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A NEW PROOF OF SZABÓ’S THEOREM ON THE
RIEMANN-METRIZABILITY OF BERWALD MANIFOLDS

CS. VINCZE

Abstract. The starting point of the famous structure theorems on Berwald
spaces due to Z.I. Szabó [4] is an observation on the Riemann-metrizability
of positive definite Berwald manifolds. It states that there always exists a
Riemannian metric on the underlying manifold such that its Levi-Civita con-
nection is just the canonical connection of the Berwald manifold. In this paper
we present a new elementary proof of this theorem. After constructing a Rie-
mannian metric by the help of integration of the canonical Riemann-Finsler
metric on the indicatrix hypersurface it is proved that in case of Berwald man-
ifolds the canonical connection and the Levi-Civita connection coincide.

Introduction

Traditionally Berwald manifolds are defined as special Finsler manifolds such
that the horizontal part of the canonical Berwald connection depends only on the
position. This means that it reduces to the horizontal lift of a linear connection on
the underlying manifold. In his paper [4] Z.I. Szabó proved that there always exists
a Riemannian metric such that its Levi-Civita connection coincides the canonical
(linear) connection of the Berwald manifold. The original reasoning is based on
the theory of integration on compact Lie groups with respect to the bi-invariant
Haar-measure. We are going to present an elementary proof of this theorem by
the help of integration of the canonical Riemann-Finsler metric on the indicatrix
hypersurface. The Riemannian metric γ is defined by the formula

(1) γ(X,Y )(p) :=
∫

Sp

g(Xv, Y v)µp,

where X and Y are vector fields on the underlying manifold and Xv denotes the
vertical lift of the vector field X. The integral is taken with respect to the (ori-
ented) volume form on the indicatrix hypersurface. Our main result states that if
the indicatrices of a Finsler manifold are invariant under the parallel transport with
respect to a linear connection on the underlying manifold, then it is metrical with
respect to the Riemannian metric defined by the formula (1). As a direct conse-
quence we have that in case of Berwald manifolds the canonical (linear) connection
of the Finsler manifold and the Levi-Civita connection coincide.
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1. Preliminaries

1.1. Finsler manifolds. Let M be a connected differentiable manifold equipped
with a function E : TM → R such that

(i) ∀v ∈ TM \ {0} : E(v) > 0 and E(0) = 0.
(ii) E is homogeneous of degree 2, i.e. ∀t ∈ R+ : E(tv) = t2E(v).
(iii) E is of class C1 on the tangent manifold TM and smooth except the zero

section.
(iv) The fundamental form ω := ddJE is nondegenerate.
The Riemann-Finsler metric of the Finsler manifold (M, E) is defined by the

formula
g(JX, JY ) := ω(JX, Y ),

where X,Y are vector fields on TM and J is the canonical almost tangent structure
on the tangent bundle π : TM → M ; for the details see [2], [3] and [5]. The Finsler
manifold is called positive definite if g is positive definite.

Remark 1. In what follows we suppose that the Finsler manifold is positive definite
without any further comment.

Note that for any point p ∈ M the restriction gp := g|TpM is a Riemannian
metric on the ”manifold” TpM := TpM \ {0} in the usual sense. The indicatrix
hypersurface at the point p is defined as follows:

Sp := {v ∈ TpM | L(v) = 1, where E =
1
2
L2}.

1.2. The gradient operator. Let a smooth function ϕ : TM → R be given. Since
the fundamental form ω is nondegenerate, there exists a unique vector field grad ϕ
such that

ιgrad ϕω = dϕ;
this vector field is called the gradient of ϕ. Note that the gradient vector field is
smooth only on the splitted tangent manifold

TM := TM \ {0};
in general differentiability is guaranteed only over TM , unless otherwise stated.

1.3. Further formulas. [2], [3]. Let h be the canonical horizontal endomor-
phism (the so-called Barthel endomorphism) associated with the canonical spray
S := − grad E; we have

ιSω = −dE, h :=
1
2
(
[J, S] + 1

)
.

The horizontal endomorphism h determines an almost complex structure F such
that

F ◦ J = h, F ◦ h = −J.

Using the standard technical tools of tangent bundle differential geometry such as
the vertical and complete lifts Xv and Xc of a vector field X ∈ X(M) we define
the horizontal lift Xh as follows:

Xh := h(Xc) ⇒ FXv = Xh, FXh = −Xv.

