2.2 imply that limn→∞ αn = 0. That is, xn → q as
n →∞.

Observe that for all n ≥ 0,

(1− dn)fn =pn − dnTsn − cn(un − Tsn)

=
(
1− (1− kq)dn

)
pn + dn(S − kqI)pn

+ dn(Tpn − Tsn)− cn(un − Tsn).

(3.15)

By virtue of (3.15), (3.11), (3.9) and (3.2), we get that

(1− dn)‖fn − q‖ ≥
(
1− (1− kq)dn

)
‖pn − q

+
dn

1− (1− kq)dn
[(S − kqI)pn − (S − kqI)q]‖

− dn‖Tpn − Tsn‖ − cn‖un − Tsn‖
≥

(
1− (1− kq)dn

)
‖pn − q‖

− dn‖Tpn − Tsn‖ − cn‖un − Tsn‖,
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which means that

‖pn − q‖ ≤ 1− dn

1− (1− kq)dn
‖fn − q‖

+
dn

1− (1− kq)dn
‖Tpn − Tsn‖

+
cn

1− (1− kq)dn
‖un − Tsn‖

≤(1− kqdn)‖yn − q‖+
1
kq

dngn +
M

kq
cn

(3.16)

for any n ≥ 0, where gn = ‖Tpn − Tsn‖. Since

‖pn − sn‖ ≤bn‖fn − Tsn‖+ cn‖fn − un‖
+ b′n‖fn − Ttn‖+ c′n‖fn − vn‖

≤2M(dn + d′n) → 0

as n → ∞, and T is uniformly continuous, so that gn = ‖Tpn − Tsn‖ → 0 as
n →∞. Thus (3.16) implies that

‖fn+1 − q‖ ≤‖pn − q‖+ ‖fn+1 − pn‖

≤(1− kqdn)‖fn − q‖+
1
kq

dngn +
M

kq
cn + εn

for all n ≥ 0.
Suppose that

∑∞
n=0 εn < ∞. Set αn = ‖fn − q‖, ωn = kqdn, βn = (gn +

Mrn)k−2
q + mnk−1

q , γn = εn, ∀ n ≥ 0. Using Lemma 2.2, (3.3) and (3.4), we
conclude immediately that αn → 0 as n →∞. Therefore fn → q as n →∞. That
is, {xn}∞n=0 is almost T -stable.

Suppose that limn→∞ fn = q. Then

εn ≤‖fn+1 − q‖+ ‖pn − q‖

≤‖fn+1 − q‖+ (1− kqdn)‖fn − q‖+
1
kq

dngn +
M

kq
cn → 0

as n →∞. That is, εn → 0 as n →∞. This completes the proof. ¤

Using the methods of proof in Theorem 3.1, we obtain the following results.

Theorem 3.2. Let X, T, R(T ), F (T ), {un}∞n=0, {vn}∞n=0, {wn}∞n=0, {xn}∞n=0,
{yn}∞n=0, {zn}∞n=0, {sn}∞n=0, {tn}∞n=0, {fn}∞n=0, and {εn}∞n=0 be as in Theorem 3.1.
Suppose that {an}∞n=0, {bn}∞n=0, {cn}∞n=0, {a′n}∞n=0, {b′n}∞n=0, {c′n}∞n=0, {a′′n}∞n=0,
{b′′n}∞n=0 and {c′′n}∞n=0 are any sequences in [0, 1] satisfying (3.1) and

lim
n→∞

bn = lim
n→∞

b′n = lim
n→∞

c′n = 0;(3.17)
∞∑

n=0

cn < ∞;(3.18)

∞∑
n=0

bn = ∞.(3.19)

Then the conclusions of Theorem 3.1 hold.
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Remark 3.1. The following examples reveal that Theorem 3.1 and Theorem 3.2 are
independent.

Example 3.1. Let R denote the reals with the usual norm and define T : R → R by
Tx = 1

4 (sin x)2 for all x ∈ R. Clearly, F (T ) = {0} and R(T ) = [0, 1
4 ]. Observe that

(3.20) |Tx− Ty| ≤ 1
4
| sin x− sin y| · | sin x + sin y| ≤ 1

2
|x− y| ∀ x, y ∈ R.

