
Acta Mathematica Academiae Paedagogicae Nýıregyháziensis
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ON SOME SYMMETRIC DESIGNS WITH CLASSICAL
PARAMETERS

DEAN CRNKOVIĆ

Abstract. We describe a construction of sixty-seven symmetric (31, 15, 7)
designs, thirty-eight symmetric (63, 31, 15) designs, and two symmetric
(127, 63, 31) designs. The orders and the structures of the full automorphism
groups of the constructed designs are given, as well as their 2-ranks. The
designs are constructed with the help of tactical decompositions.

1. Introduction

A 2-(v, k, λ) design is a finite incidence structure (P,B, I), where P and B are
disjoint sets and I ⊆ P × B, with the following properties:

1. |P| = v;
2. every element of B is incident with exactly k elements of P;
3. every pair of distinct elements of P is incident with exactly λ elements of B.

The elements of the set P are called points and the elements of the set B are called
blocks. If |P| = |B| = v and 2 ≤ k ≤ v − 2, then a 2-(v, k, λ) design is called a
symmetric (v, k, λ) design.

Given two designs D1 = (P1,B1, I1) and D2 = (P2,B2, I2), an isomorphism from
D1 onto D2 is a bijection which maps points onto points and blocks onto blocks
preserving the incidence relation. An isomorphism from a symmetric design D onto
itself is called an automorphism of D. The set of all automorphisms of the design
D forms a group; it is called the full automorphism group of D and denoted by
Aut(D).

Let D = (P,B, I) be a symmetric (v, k, λ) design and G a subgroup of Aut(D).
The action of G produces the same number of point and block orbits (see [9, The-
orem 3.3, p. 79]). We denote that number by t, the point orbits by P1, . . . ,Pt, the
block orbits by B1, . . . ,Bt, and put |Pr| = ωr and |Bi| = Ωi. We shall denote the
points of the orbit Pr by r0, . . . , rωr−1, (i.e. Pr = {r0, . . . , rωr−1}). Further, we
denote by γir the number of points of Pr which are incident with a representative
of the block orbit Bi. The numbers γir are independent of the choice of the rep-
resentative of the block orbit Bi. For those numbers the following equalities hold
(see [5]):

t∑
r=1

γir = k ,(1)
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t∑
r=1

Ωj

ωr
γirγjr = λΩj + δij · (k − λ).(2)

Definition 1. Let (D) be a symmetric (v, k, λ) design and G ≤ Aut(0D). Fur-
ther, let P1, . . . ,Pt be the point orbits and B1, . . . ,Bt the block orbits with re-
spect to G, and let ω1, . . . , ωt and Ω1, . . . , Ωt be the respective orbit lengths.
We call (P1, . . . ,Pt) and (B1, . . . ,Bt) the orbit distributions, and (ω1, . . . , ωt) and
(Ω1, . . . , Ωt) the orbit size distributions for the design and the group G. A (t× t)-
matrix (γir) with entries satisfying conditions (1) and (2) is called an orbit structure
for the parameters (v, k, λ) and orbit distributions (P1, . . . ,Pt) and (B1, . . . ,Bt).

The first step – when constructing designs for given parameters and orbit dis-
tributions – is to find all compatible orbit structures (γir). The next step, called
indexing, consists in determining exactly which points from the point orbit Pr are
incident with a chosen representative of the block orbit Bi for each number γir. Be-
cause of the large number of possibilities, it is often necessary to involve a computer
in both steps of the construction.

Definition 2. The set of all indices of points of the orbit Pr which are incident with
a fixed representative of the block orbit Bi is called the index set for the position
(i, r) of the orbit structure and the given representative.

Definition 3. Let G be an additively written group of order v not necessarily
Abelian. A k−subset D of G is a (v, k, λ;n)−difference set of order n = k − λ if
every nonzero element of G has exactly λ representations as a difference d−d′ with
elements from D. The difference set is Abelian, cyclic etc. if the group G has the
respective property.

