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ON RIEMANNIAN TANGENT BUNDLES

ADNAN AL-AQEEL AND AUREL BEJANCU

Abstract. We study the geometry of manifolds whose tangent bundle is en-
dowed with a Riemannian metric. The Levi-Civita connection, Schouten-Van
Kampen connection and Vrănceanu connection are the main tools for this
study. We obtain characterizations of special classes of vertical foliations and
compare the sectional curvatures of the horizontal distribution with respect to
the above connections.

Introduction

As it is well-known, the tangent bundle of a Riemannian manifold becomes a
Riemannian manifold too. A method to construct a Riemannian metric on the
tangent bundle of a Riemannian manifold was developed by Sasaki [5]. This metric
has been called the Sasaki metric and has had a great role in the study of the
geometry of the tangent bundle of a Riemannian manifold. More general, the
tangent bundle of a Finsler manifold is endowed with the so called Sasaki-Finsler
metric (see Bejancu–Farran [1], p. 48), which is completely determined by the
fundamental function of the Finsler manifold.

The above two large classes of manifolds appear as particular cases of the man-
ifolds we introduce and study in the present paper. Let M be a manifold whose
tangent bundle TM is endowed with a Riemannian metric G. Then we call (TM, G)
a Riemannian tangent bundle of M . In the first section we consider the Schouten-
Van Kampen and Vrănceanu connections induced by the Levi-Civita connection on
(TM, G) and obtain characterizations of both the vertical and horizontal distribu-
tions when these connections coincide. Next, in the second section we first deduce
the structure equations which relate the curvature tensor fields of the Schouten–
Van Kampen and Levi–Civita connections. Finally, in case G is bundle-like for the
vertical foliation we are able to compare the sectional curvatures of the horizontal
distribution with respect to the above three connections.

1. Linear Connections on a Riemannian Tangent Bundle

Let M be a real n−dimensional manifold and TM the tangent bundle of M with
the canonical projection π : TM −→ M . Then a local chart (U , ϕ) on M with local
coordinates (xi) for x ∈ M , i ∈ {1, . . . , n}, defines a local chart (π−1(U), Φ) on
TM with local coordinates (xi, yi) for y = yi ∂

∂xi ∈ π−1(U). The transformations
of coordinates on TM are given by

(1.1) x̃i = x̃i(x1, . . . , xn), ỹi = J i
j(x)yj ,
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where J i
j(x) = ∂x̃i

∂xj . As a consequence of (1.1) the local frame fields { ∂
∂xi , ∂

∂yi }
and { ∂

∂x̃i , ∂
∂ỹi } are related by

(1.2)
∂

∂xi
= Jj

i (x)
∂

∂x̃j
+ Jj

ik(x)yk ∂

∂ỹj
, Jj

ik(x) =
∂2x̃j

∂xi∂xk

and

(1.3)
∂

∂yi
= Jj

i (x)
∂

∂ỹj
.

Throughout the paper all manifolds are paracompact, and mappings are smooth
(differentiable of class C∞). We denote by F(M) the algebra of smooth functions
on M and by Γ(TM) the F(M)-module of smooth vector fields on M . Similar
notations we use for any other manifold or vector bundle. Also, we use the Einstein
convention, that is, repeated indices with one upper index and one lower index
denotes summation over their range. If not stated otherwise, we use the indices:
i, j, k, . . . ∈ {1, . . . , n}.

Next, we consider on TM the vertical distribution V TM , which is the tangent
distribution to the foliation FV determined by the fibers of π : TM −→ M . Thus
V TM is locally spanned by { ∂

∂yi }, i ∈ {1, . . . , n}. Also, we suppose that TM

admits a Riemannian metric G and denote by vg the induced Riemannian metric
by G on V TM . Then the local components of vg are given by

(1.4) vgij(x, y) = G

(
∂

∂yi
,

∂

∂yj

)
.

We call (TM, G) a Riemannian tangent bundle of M . Note that M needs not to
be a Riemannian manifold. Examples of such manifolds are abundant. First, any
Riemannian manifold has a Riemannian tangent bundle whose Riemannian metric
is the well-known Sasaki metric (cf. Sasaki [5]). In a similar way, a Finsler manifold
has a Riemannian tangent bundle whose Riemannian metric is the Sasaki-Finsler
metric (cf. Bejancu–Farran [1], p. 48).