Hence T is uniformly continuous on R. For each x ∈ R, choose tx = 2. Then (3.20)
ensures that

|(1 + r)(x− y)− rtx(Tx− Ty)| ≥(1 + r)|x− y| − rtx|Tx− Ty|
=|x− y|+ r

(
|x− y| − tx|Tx− Ty|

)

≥|x− y|
for any y ∈ R. That is, T is local strongly pseudocontractive. Put

an = 1− (n + 1)−
1
4 , bn = (n + 1)−

1
4 − (n + 1)−

1
2 , cn = (n + 1)−

1
2 ,

rn = (n + 1)−
1
4 , a′n = 1− 1

n + 1
, b′n = c′n =

1
2(n + 1)

,

a′′n = 1− 3(7n + 3)−1, b′′n = (7n + 3)−1, c′′n = 2(7n + 3)−1, ∀n ≥ 0.

Thus Theorem 3.2 is not applicable since
∑∞

n=0 cn = ∞. It is easy to verify that
the conditions of Theorem 3.1 are fulfilled.

Example 3.2. Let R, T , {a′n}∞n=0, {b′n}∞n=0, {c′n}∞n=0, {a′′n}∞n=0, {b′′n}∞n=0, {c′′n}∞n=0

be as in Example 3.1. Set

an = 1− bn − cn, b2n = (2 + 2n)−2, b2n+1 = (3 + 2n)−1, cn = (2 + n)−2, ∀n ≥ 0.

Then all the conditions of Theorem 3.2 are satisfied. But Theorem 3.1 is not
applicable since

lim
n→∞

γ2n = lim
n→∞

c2n

b2n + c2n
=

1
2
6= 0.

Remark 3.2. Theorem 3.1 and Theorem 3.2 show that, under certain conditions, the
Noor iteration scheme considered in Theorem 3.1 and Theorem 3.2, respectively,
is almost T -stable. The example below proves that the iteration scheme is not
T -stable.

Example 3.3. Let R denote the reals with the usual norm and define T : R → R by
Tx = 1

3 sin x for all x ∈ R. Then F (T ) = {0}, R(T ) =
[
− 1

3 , 1
3

]
, T is uniformly

continuous on R and

|x− y| ≤ |(1 + r)(x− y)− txr(Tx− Ty)|, ∀ x, y ∈ R,

where tx = 3 for all x ∈ R. Suppose that {un}∞n=0, {vn}∞n=0, {wn}∞n=0, {an}∞n=0,
{bn}∞n=0, {cn}∞n=0, {a′n}∞n=0, {b′n}∞n=0, {c′n}∞n=0, {a′′n}∞n=0, {b′′n}∞n=0 and {c′′n}∞n=0 sat-
isfy the conditions of Theorem 3.2. It follows from Theorem 3.2 that the Noor
iteration scheme {xn}∞n=0 with errors defined by (3.4) both converges strongly to
the unique fixed point 0 of T and is almost T -stable. We next prove that it is not
T -stable. Choose fn = n

2n+1 , ∀ n ≥ 0. Since

lim
n→∞

an = 1, lim
n→∞

bn = lim
n→∞

cn = 0
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and limn→∞ fn = 1
2 , it follows that

εn =|fn+1 − anfn − bnTsn − cnun|
≤|fn+1 − anfn|+ bn|Tsn|+ cn|un| → 0

as n → ∞. That is, limn→∞ εn = 0. However, limn→∞ fn = 1
2 6= 0 = T0. Thus

{xn}∞n=0 is not T -stable.

Suppose that {un}∞n=0, {vn}∞n=0, {wn}∞n=0, {an}∞n=0, {bn}∞n=0, {cn}∞n=0, {a′n}∞n=0

{b′n}∞n=0, {c′n}∞n=0, {a′′n}∞n=0, {b′′n}∞n=0, {c′′n}∞n=0 and {rn}∞n=0 satisfy the conditions
of Theorem 3.1. Similarly we can prove that the Noor iteration scheme {xn}∞n=0

with errors defined by (3.4) is almost T−stable, but not T−stable.