The development of a difference set D is the incidence structure dev(D) whose
points are the elements of G and whose blocks are the translates D+g = {d+g| d ∈
D}. The existence of a (v, k, λ;n)−difference set is equivalent to the existence of a
symmetric (v, k, λ) design D admitting G as a point regular automorphism group,
i.e. for any two points P and Q there is a unique element of G which maps P to
Q. The design D is isomorphic to dev(D). The design D is called cyclic when the
difference set is cyclic.

Definition 4. Let D be an incidence structure with incidence matrix N . The p-
rank of D is defined as the rank of N over a field F of characteristic p. Without
loss of generality, we may assume F = GF (p).

For further basic definitions and properties of symmetric designs and difference
sets we refer the reader to [1] and [9].

In this paper we describe a construction of symmetric designs with the classical
parameters (2d − 1, 2d−1 − 1, 2d−2 − 1) for d = 5, 6 and 7. It is known that there
are a lot of designs with these parameters (see [6] and [8]). This article contributes
to the classification of such designs which allow certain automorphism groups. We
explicitly construct the designs, determine their 2-ranks, and compute the orders
of their full automorphism groups. In addition, the structures of the automorphism
groups of the designs are given.

For the definition of the basic group theoretic terminology and concepts used
in this paper, such as the direct product N ×H of groups N and H, a semidirect
product (split extension) N : H of N by H, the derived group G′ of G, or elementary
Abelian groups, the reader may consult any standard book on group theory, for
example [7] or [11].
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2. Symmetric (31,15,7) Designs

We shall construct all symmetric (31,15,7) designs having an automorphism
group isomorphic to Frob7·3 or Frob31·5. The Frobenius group Frobp·q, where p
and q are primes, is a non-Abelian group of order p · q which – up to isomorphisms
– is unique.

Lemma 1. Let ρ be an automorphism of a symmetric (31, 15, 7) design D. If
|〈ρ〉| = 7, then ρ fixes exactly three points and blocks of D.

Proof. By [9, Theorem 3.1, p. 78], 〈ρ〉 fixes the same number of points and blocks.
Denote that number by f . Obviously, f ≡ 1 (mod 7). Using the inequality f ≤
v− 2(k− λ) (see [9, Corollary 3.7 p. 82]) we get f ∈ {3, 10}. Suppose that f = 10.
Since a fixed block must be a union of 〈ρ〉-orbits of points, every fixed block contains
1 or 8 fixed points. Two fixed blocks must intersect in 0 or 7 fixed points, since
λ = 7. Therefore, two fixed blocks having one fixed point intersect in an orbit of
length 7. So there are at most three fixed blocks which contain only one fixed point.
Similarly, there are at most three fixed blocks which have precisely 8 fixed points.
Therefore f 6= 10. ¤

Lemma 2. Let the group Frob7·3 act as an automorphism group of a symmetric
(31, 15, 7) design D. Then Frob7·3 acts on D semistandardly with orbit size distri-
bution (1, 1, 1, 7, 7, 7, 7) or (3, 7, 21).

Proof. Let the group G be isomorphic to the Frobenius group Frob7·3. Since there
is only one isomorphism class of such groups of order 21 we may write

G = 〈ρ, σ| ρ7 = 1, σ3 = 1, ρσ = ρ2〉.
The Frobenius kernel 〈ρ〉 of order 7 acts on D semistandardly with three fixed
blocks and points and 4 orbits of length 7. Since 〈ρ〉 is a normal subgroup of G,
the element σ of order 3 maps 〈ρ〉-orbits onto 〈ρ〉-orbits. Therefore, the group
Frob7·3 acts on D semistandardly with orbit size distribution (1, 1, 1, 7, 7, 7, 7) or
(3, 7, 21). ¤

The stabilizer of each block from a block orbit of length 7 is conjugate to 〈σ〉.
Therefore, the entries of the orbit structures corresponding to point and block orbits
of length 7 must satisfy the condition γir ≡ 0, 1 (mod 3). Solving equations (1) and
(2), we get – up to isomorphism and duality – exactly two solutions for the orbit size
distribution (1, 1, 1, 7, 7, 7, 7), the orbit structures OS1 and OS2, and two solutions
for the orbit size distribution (3, 7, 21), the orbit structures OS3 and OS4:

OS1 1 1 1 7 7 7 7
1 1 0 0 7 7 0 0
1 0 1 0 7 0 7 0
1 0 0 1 7 0 0 7
7 1 1 1 3 3 3 3
7 1 0 0 3 3 4 4
7 0 1 0 3 4 3 4
7 0 0 1 3 4 4 3

OS2 1 1 1 7 7 7 7
1 1 0 0 7 7 0 0
1 0 1 0 7 0 7 0
1 0 0 1 7 0 0 7
7 0 0 0 3 4 4 4
7 0 1 1 3 4 3 3
7 1 0 1 3 3 4 3
7 1 1 0 3 3 3 4

OS3 3 7 21
3 1 7 7
7 3 3 9
21 1 3 11

OS4 3 7 21
3 1 7 7
7 0 3 12
21 2 3 10
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Lemma 3. Up to isomorphism there are exactly 54 symmetric (31, 15, 7) designs
admitting an automorphism group isomorphic to Frob7·3 acting with orbit size dis-
tribution (1, 1, 1, 7, 7, 7, 7) for blocks and points. Among them there are 4 self-dual
designs and 25 pairs of mutually dual designs.

Proof. The designs have been constructed by the method described in [2] and [4].
We denote the points by 10, 20, 30, 4i, 5i, 6i, 7i, i = 0, 1, . . . , 6 and put G = 〈ρ, σ〉
where the generators for G are permutations defined as follows:

ρ = (10)(20)(30)(I0, I1, . . . , I6), I = 4, 5, 6, 7,

σ = (10)(20)(30)(K0)(K1,K2,K4)(K3,K6,K5), K = 4, 5, 6, 7.

Indexing the fixed part of an orbit structure is a trivial task. Therefore, we shall
consider only the right-lower part of order 4 of the orbit structures OS1 and OS2.
To eliminate isomorphic structures during the indexing process we have used the
permutation which – on each 〈ρ〉-point-orbit – acts as x 7→ 3x (mod 7), and certain
automorphisms of the orbit structures OS1 and OS2.

As representatives for the block orbits we chose blocks fixed by 〈σ〉. Therefore,
the index sets – numbered from 0 to 3 – which could occur in the designs are among
the following:

0 = {1, 2, 4}, 1 = {3, 5, 6}, 2 = {0, 1, 2, 4}, 3 = {0, 3, 5, 6}.
The indexing process of the orbit structure OS1 led to 18 designs, denoted by

D1,D2, . . . ,D18. Among them there are 4 self-dual designs and 7 pairs of mutu-
ally dual designs. Duality and self-duality have been determined with the help of
C-programs based on the program library Nauty (see [10]) and by comparing the
statistics of intersections of any three blocks. The designs D1,D2, . . . ,D18 are or-
dered lexicographically. We write down base blocks for the designs D1, D2, . . . ,D18

in terms of the index sets defined above:

D1

0 0 0 0
0 0 3 3
0 3 0 3
0 3 3 0

D2

0 0 0 0
0 0 3 3
0 3 0 3
1 2 2 1

D3

0 0 0 0
0 0 3 3
0 3 1 2
0 3 2 1

D4

0 0 0 0
0 0 3 3
1 2 0 3
1 2 3 0

D5

0 0 0 0
0 0 3 3
1 2 1 2
1 2 2 1

D6

0 0 0 0
0 1 2 3
0 2 1 3
1 2 2 1

D7

0 0 0 0
1 0 2 3
1 2 1 2
1 3 2 0

D8

0 0 0 0
1 1 2 2
1 2 1 2
1 2 2 1

D9

0 0 0 1
0 0 3 2
0 3 0 2
0 3 3 1

D10

0 0 0 1
0 0 3 2
1 2 0 2
1 2 3 1

D11

0 0 0 1
0 1 2 2
0 2 1 2
0 3 3 1

D12

0 0 1 1
0 0 2 2
0 3 0 3
0 3 3 0

D13

0 0 1 1
0 0 2 2
0 3 0 3
1 2 2 1

D14

0 0 1 1
0 0 2 2
0 3 1 2
0 3 2 1

D15

0 0 1 1
0 0 2 2
1 2 0 3
1 2 3 0

D16

0 0 1 1
0 0 2 2
1 2 1 2
1 2 2 1

D17

0 1 1 1
0 0 2 3
0 2 1 2
0 3 2 0

D18

0 1 1 1
0 1 2 2
0 2 1 2
0 2 2 1

From these “small” incidence matrices it is easy to obtain incidence matrices in
the ordinary form. Pairs of mutually dual designs are (D2,D9), (D4,D12), (D5,D14),
(D6,D11), (D7,D17), (D8,D18) and (D10,D13). The designs D1, D3, D15, and D16