As it is well-known, any horizontal endomorphism induces a (in general non-linear)
covariant derivative operator ∇ on the underlying manifold and vice-versa.
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Lemma 1. Let X be a vector field on the manifold M and consider its integral
curve

c : I ⊂ R→ M

starting from a point c(0) = p ∈ M . If a vector field W along c is parallel with
respect to the induced operator ∇, then it is an integral curve of the horizontal lift
Xh starting from the point W (0) = v ∈ TpM .

Proof. In terms of local coordinates we have that

Xh|π−1(U) = Xi ◦ π
( ∂

∂xi
− Γj

i

∂

∂yj

)
,

where the functions Γj
i are the parameters of the horizontal endomorphism with

respect to the coordinate system (U, (ui)n
i=1) on the underlying manifold M - as

usual (π−1(U), (xi, yi)n
i=1) denotes the induced coordinate system on the tangent

manifold. Since W is parallel it follows that for any indeces j ∈ {1, . . . , n}
W j ′ + ci′Γj

i ◦W = 0.

Therefore

Xh ◦W = ci′( ∂

∂xi
◦W − Γj

i ◦W
∂

∂yj
◦W

)
= ci′ ∂

∂xi
◦W + W j ′ ∂

∂yj
◦W =

= (xi ◦W )′
∂

∂xi
◦W + (yj ◦W )′

∂

∂yj
◦W = Ẇ

as was to be stated. ¤

1.4. Berwald manifolds. [1], [4] and [5]. If the induced covariant derivative oper-
ator is linear, then the Finsler manifold is called a Berwald manifold. In other words
we have a unique linear connection ∇ on the underlying manifold M such that the
canonical Barthel endomorphism h coincides the horizontal endomorphism induced
by ∇. It is conservative, i.e. the h-covariant derivatives of the energy function E
vanish. This means that any linear isomorphism induced by the parallel transport
along a curve preserves the Finslerian norm L(v) of the tangent vectors. Therefore
the indicatrices are invariant under these isomorphisms. On the other hand, as an
easy calculation shows,

(2) τ∗(g|TqM ) = g|TpM ,

where TpM := TpM \ {0} and τ : TpM → TqM is the corresponding linear isomor-
phism induced by the parallel transport with respect to ∇ along a curve joining
p and q. Roughly speaking, any linear transformation preserving the (Finslerian)
norm is an isometry.

1.5. Integral formulas. Suppose that the manifold M is orientable and consider
a volume form η ∈ ∧n(M). Then for any point p ∈ M we have an orientation
represented by ηp on the tangent space TpM . Let us define the mapping

dµ : p ∈ M → dµp ∈ ∧n(TpM)

as follows:

dµp(Xv
1 , . . . , Xv

n) :=





√
det g(Xv

i , Xv
j ) if η(X1, . . . , Xn)(p) > 0

−
√

det g(Xv
i , Xv

j ) otherwise;
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dµp is called the (oriented) volume form on the tangent space TpM . Let

µp := ιCdµp

be the induced volume form on the indicatrix hypersurface which provides an ori-
entation for the manifold Sp. The integral of a (continuous) function f over Sp

is defined as the integral of an (n − 1)-form on an oriented manifold of dimension
n− 1 as usual: ∫

Sp

f :=
∫

Sp

f µp.

Actually, the orientation was convenient but not necessary in the definition. . . , for
the citation see [7], p. 150. Indeed, if we change the orientation on the manifold
M , then the orientation changes on the indicatrix hypersurface. For a moment, let
us denote by S+

p and S−p the manifold Sp equipped with different orientations; we
have that ∫

Sp

f :=
∫

S+
p

f µp = −
∫

S−p
f µp =

∫

S−p
f (−µp).

This means that the mapping

p ∈ M →
∫

Sp

f

is well-defined even if there couldn’t be nowhere-vanishing n-form on the manifold
M .

Lemma 2. Let f be a (smooth) function on the splitted tangent manifold TM
which is homogeneous of degree 0. Then∫

Bp

f =
1
n

∫

Sp

f,

where Bp := {v ∈ TpM | L(v) ≤ 1} is the ”unit ball” at the point p ∈ M .