Theorem 3.3. Let X be an arbitrary Banach space and T : X → X be local strongly
accretive and uniformly continuous. Define S : X → X by Sx = f + x − Tx. Let
S(T ) 6= ∅ for some f ∈ X and either R(T ) or R(I − T ) be bounded. Suppose that
{un}∞n=0, {vn}∞n=0 and {wn}∞n=0 are arbitrary bounded sequences in X and {an}∞n=0,
{bn}∞n=0, {cn}∞n=0, {a′n}∞n=0, {b′n}∞n=0, {c′n}∞n=0 {a′′n}∞n=0, {b′′n}∞n=0, {c′′n}∞n=0 and
{rn}∞n=0 are any sequences in [0, 1] satisfying (3.1)–(3.4). For arbitrary x0 ∈ X,
the Ishikawa iteration scheme {xn}∞n=0 is defined by

xn+1 =anxn + bnSyn + cnun

yn =a′nxn + b′nSzn + c′nvn,

zn =a′′nxn + b′′nSxn + c′′nwn, ∀ n ≥ 0.

(3.21)

Let {fn}∞n=0 be any bounded sequence in X and define {εn}∞n=0 by

εn =‖fn+1 − anfn − bnSsn − cnun‖,
sn =a′nfn + b′nStn + c′nvn,

tn =a′′nfn + b′′nSfn + c′′nwn, ∀ n ≥ 0.

(3.22)

Then there exist real sequences {hn}∞n=0, {gn}∞n=0 and constant M > 0 such that

(i) {xn}∞n=0 converges strongly to the unique solution q of the equation Tx = f
and

‖xn+1 − q‖ ≤
(
1− (bn + cn)kq

)
‖xn − q‖+

1
kq

(bn + cn)hn +
M

kq
cn, ∀n ≥ 0,

(ii) ‖fn+1−q‖ ≤
(
1−(bn+cn)kq

)
‖fn−q‖+ 1

kq
(bn+cn)gn+ M

kq
cn+εn, ∀n ≥ 0;

(iii)
∑∞

n=0 εn < ∞ implies that limn→∞ fn = q, so that {xn}∞n=0 is almost
S-stable;

(iv) limn→∞ fn = q implies that limn→∞ εn = 0;
(v) limn→∞ hn = limn→∞ gn = 0.

Proof. Since T is local strongly accretive and S(T ) 6= ∅ for some f ∈ X, so that
(1.2) implies that S(T ) is a singleton and S is local strongly pseudocontractive. Let
S(T ) = {q}. Then q is the unique fixed point of S. Now we prove that R(S) is
bounded. It is easy to see that R(S) is bounded if R(I − T ) is bounded. Suppose
that R(T ) is bounded. Observe that

Re〈Tx− Tq, j(x− q)〉 ≥ kq‖x− q‖2, ∀ x ∈ X,
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which implies that

(3.23) ‖x− q‖ ≤ 1
kq
‖Tx− Tq‖, ∀ x ∈ X.

Using (3.23), we infer that for all x ∈ X,

‖Sx− Sq‖ =‖Tq − Tx + x− q‖

≤‖Tx− Tq‖+ ‖x− q‖ ≤
(
1 +

1
kq

)
‖Tx− Tq‖.

That is, R(S) is bounded. Thus the rest of the proof follows immediately as in the
proof of Theorem 3.1, and is therefore omitted. This completes the proof. ¤

Theorem 3.4. Let X, T, R(T ), R(I−T ), S(T ), f, {un}∞n=0, {vn}∞n=0, {wn}∞n=0,
{xn}∞n=0, {yn}∞n=0, {zn}∞n=0, {fn}∞n=0 and {εn}∞n=0 be as in Theorem 3.3. Suppose
that {an}∞n=0, {bn}∞n=0, {cn}∞n=0, {a′n}∞n=0, {b′n}∞n=0, {c′n}∞n=0, {a′′n}∞n=0, {b′′n}∞n=0

and {c′′n}∞n=0 are any sequences in [0, 1] satisfying (3.1) and (3.17)–(3.19). Then
the conclusions of Theorem 3.3 hold.