are self-dual.
The orbit structure OS2 produces up to isomorphism exactly 18 symmetric de-

signs. These designs, denoted by D19,D20, . . . ,D36, are presented in terms of the
index sets:
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D19

0 2 2 2
0 2 1 1
0 1 2 1
0 1 1 2

D20

0 2 2 2
0 2 1 1
0 1 3 0
0 1 0 3

D21

0 2 2 3
0 2 1 0
0 1 2 0
0 1 1 3

D22

0 2 2 3
0 3 0 0
0 0 3 0
0 1 1 3

D23

0 2 2 3
0 3 0 0
1 1 2 1
0 1 1 3

D24

0 2 2 3
1 2 1 1
1 1 2 1
0 1 1 3

D25

0 2 2 3
1 3 0 1
1 0 3 1
0 1 1 3

D26

0 2 3 3
0 2 0 0
0 1 2 1
0 1 1 2

D27

0 2 3 3
0 2 0 0
0 1 3 0
0 1 0 3

D28

0 2 3 3
1 2 0 1
1 1 3 1
0 1 0 3

D29

0 3 3 3
0 2 0 1
0 0 3 0
0 1 0 2

D30

0 3 3 3
0 2 0 1
1 1 2 1
0 1 0 2

D31

0 3 3 3
0 3 0 0
0 0 3 0
0 0 0 3

D32

0 3 3 3
0 3 0 0
0 0 3 0
1 1 1 2

D33

0 3 3 3
0 3 0 0
1 1 2 1
1 1 1 2

D34

0 3 3 3
0 3 0 0
1 1 3 0
1 1 0 3

D35

0 3 3 3
1 2 1 1
1 1 2 1
1 1 1 2

D36

0 3 3 3
1 2 1 1
1 1 3 0
1 1 0 3

Since the orbit structure OS2 is not self-dual, the dual structure of OS2 also
produces 18 designs, dual to the designs constructed from OS2. Let us denote
these designs by D37,D38, . . . ,D54. ¤

A computer program by Vladimir D. Tonchev [13] computes the order as well as
generators of the full automorphism group for each of the designs found. Another
computer program by V.D. Tonchev [13] computes 2-rank of the designs. The
orders and the structures of the full automorphism groups, and the 2-ranks of the
designs D1,D2, . . . ,D36 are given in the following table:
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The group (Aut(D31))′, the derived group of Aut(D31), is isomorphic to (E64 :
GL(3, 2)) : Z3. The group (Aut(D31))′′ of order 10752 is isomorphic to E64 :
GL(3, 2), a semidirect product of the elementary Abelian group of order 64 by the
simple group GL(3, 2) of order 168. That means that (Aut(D31)′′ has a subgroup
H ∼= GL(3, 2) and a normal subgroup N ∼= E64, such that (Aut(D31)′′ ∼= NH and
N ∩H = 1. The group (Aut(D31))′′ is perfect, i.e., (Aut(D31))′′′ = (Aut(D31))′′.

The group (Aut(D8))′ is isomorphic to E64 : Frob7·3, so Aut(D8), Aut(D18) and
Aut(D19) are isomorphic to (E64 : Frob7·3) : Z6.

The group Aut(D16) is a semidirect product of (Aut(D16))′ by the Frobenius
group Frob7·3, where (Aut(D16))′ is isomorphic to E16.E8, an extension of E16 by
E8.