Now, we denote by HTM the complementary orthogonal distribution to V TM
in TTM with respect to G and call it the horizontal distribution on (TM, G). Thus
we have the orthogonal decomposition.

(1.5) TTM = V TM ⊕HTM.

Then on π−1(U) we express each ∂
∂xi as follows

∂

∂xi
= Aj

i

∂

∂yj
+

δ

δxi
,

where δ
δxi ∈ Γ(HTM). Thus HTM is locally spanned by

(1.6)
δ

δxi
=

∂

∂xi
−Aj

i

∂

∂yj
, i ∈ {1, . . . , n}.

By using (1.2), (1.3) and (1.6) we deduce that

(1.7)
δ

δxi
= Jj

i (x)
δ

δx̃j
,

with respect to the transformations of coordinates (1.1). Moreover, from (1.6) it
follows that Aj

i are determined by the Riemannian metric G as follows

(1.8) Aj
i = G

(
∂

∂xi
,

∂

∂yk

)
vgkj ,

where vgkj are the entries of the inverse matrix of the n×n matrix [vgkj ]. By direct
calculations using (1.6) we obtain the following.
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Proposition 1.1. Let (TM,G) be a Riemannian tangent bundle of M . Then we
have:

(1.9) (a)
[

δ

δxi
,

δ

δxj

]
= Rk

ij

∂

∂yk
, (b)

[
δ

δxi
,

∂

∂yj

]
= D k

j i

∂

∂yk
,

where we put:

(1.10) (a) Rk
ij =

δAk
i

δxj
− δAk

j

δxi
, (b) D k

j i =
∂Ak

i

∂yj
.

It is interesting to note that the local functions defined by (1.10) behave in a
different way with respect to (1.1). More precisely, by using (1.3), (1.7) and (1.9)
we deduce that

(a) Rk
ij

∂x̃h

∂xk
= R̃h

st

∂x̃s

∂xi

∂x̃t

∂xj
,

(b) D k
i j

∂x̃h

∂xk
= D̃ h

s t

∂x̃s

∂xi

∂x̃t

∂xj
+

∂2x̃h

∂xi∂xj
.

(1.11)

Moreover, by using (1.9a) we can state the following.

Proposition 1.2. The horizontal distribution on a Riemannian tangent bundle
(TM, G) is integrable if and only if we have

(1.12) Rk
ij = 0, ∀ i, j, k ∈ {1, . . . , n}.

Next, we consider the Levi–Civita connection ∇̃ on (TM, G) given by (cf.
Kobayashi–Nomizu [3], p. 160)

2G(∇̃XY, Z) = X(G(Y, Z)) + Y (G(Z, X))− Z(G(X, Y ))

+ G([X,Y ], Z)−G([Y,Z], X) + G([Z,X], Y ),
(1.13)

for all X, Y, Z ∈ Γ(TTM). Also, we recall that ∇̃ is torsion-free and metric con-
nection, that is, we have:

(1.14) ∇̃XY − ∇̃Y X − [X,Y ] = 0,

and

(1.15) (∇̃XG)(Y,Z) = X(G(Y, Z))−G(∇̃XY, Z)−G(Y, ∇̃XZ) = 0,

for all X, Y, Z ∈ Γ(TTM). In general, none of the distributions V TM or HTM is
parallel with respect to ∇̃. However, ∇̃ can be used to construct such special linear
connections on TM . Two of them we consider here (cf. Ianus [2]):

(1.16) ∇XY = V ∇̃XV Y + H∇̃XHY,

and

(1.17) ∇∗XY = V ∇̃V XV Y + H∇̃HXHY + V [HX, V Y ] + H[V X,HY ],

for all X,Y ∈ Γ(TTM), where V and H are the projection morphism of TTM
on V TM and HTM respectively. Taking into account that ∇ and ∇∗ have been
first defined in [6] and [7] on non-holonomic manifolds (by using local coefficients),
we call them the Schouten–Van Kampen connection and the Vrănceanu connection
respectively. Also we denote by v∇ and h∇ the induced linear connections by ∇ on
V TM and HTM and call them the vertical and horizontal Schouten–Van Kampen
connections respectively. Similarly, we define the vertical and horizontal Vrănceanu
connections v∇∗ and h∇∗ induced by ∇∗ on V TM and HTM respectively.
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The above two special connections on TM allow us to define geometric objects
related with the decomposition (1.5). For instance, we can define the covariant de-
rivative of the Riemannian metric vg on V TM with respect to the vertical Vrănceanu
connection as follows:

(1.18) (v∇∗X vg)(V Y, V Z) = X(vg(V Y, V Z))− vg(v∇∗XV Y, V Z)− vg(V Y, v∇∗XV Z),

for all X, Y, Z ∈ Γ(TTM). By using (1.17) and (1.15) into (1.18) we deduce that
vg is vertical parallel with respect to v∇∗, that is, we have

(1.19) (v∇∗V X
vg)(V Y, V Z) = 0, ∀X,Y, Z ∈ Γ(TTM).

However, vg is not parallel with respect to horizontal vector fields. More precisely, if
we take X = δ

δxi , V Y = ∂
∂yj , V Z = ∂

∂yk in (1.18) and use (1.4), (1.17) and (1.9b),
we deduce that:

(1.20) vgjk|i = (v∇∗δ
δxi

vg)
(

∂

∂yj
,

∂

∂yk

)
=

δ vgjk

δxi
− vghk D h

j i − vgjh D h
k i.

Next, we denote by hg the induced Riemannian metric by G on HTM and define(
h∇∗X hg

)
(HY, HZ) = X

(
hg(HY, HZ)

)− hg(h∇∗XHY, HZ)

− hg(HY, h∇∗XHZ),
(1.21)

for all X, Y, Z ∈ Γ(TM). Then in a similar way as above we obtain

(a) (h∇∗HX
hg)(HY,HZ) = 0,

(b) hgjk‖i = (h∇∗∂

∂yi

hg)
(

δ

δxj
,

δ

δxk

)
=

∂ hgjk

∂yi
,

(1.22)

where we put

(1.23) hgjk = G

(
δ

δxj
,

δ

δxk

)
.

Now, we recall that the Riemannian metric G is bundle-like for the vertical foliation
FV if and only if (see Reinhart [4], p. 122.)

(1.24)
∂ hgik

∂yj
= 0, ∀ i, j, k ∈ {1, . . . , n}.

Thus by using (1.22) and (1.24) we can state the following.

Theorem 1.1. Let (TM, G) be a Riemannian tangent bundle of M . Then the
induced Riemannian metric hg on HTM is parallel with respect to the horizontal
Vrănceanu connection if and only if G is bundle-like for FV .

Also, the above covariant derivatives enable us to find the local coefficients of
the Levi-Civita connection on (TM,G) as it is stated in the next theorem.

Theorem 1.2. The Levi-Civita connection ∇̃ on the Riemannian tangent bundle
(TM, G) is locally given by:

(a) ∇̃ δ

δxj

δ

δxi
= −1

2
vgkt(hgij‖t + vgtsR

s
ij)

∂

∂yk
+ F k

i j

δ

δxk
,

(b) ∇̃ δ

δxj

∂

∂yi
=

(
1
2

vgkt vgti|j + D k
i j

)
∂

∂yk

+
1
2

hgkt(hgtj‖i + vgisR
s
tj)

δ

δxk

= ∇̃ ∂

∂yi

δ

δxj
+ D k

i j

∂

∂yk
,

(c) ∇̃ ∂

∂yj

∂

∂yi
= C k

i j

∂

∂yk
− 1

2
vgij|t hgtk δ

δxk
,

(1.25)
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where we put:

(a) F k
i j =

1
2

hgkt

(
δ hgti

δxj
+

δ hgtj

δxi
− δ hgij

δxt

)
,

(b) C k
i j =

1
2

vgkt

(
∂ vgti

∂yj
+

∂ vgtj

∂yi
− ∂ vgij

∂yt

)
.

(1.26)

Proof. First, we take X = δ
δxj , Y = δ

δxi and Z = ∂
∂yk in (1.13) and by using (1.23),

(1.9) and (1.4) we obtain

(1.27) 2G

(
∇̃ δ

δxj

δ

δxi
,

∂

∂yt

)
= − hgij‖t − vgtsR

s
ij .