Remark 3.3. The convergence result in Theorem 3.4 extends Theorem 2 of Chidume
[5], Theorems 5 and 6 of Chidume [6], Theorem 2 of Chidume [7] and Theorem 2
of Chidume and Osilike [10].

Using methods similar to those above, we can prove the following results.

Theorem 3.5. Let X be an arbitrary Banach space, f ∈ X and T : X → X be local
strongly accretive and uniformly continuous. Define G : X → X by Gx = f − Tx.
Let R(T ) be bounded and the equation x+Tx = f has a solution q ∈ X. Suppose that
{un}∞n=0, {vn}∞n=0 and {wn}∞n=0 are arbitrary bounded sequences in X and {an}∞n=0,
{bn}∞n=0, {cn}∞n=0, {a′n}∞n=0, {b′n}∞n=0, {c′n}∞n=0, {a′′n}∞n=0, {b′′n}∞n=0, {c′′n}∞n=0 and
{rn}∞n=0 are any sequence in [0, 1] satisfying (3.1)–(3.4). For arbitrary x0 ∈ X, the
Noor iteration scheme {xn}∞n=0 with errors is defined by

xn+1 =anxn + bnGyn + cnun,

yn =a′nxn + b′nGzn + c′nvn,

zn =a′′nxn + b′′nGxn + c′′nwn, ∀ n ≥ 0.

(3.24)

Let {fn}∞n=0 be any bounded sequence in X and define {εn}∞n=0 by

εn =‖fn+1 − anfn − bnGsn − cnun‖,
sn =a′nfn + b′nGtn + c′nvn,

tn =a′′nfn + b′′nGfn + c′′nwn, ∀ n ≥ 0.

(3.25)

Then there exist real sequences {hn}∞n=0, {gn}∞n=0 and constant M > 0 such that
(i) {xn}∞n=0 converges strongly to the unique solution q of the equation x+Tx =

f and

‖xn+1 − q‖ ≤
(
1− (bn + cn)kq

)
‖xn − q‖+

1
kq

(bn + cn)hn +
M

kq
cn, ∀ n ≥ 0,

(ii) ‖fn+1−q‖ ≤
(
1−(bn+cn)kq

)
‖fn−q‖+ 1

kq
(bn+cn)gn+ M

kq
cn+εn, ∀ n ≥ 0,

(iii)
∑∞

n=0 εn < ∞ implies that limn→∞ fn = q, so that {xn}∞n=0 is almost
G-stable,

(iv) limn→∞ fn = q implies that limn→∞ εn = 0,
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(v) limn→∞ hn = limn→∞ gn = 0.

Theorem 3.6. Let X, T, R(T ), f, G, {un}∞n=0, {vn}∞n=0, {wn}∞n=0, {xn}∞n=0,
{yn}∞n=0, {zn}∞n=0, {fn}∞n=0 and {εn}∞n=0 be as in Theorem 3.5. Suppose that
{an}∞n=0, {bn}∞n=0, {cn}∞n=0, {a′n}∞n=0, {b′n}∞n=0, {c′n}∞n=0, {a′′n}∞n=0, {b′′n}∞n=0,
{c′′n}∞n=0 are any sequences in [0, 1] satisfying (3.1) and (3.17)–(3.19). Then the
conclusions of Theorem 3.3 hold.

Remark 3.4. The convergence result in Theorem 3.6 generalizes Theorems 9 and
10 of Chidume [6] and Theorem 3.3 of Ding [13].