The automorphism group Aut(D3) of order 336 is isomorphic to Z2.GL(3, 2), an
extension of Z2 by GL(3, 2). Since Aut(D3) does not contain a subgroup isomorphic
to GL(3, 2), this is not a split extension, i.e., this is not a semidirect product of Z2

by GL(3, 2). The group Aut(D3) is perfect, i.e., (Aut(D3))′ = Aut(D3).
The full automorphism groups of the designs D37,D38, . . . ,D54 are isomorphic to

the full automorphism groups of D17,D18, . . . ,D36, respectively, since the respective
designs are pairwise dual.

The group structures have been determined with the help of GAP [12].

Remark 1. The design D1 is a point-hyperplane design in the projective geometry
PG(4, 2).

Remark 2. In 1975 Hamada and Ohmori had proved (see [3]) that a symmetric
(2d − 1, 2d−1 − 1, 2d−2 − 1) design D satisfies

rank2D ≥ d + 1,

with equality if and only if D is a point-hyperplane design in PG(d− 1, 2).

It is known (see [1, Lemma 11.5, p. 153]) that if D is a symmetric (v, k, λ) design
and p a prime number dividing k − λ, then one has the following results:

(1) if p divides k, then rank2D ≤ v
2 ,

(2) if p does not divide k, then rank2D ≤ v+1
2 .

So D1 is the unique symmetric (31,15,7) design with 2 − rank equal to 6, and
D20, D23, D25, D26, D28, D30, D36 and their duals have maximal 2-rank among all
symmetric (31,15,7) designs.

Lemma 4. Up to isomorphism there are exactly 21 symmetric (31, 15, 7) designs
admitting an automorphism group isomorphic to Frob7·3 acting with orbit size dis-
tribution (3, 7, 21) for blocks and points. Among them there are 3 self-dual designs
and 9 pairs of mutually dual designs.

Proof. Put G = 〈ρ, σ〉 where the generators for G are permutations defined as
follows:

ρ = (10)(20)(30)(I0, I1, . . . , I6), I = 4, 5, 6, 7,

σ = (10, 20, 30)(40)(41, 42, 44)(43, 46, 45)(5i, 62i, 74i), i = 0, . . . , 6.

In order to index the row and column of orbit structures OS3 and OS4 that corre-
spond to the orbits of length 21, we shall decompose these orbits in 3 〈ρ〉-orbits of
length 7, knowing that σ acts on the set of 〈ρ〉-orbits of points and blocks as the
permutation

(1, 2, 3)(4)(5, 6, 7).
That decomposition leeds us to the orbit structures OS1 and OS2 which are com-
puted with respect to the normal subgroup 〈ρ〉. We shall proceed with indexing for
the structures OS1 and OS2, having in mind the action of σ on the sets of points
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and blocks. We shall omit the trivial task of indexing the fixed part of the orbit
structures and take into consideration only the right-lower (4×4)-submatrices. The
index sets – numbered from 0 to 69 – which could occur in the designs are among
the following:

0 = {0, 1, 2}, . . . , 34 = {4, 5, 6}, 35 = {0, 1, 2, 3}, . . . , 69 = {3, 4, 5, 6}.
The indexing process for the orbit structure OS1 led to 7 designs. Among them

there are 3 self-dual designs and 2 pairs of mutually dual designs. Three of the
constructed designs are isomorphic to D1, D8 or D18. The other 4 designs are
non-isomorphic to the designs D1, . . . ,D54. Denote them by D55, . . . ,D58. These
designs are presented in terms of the index sets as follows:

D55

16 0 6 2
0 26 60 62
6 60 32 65
2 62 65 24

D56

16 1 8 12
1 2 48 38
8 48 0 39
12 38 39 6

D57

16 1 8 12
3 10 35 67
5 69 11 49
13 42 63 14

D58

16 3 5 13
1 10 69 42
8 35 11 63
12 67 49 14

The designs D55 and D56 are self-dual, and the designs D57 and D58 are dual
mutually.

The indexing process for OS2 led to 7 designs. Three of them are isomorphic to
D19, D31 or D35. We denote the other four designs by D59, . . . ,D62.