Similarly, we take X = δ
δxj , Y = δ

δxi , Z = δ
δxt in (1.13) and by using (1.23) and

(1.9a) we deduce that

(1.28) 2G

(
∇̃ δ

δxj

δ

δxi
,

δ

δxt

)
=

δ hgti

δxj
+

δ hgtj

δxi
− δ hgij

δxt
.

Then (1.25a) is a consequence of (1.27) and (1.28) via (1.26a). By similar calcula-
tions we obtain (1.25b) and (1.25c). ¤

The formulas from (1.25) can give some information about the vertical foliation
as we see from the next theorem.

Theorem 1.3. Let (M,G) be a Riemannian tangent bundle of M . Then the
induced Riemannian metric vg on V TM is parallel with respect to the vertical
Vrănceanu connection if and only if the vertical foliation is totally geodesic.

Proof. By (1.19) and (1.20) we deduce that vg is parallel with respect to v∇∗ if and
only if

(1.29) vgjk|i = 0, ∀ i, j, k ∈ {1, . . . , n}.
Then from (1.25c) we see that (1.29) is equivalent to

(1.30) ∇̃ ∂

∂yj

∂

∂yi
= C k

i j

∂

∂yk
.

Finally, we note that the leaves of FV are totally geodesic immersed in (TM, G) if
and only if (1.30) is satisfied. This completes the proof of the theorem. ¤

An interesting result is obtained by combining Theorems 1.1 and 1.3.

Corollary 1.1. Let (TM, G) be a Riemannian tangent bundle of M . Then G is
parallel with respect to Vrănceanu connection if and only if the vertical foliation Fv

is totally geodesic and G is bundle-like for Fv.

Next, we prove the following.

Theorem 1.4. Let (TM,G) be a Riemannian tangent bundle of M . Then HTM
is integrable and its leaves are totally geodesic immersed in (TM,G) if and only
if the horizontal Schouten–Van Kampen connection coincides with the horizontal
Vrănceanu connection.

Proof. Suppose that h∇ = h∇∗, that is, for any X, Y ∈ Γ(TTM) we have

∇XHY = ∇∗XHY.

Then by using (1.16) and (1.17) we deduce that h∇ = h∇∗ if and only if

H∇̃HY V X = 0,

which is equivalent to

(1.31) G(∇̃HY V X,HZ) = 0, ∀X, Y, Z ∈ Γ(TTM).
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Finally, taking into account (1.15) we infer that (1.31) is equivalent to

∇̃HY HZ ∈ Γ(HTM), ∀ Y, Z ∈ Γ(TTM),

which in fact is the condition for HTM to be autoparallel with respect to ∇̃, that
is, HTM is integrable and its leaves are totally geodesic immersed in (TM, G). ¤

In a similar way it is proved the following theorem.

Theorem 1.5. Let (TM, G) be a Riemannian tangent bundle of M . Then the
vertical foliation FV is totally geodesic if and only if the vertical Schouten–Van
Kampen connection coincides with the vertical Vrănceanu connection.

Finally, by combining Theorems 1.4 and 1.5 we obtain the following.

Corollary 1.2. A Riemannian tangent bundle (TM, G) is a locally Riemannian
product with respect to the decomposition (1.5) if and only if the Schouten–Van
Kampen connection coincides with the Vrănceanu connection.

2. Curvature of a Riemannian Tangent Bundle

Let ∇̃ and ∇ be the Levi–Civita connection and the Schouten–Van Kampen
connection respectively on the Riemannian tangent bundle (TM, G). Then taking
into account (1.5) and (1.16) we put:

(2.1) ∇̃XV Y = ∇XV Y + B(X,V Y ),

and

(2.2) ∇̃XHY = B′(X, HY ) +∇XHY,

for any X, Y ∈ Γ(TTM), where B and B′ are given by

(2.3) (a) B(X, V Y ) = H∇̃XV Y and (b) B′(X, HY ) = V ∇̃XHY.

By using (2.1) - (2.3) and (1.15) we deduce that

(2.4) hg(B(X,V Y ),HZ) + vg(B′(X,HZ), V Y ) = 0, ∀X,Y, Z ∈ Γ(TTM).