Proof. Since the form dµp has the homogeneity property

LC dµp = n dµp

and, by our assumption, LC f = 0, the Stokes’ theorem shows that∫

Bp

f :=
∫

Bp

f dµp =
1
n

∫

Bp

LC (fdµp) =
1
n

∫

Bp

d ιC (fdµp) =

=
1
n

∫

Sp

ιC (fdµp) =
1
n

∫

Sp

f µp =
1
n

∫

Sp

f

as was to be stated. ¤

2. The proof of Szabó’s theorem

Definition 1. Let (M,E) be a positive definite Finsler manifold; the associated
Riemannian metric is defined by the formula

γ(X, Y )(p) :=
∫

Sp

g(Xv, Y v);

for a similar construction see e.g. [6]. The Levi-Civita connection of this metric is
called the associated linear connection of the Finsler manifold.
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Lemma 3. Let (M,E) be a positive definite Finsler manifold and suppose that
∇ is a linear connection on the underlying manifold M such that the horizontal
endomorphism induced by ∇ is conservative. Then ∇ is metrical with respect to
the associated Riemannian metric of the Finsler manifold.

Proof. As it is well-known, the linear connection ∇ induces a horizontal endomor-
phism h on the manifold M . In this case for any vector fields X, Z ∈ X(M):

(3)
(∇XZ

)v = [Xh, Zv].

Since h is conservative, i.e. dhE = 0 we have that the horizontal lift of the linear
connection ∇ is h-metrical with respect to the Riemann-Finsler metric. Indeed, for
any vector fields X, Y and Z ∈ X(M)

(LXhg)(Y v, Zv) = [Y v, [Xh, Zv]]E + Y v
(
Zv(XhE)

) (3)
= 0;

for the details see [5]. On the other hand

(LXhg)(Y v, Zv)
(3)
= Xhg(Y v, Zv)− g((∇XY )v, Zv)− g((∇XZ)v, Y v)

and, consequently,

(4) Xhg(Y v, Zv)− g((∇XY )v, Zv)− g((∇XZ)v, Y v) = 0.

Let p ∈ M be an arbitrary point and consider the integral curve

c : I ⊂ R→ M, c(0) = p

of the vector field X. Then

(5)
Xpγ(Y,Z) =

(
γ(Y, Z) ◦ c

)′(0) = lim
t→0

γ(Y,Z)(c(t))− γ(Y, Z)(p)
t

=

= lim
t→0

∫
Sc(t)

g(Y v, Zv)− ∫
Sp

g(Y v, Zv)

t
.

Let
τt : TpM → Tc(t)M

is the linear isomorphism induced by the parallel transport with respect to ∇ along
the curve c. Since the h-covariant derivative of the energy function vanish it follows
that τt preserves the Finslerian norm of the tangent vectors. On the other hand
it is a linear transformation and, consequently, for any t ∈ I the mapping τt is an
isomorphism, i.e.

(6) (τt)∗(g|Tc(t)M ) = g|TpM .

As we have seen above the integral of a function on the indicatrix hypersurface
is independent of the orientation around the point p on the underlying manifold.
After choosing one such that the collection (τt)t∈I consists of orientation preserving
transformations we have by Lemma 2 that

1
n

∫

Sc(t)

g(Y v, Zv) =

=
∫

Bc(t)

g(Y v, Zv) dµc(t) =
∫

(τt)−1(Bc(t))

g(Y v, Zv) ◦ τt (τt)∗(dµc(t))
(6)
=

=
∫

Bp

g(Y v, Zv) ◦ τt dµp =
1
n

∫

Sp

g(Y v, Zv) ◦ τt.
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Substituting this into the equation (5)

Xp γ(Y, Z) =
∫

Sp

lim
t→0

g(Y v, Zv) ◦ τt − g(Y v, Zv)
t

.

If W is a parallel vector field along c such that W (0) = v ∈ TpM , then

lim
t→0

g(Y v, Zv) ◦ τt − g(Y v, Zv)
t

(v) =
(
g(Y v, Zv) ◦W

)′(0)

and Lemma 1 shows that

lim
t→0

g(Y v, Zv) ◦ τt − g(Y v, Zv)
t

(v) = Xh
v g(Y v, Zv).

Therefore

Xpγ(Y, Z)− γ(∇Xp
Y,Z)− γ(∇Xp

Z, Y ) =∫

Sp

Xhg(Y v, Zv)− g((∇XY )v, Zv)− g((∇XZ)v, Y v)
(4)
= 0

as was to be stated. ¤
Theorem 1. The canonical connection of a positive definite Berwald manifold is
Riemann-metrizable; it is just the Levi-Civita connection of the associated Rie-
mannian metric.

Proof. Since the canonical connection is conservative and torsion-free, the theorem
is a direct consequence of Lemma 3. ¤
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