D59

16 35 49 42
0 61 22 6
6 2 57 15
2 29 0 68

D60

16 36 36 36
1 49 31 17
8 25 42 21
12 30 23 35

D61

16 37 45 43
1 40 34 22
8 15 47 20
12 27 29 54

D62

16 37 45 43
3 48 31 30
5 31 39 21
13 30 21 38

The dual structure of OS4 is decomposed to the dual structure of OS2. The
indexing process for that orbit structure leads to 7 designs, dual to the designs
constructed from OS2. It is clear that three of these designs are isomorphic to the
designs described in Lemma 3. We denote the other four designs by D63, . . . ,D66.

¤

The orders and the structures of the full automorphism groups, as well as the
2-ranks of the designs D55, . . . ,D62 are given in the following table:

D |Aut(D)| Structure 2-rank
of Aut(D)

D55 21 Frob7·3 12
D56 21 Frob7·3 12
D57 21 Frob7·3 15
D58 21 Frob7·3 15

D |Aut(D)| Structure 2-rank
of Aut(D)

D59 21 Frob7·3 13
D60 21 Frob7·3 16
D61 21 Frob7·3 13
D62 21 Frob7·3 16

Lemma 1, Lemma 2, Lemma 3 and Lemma 4 lead us to the following conclusion:

Theorem 1. Up to isomorphism there are exactly 66 symmetric (31, 15, 7) designs
admitting an automorphism group isomorphic to Frob7·3. Among them there are 6
self-dual designs and 30 pairs of mutually dual designs.

Theorem 2. Up to isomorphism there are exactly two symmetric (31, 15, 7) designs
admitting an automorphism group isomorphic to Frob31·5, a point-hyperplane design
and a self-dual symmetric design D67. The full automorphism group of D67 is
isomorphic to Frob31·15 and its 2-rank is 16. The design D67 is cyclic.
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Proof. There is only one orbit structure for the parameters (31,15,7) and the group
Frob31·5, namely the orbit structure OS5:

OS5 31
31 15

Indexing for OS5 produces only one design, denoted by D67. The base block of
D67 is:

1, 2, 4, 5, 7, 8, 9, 10, 14, 16, 18, 19, 20, 25, 28.

The base block of D67 is a (31,15,7;8)-difference set, so D67 is a cyclic design. ¤

Theorem 3. Up to isomorphism there is exactly one symmetric (31, 15, 7) design
admitting an automorphism group isomorphic to Frob31·3. That design is isomor-
phic to D67.

Proof. The orbit structure OS5 is the only orbit structure for the parameters
(31,15,7) and the group Frob31·3. Indexing for OS5 produces only one design,
which is isomorphic to D67. ¤

3. Symmetric (63,31,15) Designs

Theorem 4. Up to isomorphism there are exactly 38 symmetric (63, 31, 15) designs
admitting an automorphism group isomorphic to Frob31·5. Among them there are
2 self-dual designs and 18 pairs of mutually dual designs.

Proof. Let the group G1 be isomorphic to the Frobenius group Frob31·5. We may
put

G1 = 〈ρ, σ| ρ31 = 1, σ5 = 1, ρσ = ρ2〉.

The orbit structure

OS’ 1 31 31
1 0 31 0
31 1 15 15
31 0 15 16

is up to isomorphism the only orbit structure for the parameters (63,31,15) and the
group Frob31·5. We denote the points of a design by 10, 2i, 3i, i = 0, 1, . . . , 30 and
put G1 = 〈ρ, σ〉 where the generators for G1 are permutations defined as follows:

ρ = (10)(20, 21, . . . , 230)(30, 31, . . . , 330),

σ = (10)(K0)(K1, K2,K4,K8,K16)(K3,K6,K12,K24, K17)

(K5,K10,K20, K9,K18)(K7,K14,K28,K25,K19)(K11, K22,K13,K26,K21)