Taking into account that both distributions V TM and HTM are parallel with
respect to the Schouten–Van Kampen connection we define the covariant derivates
of B and B′ as follows:

(2.5) (∇XB)(Y, V Z) = ∇X(B(Y, V Z))−B(∇XY, V Z)−B(Y,∇XV Z),

and

(2.6) (∇XB′)(Y, HZ) = ∇X(B′(Y, HZ))−B′(∇XY, HZ)−B′(Y,∇XHZ),

for any X, Y, Z ∈ Γ(TTM). Now, we denote by R̃ and R the curvature tensor fields
of ∇̃ and ∇ respectively, and state the following.

Theorem 2.1. Let (TM,G) be a Riemannian tangent bundle of M . Then we have
the following equations:

G(R̃(X, Y )V Z, V U) = vg(R(X, Y )V Z, V U)

+ hg(B(X, V Z), B(Y, V U))

− hg(B(Y, V Z), B(X,V U)),

(2.7)

G(R̃(X, Y )V Z, HU) = hg((∇XB)(Y, V Z)− (∇Y B)(X,V Z),HU)

+ hg(B(T (X,Y ), V Z),HU),
(2.8)
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G(R̃(X, Y )HZ, HU) = hg(R(X, Y )HZ, HU)

+ vg(B′(X,HZ), B′(Y, HU))

− vg(B′(Y, HZ), B′(X, HU)),

(2.9)

G(R̃(X,Y )HZ, V U) = vg((∇XB′)(Y,HZ)− (∇Y B′)(X, HZ), V U)

+ vg(B′(T (X, Y ),HZ), V U),
(2.10)

for any X, Y, Z ∈ Γ(TTM), where T is the torsion tensor field of ∇.

Proof. By using (2.1) and (2.2) we obtain

∇̃X∇̃Y V Z = ∇X∇Y V Z + B(X,∇Y V Z)

+ B(X, B(Y, V Z)) +∇X(B(Y, V Z)).
(2.11)

On the other hand, taking into account that

T (X, Y ) = ∇XY −∇Y X − [X, Y ],

and by using (2.1) we infer that

∇̃[X,Y ]V Z = ∇[X,Y ]V Z + B(∇XY, V Z)−B(∇Y X, V Z)

−B(T (X, Y ), V Z),
(2.12)

Then by using (2.11), (2.12) and (2.5) we deduce that

R̃(X,Y )V Z = [∇̃X , ∇̃Y ]V Z − ∇̃[X,Y ]V Z

= {R(X, Y )V Z + B′(X, B(Y, V Z))−B′(Y, B(X,V Z))}
+ {(∇XB)(Y, V Z)− (∇Y B)(X, V Z) + B(T (X, Y ), V Z)} .

(2.13)

Now, we take the HTM - and V TM - components in (2.13) and obtain (2.8) and

G(R̃(X, Y )V Z, V U) = vg(R(X, Y )V Z, V U)

+ vg(B′(X, B(Y, V Z))−B′(Y, B(X, V Z)), V U).
(2.14)

Finally, by using (2.4) in (2.14) we obtain (2.7). By similar calculations we obtain
(2.9) and (2.10). ¤

Remark 1. The formulas (2.8) and (2.10) are equivalent. This follows by direct
calculations using (2.4) and properties of R̃.

Next, let z ∈ TM and W be a 2-dimensional subspace of HTMz which we call
a horizontal plane. Take a basis {u, v} of W and define the number

(2.15) K(u, v) =
hg(R(u, v)v, u)

∆(u, v)
,

where we put
∆(u, v) = hg(u, u) hg(v, v)− (hg(u, v))2.

Taking into account that hg is parallel with respect to Schouten-Van Kampen con-
nection, we deduce that K(u, v) is independent of the basis {u, v}. Then we denote
it by K(W ) and call it the Schouten–Van Kampen sectional curvature of HTM at
z ∈ TM with respect to the plane W . To define such an object for the Vrănceanu
connection we need a study of its curvature tensor field R∗. This is because hg, in
general, is not parallel with respect to ∇∗ (see Theorem 1.3). Now, we prove the
following.

Theorem 2.2. Let (TM, G) be a Riemannian tangent bundle. Then G is bundle-
like for the vertical foliation FV if and only if

(2.16) B′(HX, HY ) + B′(HY, HX) = 0, ∀ X,Y ∈ Γ(TTM).
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Proof. By using (1.15) we deduce that (1.19) is equivalent to

(2.17) G(V X, ∇̃HY HZ + ∇̃HZHY ) = 0.