Theorem 3.7. Let K be a nonempty bounded closed convex subset of an arbitrary
Banach space X and T : K → K be a uniformly continuous and local strongly
pseudocontractive mapping. Let F (T ) 6= ∅ and {un}∞n=0, {vn}∞n=0 and {wn}∞n=0

be arbitrary sequences in K. Suppose that {an}∞n=0, {bn}∞n=0, {cn}∞n=0, {a′n}∞n=0,
{b′n}∞n=0, {c′n}∞n=0, {a′′n}∞n=0, {b′′n}∞n=0, {c′′n}∞n=0 and {rn}∞n=0 are any sequences in
[0, 1] satisfying (3.1)–(3.4). If {xn}∞n=0 is the sequence generated from an arbitrary
x0 ∈ K by (3.4), then it converges strongly to the unique fixed point q of T .

Theorem 3.8. Let X, K, T, F (T ), {un}∞n=0, {vn}∞n=0, {wn}∞n=0 and {xn}∞n=0 be
as in Theorem 3.7 and {an}∞n=0, {bn}∞n=0, {cn}∞n=0, {a′n}∞n=0, {b′n}∞n=0, {c′n}∞n=0,
{a′′n}∞n=0, {b′′n}∞n=0 and {c′′n}∞n=0 be any sequences in [0, 1] satisfying (3.1) and (3.17)–
(3.19). Then {xn}∞n=0 converges strongly to the unique fixed point q of T .

Remark 3.5. Theorem 3.8 extends, improves and unifies Theorem 3.4 of Chang [1],
Theorems 3.4 and 4.2 of Chang et al. [2], the Theorem Chidume [3], Theorem 2 of
Chidume [4], Theorem 4 of Chidume [6], Theorem 1 of Chidume [7], Theorem 1
of Chidume and Osilike [10], Theorem 1 of Liu [21] and Theorem 4.2 of Tan and
Xu [54].

Question 3.1. Let X be an arbitrary Banach space and T : X → X be local strongly
pseudocontractive and uniformly continuous. Let F (T ) 6= ∅ and R(T ) be bounded.
Suppose that {un}∞n=0, {vn}∞n=0 and {wn}∞n=0 are arbitrary bounded sequences in
X. What hypotheses on {an}∞n=0, {bn}∞n=0, {cn}∞n=0, {a′n}∞n=0, {b′n}∞n=0, {c′n}∞n=0,
{a′′n}∞n=0, {b′′n}∞n=0 and {c′′n}∞n=0 ⊂ [0, 1] are needed to guarantee the Noor iteration
scheme with errors in (3.4) is T -stable?

Question 3.2. Let X be an arbitrary Banach space and T : X → X be local strongly
accretive and uniformly continuous. Define S : X → X by Sx = f + x − Tx. Let
S(T ) 6= ∅ for some f ∈ X and either R(T ) or R(I − T ) be bounded. Suppose
that {un}∞n=0, {vn}∞n=0 and {wn}∞n=0 are arbitrary bounded sequences in X. What
hypotheses on {an}∞n=0, {bn}∞n=0, {cn}∞n=0, {a′n}∞n=0, {b′n}∞n=0, {c′n}∞n=0, {a′′n}∞n=0,
{b′′n}∞n=0 and {c′′n}∞n=0 ⊂ [0, 1] are needed to guarantee the Noor iteration scheme
with errors in (3.21) is S-stable?

Question 3.3. Let X be an arbitrary Banach space, f ∈ X and T : X → X be local
strongly accretive and uniformly continuous. Define G : X → X by Gx = f − Tx.
Let R(T ) be bounded and the equation x + Tx = f has a solution q ∈ X. Suppose
that {un}∞n=0, {vn}∞n=0 and {wn}∞n=0 are arbitrary bounded sequences in X. What
hypotheses on {an}∞n=0, {bn}∞n=0, {cn}∞n=0, {a′n}∞n=0, {b′n}∞n=0, {c′n}∞n=0, {a′′n}∞n=0,
{b′′n}∞n=0 and {c′′n}∞n=0 ⊂ [0, 1] are needed to guarantee the Noor iteration scheme
with errors in (3.24) is G-stable?
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