(K15,K30,K29, K27,K23), K = 2, 3.
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The index sets which could occur in the designs are:
0 = {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, 24},
1 = {1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 17, 19, 24, 25, 28},
2 = {1, 2, 3, 4, 6, 8, 11, 12, 13, 16, 17, 21, 22, 24, 26},
3 = {1, 2, 3, 4, 6, 8, 12, 15, 16, 17, 23, 24, 27, 29, 30},
4 = {1, 2, 4, 5, 7, 8, 9, 10, 14, 16, 18, 19, 20, 25, 28},
5 = {1, 2, 4, 5, 8, 9, 10, 11, 13, 16, 18, 20, 21, 22, 26},
6 = {1, 2, 4, 5, 8, 9, 10, 15, 16, 18, 20, 23, 27, 29, 30},
7 = {1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, 26, 28},
8 = {1, 2, 4, 7, 8, 14, 15, 16, 19, 23, 25, 27, 28, 29, 30},
9 = {1, 2, 4, 8, 11, 13, 15, 16, 21, 22, 23, 26, 27, 29, 30},

10 = {3, 5, 6, 7, 9, 10, 12, 14, 17, 18, 19, 20, 24, 25, 28},
11 = {3, 5, 6, 9, 10, 11, 12, 13, 17, 18, 20, 21, 22, 24, 26},
12 = {3, 5, 6, 9, 10, 12, 15, 17, 18, 20, 23, 24, 27, 29, 30},
13 = {3, 6, 7, 11, 12, 13, 14, 17, 19, 21, 22, 24, 25, 26, 28},
14 = {3, 6, 7, 12, 14, 15, 17, 19, 23, 24, 25, 27, 28, 29, 30},
15 = {3, 6, 11, 12, 13, 15, 17, 21, 22, 23, 24, 26, 27, 29, 30},
16 = {5, 7, 9, 10, 11, 13, 14, 18, 19, 20, 21, 22, 25, 26, 28},
17 = {5, 7, 9, 10, 14, 15, 18, 19, 20, 23, 25, 27, 28, 29, 30},
18 = {5, 9, 10, 11, 13, 15, 18, 20, 21, 22, 23, 26, 27, 29, 30},
19 = {7, 11, 13, 14, 15, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30},
20 = {0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, 24},
21 = {0, 1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 17, 19, 24, 25, 28},
22 = {0, 1, 2, 3, 4, 6, 8, 11, 12, 13, 16, 17, 21, 22, 24, 26},
23 = {0, 1, 2, 3, 4, 6, 8, 12, 15, 16, 17, 23, 24, 27, 29, 30},
24 = {0, 1, 2, 4, 5, 7, 8, 9, 10, 14, 16, 18, 19, 20, 25, 28},
25 = {0, 1, 2, 4, 5, 8, 9, 10, 11, 13, 16, 18, 20, 21, 22, 26},
26 = {0, 1, 2, 4, 5, 8, 9, 10, 15, 16, 18, 20, 23, 27, 29, 30},
27 = {0, 1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, 26, 28},
28 = {0, 1, 2, 4, 7, 8, 14, 15, 16, 19, 23, 25, 27, 28, 29, 30},
29 = {0, 1, 2, 4, 8, 11, 13, 15, 16, 21, 22, 23, 26, 27, 29, 30},
30 = {0, 3, 5, 6, 7, 9, 10, 12, 14, 17, 18, 19, 20, 24, 25, 28},
31 = {0, 3, 5, 6, 9, 10, 11, 12, 13, 17, 18, 20, 21, 22, 24, 26},
32 = {0, 3, 5, 6, 9, 10, 12, 15, 17, 18, 20, 23, 24, 27, 29, 30},
33 = {0, 3, 6, 7, 11, 12, 13, 14, 17, 19, 21, 22, 24, 25, 26, 28},
34 = {0, 3, 6, 7, 12, 14, 15, 17, 19, 23, 24, 25, 27, 28, 29, 30},
35 = {0, 3, 6, 11, 12, 13, 15, 17, 21, 22, 23, 24, 26, 27, 29, 30},
36 = {0, 5, 7, 9, 10, 11, 13, 14, 18, 19, 20, 21, 22, 25, 26, 28},
37 = {0, 5, 7, 9, 10, 14, 15, 18, 19, 20, 23, 25, 27, 28, 29, 30},
38 = {0, 5, 9, 10, 11, 13, 15, 18, 20, 21, 22, 23, 26, 27, 29, 30},
39 = {0, 7, 11, 13, 14, 15, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30}.
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Indexing for the orbit structure OS’ leads us to 38 mutually non-isomorphic
symmetric designs, denoted by D1

1, . . . ,D1
38 and listed below.