Then by (2.2) it follows that (2.17) is equivalent to (2.16). ¤

Lemma 2.1. Let (TM,G) be a Riemannian tangent bundle of M , where G is
bundle-like for FV . Then the curvature tensor fields R and R∗ are related by

(2.18) R(HX, HY )HZ = R∗(HX,HY )HZ − 2B(HZ, B′(HX, HY )).

for any X, Y, Z ∈ Γ(TTM).

Proof. By using (1.16), (1.17) and (2.3a) we deduce that

(2.19) ∇XHZ = ∇∗XHZ + B(HZ, V X),∀ X, Z ∈ Γ(TTM).

Then by direct calculations using (2.19) we obtain

(2.20) R(HX, HY )HZ = R∗(HX,HY )HZ −B(HZ, V [HX, HY ]).

Next, by using (1.14), (2.3b) and (2.16) we infer that

V [HX, HY ] = V ∇̃HXHY − V ∇̃HY HX

= 2B′(HX, HY ).
(2.21)

Thus (2.18) follows from (2.20) by using (2.21). ¤

Lemma 2.2. Let (TM, G) as in Lemma 2.1. Then the curvature tensor field of
the horizontal Vrănceanu connection satisfies the identity

(2.22) hg(R∗((HX,HY )HZ, HU) + hg(R∗(HX,HY )HU,HZ) = 0,

for any X, Y, Z, U ∈ Γ(TTM).

Proof. By using (2.18) and (2.4) we obtain
hg(R(HX, HY )HZ,HU) = hg(R∗(HX,HY )HZ, HU)

+ 2 vg(B′(HZ, HU), B′(HX, HY )).
(2.23)

Then (2.22) follows from (2.23) by using (2.16) and taking into account that R
satisfies an identity as (2.22) (since hg is parallel with respect to ∇). ¤

By using properties of R∗ (including (2.22)) we define the Vrănceanu sectional
curvature K∗(W ) of the HTM at z ∈ TM with respect to the horizontal plane W

by (2.15), but with R∗ instead of R. Similarly, we have K̃(W ) given by (2.15), but
with G and R̃ instead if hg and R respectively. In the next theorem we state an
interesting relation between the above three sectional curvatures.

Theorem 2.3. Let (TM,G) be a Riemannian tangent bundle of M , where G is
bundle-like for FV . Then the Schouten-Van Kampen, Vrănceanu and Levi-Civita
curvatures of the horizontal distribution are related by

(2.24) 3K(W ) = 2K̃(W ) + K∗(W )

for any horizontal plane W .

Proof. Let {HX,HY } be a basis of W . Then by using (2.9) and (2.16) we obtain

G(R̃(HX, HY )HY,HX) = hg(R(HX,HY )HY, HX)

− vg(B′(HX, HY ), B′(HX, HY )),

which implies

(2.25) K̃(W ) = K(W )− ||B′(HX, HY )||2
∆(HX, HY )

.
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On the other hand, by using (2.18), (2.4) and (2.16) we deduce that
hg(R(HX, HY )HY, HX) = hg(R∗(HX,HY )HY,HX)

− 2 vg(B′(HX, HY ), B′(HX, HY )),

which yields

(2.26) K(W ) = K∗(W )− 2
||B′(HX, HY )||2

∆(HX, HY )
.

Thus (2.24) follows from (2.25) and (2.26). ¤
Corollary 2.1. Let (TM, G) as in Theorem 2.3. Then we have

(2.27) K̃(W ) ≤ K(W ) ≤ K∗(W ).

Moreover, one inequality becomes equality if and only if the other inequality is so,
and this occurs if and only if the horizontal distribution is integrable and its leaves
are totally geodesic immersed in (TM, G).

Proof. The inequalities in (2.27) follow from (2.25) and (2.26) since

∆(HX, HY ) > 0.

If K̃(W ) = K(W ), then from (2.25) we deduce that B′(HX,HY ) = 0. Hence (2.26)
yields K(W ) = K∗(W ). Also, from (2.2) we deduce that ∇̃HXHY ∈ Γ(HTM).
Hence HTM is integrable and its leaves are totally geodesic immersed in (TM,G).
The same reason is used if we start with the equality K(W ) = K∗(W ). ¤
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