D1
1

3 3
3 36

D1
2

3 3
4 35

D1
3

3 3
5 34

D1
4

3 3
8 31

D1
5

3 3
10 29

D1
6

3 3
13 26

D1
7

3 3
15 24

D1
8

3 3
18 21

D1
9

3 4
3 35

D1
10

3 4
5 26

D1
11

3 4
10 21

D1
12

3 4
15 31

D1
13

3 5
3 34

D1
14

3 5
4 26

D1
15

3 5
10 24

D1
16

3 5
18 31

D1
17

3 8
3 31

D1
18

3 10
3 29

D1
19

3 10
4 21

D1
20

3 10
5 24

D1
21

3 10
13 31

D1
22

3 13
3 26

D1
23

3 13
10 31

D1
24

3 15
3 24

D1
25

3 15
4 31

D1
26

3 18
3 21

D1
27

3 18
5 31

D1
28

4 3
4 36

D1
29

4 3
8 24

D1
30

4 3
13 34

D1
31

4 3
18 29

D1
32

4 4
3 36

D1
33

4 4
4 35

D1
34

4 4
5 34

D1
35

4 4
15 24

D1
36

4 5
4 34

D1
37

4 5
18 24

D1
38

4 15
4 24

Pairs of dual designs are: (D1
2,D1

9), (D1
3,D1

13), (D1
4,D1

17), (D1
5,D1

18), (D1
6,D1

22),
(D1

7,D1
24), (D1

8,D1
26), (D1

10,D1
14), (D1

11,D1
19), (D1

12,D1
25),(D1

15,D1
20), (D1

16,D1
27),

(D1
21,D1

23), (D1
28,D1

32), (D1
29,D1

37), (D1
30,D1

31), (D1
34,D1

36) and (D1
35,D1

38). The de-
signs D1

1 and D1
33 are self-dual. ¤

The orders and the structures of the full automorphism groups, as well as the
2-ranks of the designs D1

1, . . . ,D1
38 are given in the following table:
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Remark 3. The design D1
1 is a point-hyperplane design in the projective geometry

PG(5, 2).

4. Symmetric (127,63,31) Designs

Theorem 5. Up to isomorphism there are exactly two symmetric (127, 63, 31) de-
signs admitting an automorphism group isomorphic to Frob127·21. Let us denote
these designs by D2

1 and D2
2. Both designs are self-dual and cyclic. The 2-ranks of

D2
1 and D2

2 are 22 and 64, respectively.

Proof. The orbit structure
OS” 127
127 63

is the only orbit structure for the parameters (127,63,31) and the group Frob127·21.
Indexing for OS” produces two self-dual designs, denoted by D2

1 and D2
2.

The base block of D2
1 is:

1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 19, 20, 23, 24, 25, 27, 28, 32, 33, 38, 40, 46, 47,

48, 50, 51, 54, 56, 57, 61, 63, 64, 65, 66, 67, 73, 75, 76, 77, 80, 87, 89, 92, 94, 95,

96, 97, 100, 101, 102, 107, 108, 111, 112, 114, 117, 119, 122, 123, 125, 126.

and the base block of D2
2 is:

1, 2, 4, 8, 9, 11, 13, 15, 16, 17, 18, 19, 21, 22, 25, 26, 30, 31, 32, 34, 35, 36, 37, 38,

41, 42, 44, 47, 49, 50, 52, 60, 61, 62, 64, 68, 69, 70, 71, 72, 73, 74, 76, 79, 81, 82,

84, 87, 88, 94, 98, 99, 100, 103, 104, 107, 113, 115, 117, 120, 121, 122, 124.

The base blocks of D2
1 and D2

2 are (127,63,31;32)-difference sets, so D2
1 and D2

2

are cyclic designs. ¤

The full automorphism groups of the designs D2
1 and D2

2 are isomorphic to
Frob127·21 and Frob127·63, respectively.

Theorem 6. Up to isomorphism there is exactly one symmetric (127, 63, 31) de-
sign admitting an automorphism group isomorphic to Frob127·9. That design is
isomorphic to D2

2.
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