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RULED SURFACES IN LORENTZ-MINKOWSKI 3-SPACES
WITH NON-DEGENERATE SECOND FUNDAMENTAL

FORM

DAE WON YOON

Abstract. In this paper, we study some properties of ruled surfaces
with non-degenerate second fundamental form in a 3-dimensional Lorentz-
Minkowski space related to its the Gaussian curvature, the second Gaussian
curvature and the mean curvature.

1. Introduction

The inner geometry of the second fundamental form has been a popular
research topic for ages. It is readily seen that the second fundamental form of
a surface is non-degenerate if and only if a surface is non-developable.

On a non-developable surface M , we can consider the Gaussian curvature
KII of the second fundamental form which is regarded as a new Riemannian
metric. The curvature KII will be called the second Gaussian curvature of
the surface M . The curvature KII of M will be defined and discussed in the
section 2.

Several authors studied the second Gaussian curvature (see [2], [4], [10], [11],
[12], [14], [15]). D. Koutroufiotis ([12]) has shown that a closed ovaloid is a

sphere if KII = cK for some constant c or if KII =
√

K, where K is the
Gaussian curvature. Th. Koufogiorgos and T. Hasanis ([11]) proved that the
sphere is the only closed ovaloid satisfying KII = H, where H is the mean
curvature. Also, W. Kühnel ([13]) studied surfaces of revolution satisfying
KII = H. One of the natural generalizations of surfaces of revolution is the
helicoidal surfaces. In [2] C. Baikoussis and Th. Koufogiorgos proved that the
helicoidal surfaces satisfying KII = H are locally characterized by constancy
of the ratio of the principal curvatures. On the other hand, D.E. Blair and
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Th. Koufogiorgos ([4]) investigated a non-developable ruled surface in a 3-
dimensional Euclidean space E3 such that aKII + bH, 2a + b 6= 0, is constant
along each ruling.

Recently, Y.H. Kim and the present author ([10]) studied a non-developable
ruled surface in a 3-dimensional Lorentz-Minkowski space satisfying the con-
ditions

aH + bK = constant, a 6= 0,(1.1)

aKII + bK = constant, a 6= 0,(1.2)

aKII + bH = constant, 2a− b 6= 0,(1.3)

along each ruling. In particular, if it satisfies the condition (1.1), then a surface
is called a linear Weingarten surface (cf. [7]). In [15] W. Sodsiri studied a non-
developable ruled surface with non-null rulings in a 3-dimensional Lorentz-
Minkowski space such that the linear combination aKII + bH + cK, a, b, c ∈
R, a2 + b2 6= 0 is constant along ruling.

In this article, we investigate a ruled surface with non-degenerate second
fundamental form in a 3-dimensional Lorentz-Minkowski space satisfying the
condition

(1.4) KII = KmHn,

along each ruling, where m,n are natural numbers.

2. Preliminaries

Let L3 be a 3-dimensional Lorentz-Minkowski space with the scalar product
of index 1 given by 〈, 〉 = −dx2

1 + dx2
2 + dx2

3, where (x1, x2, x3) is a standard
rectangular coordinate system of L3. A vector x of L3 is said to be space-like
if 〈x, x〉 > 0 or x = 0, time-like if 〈x, x〉 < 0 and light-like or null if 〈x, x〉 = 0
and x 6= 0. A time-like or null vector in L3 is said to be causal. A curve in
L3 is called space-like, time-like or null if its tangent vector field is space-like,
time-like or null, respectively.

We denote a surface M in L3 by

x(s, t) = (x1(s, t), x2(s, t), x3(s, t)).

Then the first fundamental form I of the surface M is defined by

I = Eds2 + 2Fdsdt + Gdt2,
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where E =< xs, xs >,F =< xs, xt >, G =< xt, xt >, xs = ∂x(s,t)
∂s

. We define
the second fundamental form II of M by

II = eds2 + 2fdsdt + gdt2,

e =
1√

|EG− F 2| det(xs xt xss),

f =
1√

|EG− F 2| det(xs xt xst),

g =
1√

|EG− F 2| det(xs xt xtt).

Quite similarly to the case of Gaussian curvature of a surface in Euclidean
space (see, [16, p. 112]), the Gaussian curvature K of M in L3 is defined by

(2.1)

K =
1

(EG− F 2)2
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At this stage we are able to compute the second Gaussian curvature KII

of a surface with non-degenerate second fundamental form in L3 by replacing
E,F,G by the components of the second fundamental form e, f, g respectively
in (2.1). Thus, the second Gaussian curvature KII is given by (cf. [2])

(2.2)

KII =
1

(eg − f 2)2
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It is well known that a minimal surface has vanishing second Gaussian cur-
vature but that a surface with vanishing second Gaussian curvature need not
be minimal.

Now, we define a ruled surface M in L3. Let I and J be open intervals
containing 0 in the real line R. Let α = α(s) be a curve of J into L3 and
β = β(s) a vector field along α. Then, a ruled surface M is defined by the
parametrization given as follows:

x = x(s, t) = α(s) + tβ(s), s ∈ J, t ∈ I.

For such a ruled surface, α and β are called the base curve and the director
vector field, respectively.

According to the causal character of α′ and β, there are four possibilities:
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(1) α′ and β are non-null and linearly independent.
(2) α′ is null and β is non-null with < α′, β > 6= 0.
(3) α′ is non-null and β is null with < α′, β > 6= 0.
(4) α′ and β are null with < α′, β > 6= 0.

It is easily to see that, with an appropriate change of the curve α, cases (2)
and (3) reduce to (1) and (4), respectively (For the details, see [1]).

First of all, we consider the ruled surface of the case (1). In this case, the
ruled surface M is said to be cylindrical if the director vector field β is constant
and non-cylindrical otherwise.

Let the base curve α and the director vector field β be non-null. Then, the
base curve α can be chosen to be orthogonal to the director vector field β and β
can be normalized satisfying 〈β(s), β(s)〉 = ε(= ±1) for all s ∈ J . In this case,
according to the character of vector fields α′ and β, we have ruled surfaces of
five different kinds as follows: If the base curve α is space-like or time-like,
then the ruled surface M is said to be of type M+ or type M−, respectively.
Also, the ruled surface of type M+ can be divided into three types. If the
vector field β is space-like, it is said to be of type M1

+ or M2
+ if β′ is non-null or

null, respectively. When the vector field β is time-like, β′ is space-like because
of the causal character. In this case, M is said to be of type M3

+. On the
other hand, for the ruled surface of type M−, the director vector field is always
space-like. According as its derivative β′ is non-null or null, it is also said to
be of type M1

− or M2
−, respectively (cf. [9]).

The ruled surface M of the case (4) is called a null scroll (see [8]). One of
typical examples of null scrolls is B-scroll which is defined as follows:

Let α(s) be a null curve in L3 with Cartan frame {A, B, C}, i.e., A,B, C
are vector fields along α in L3 satisfying the following conditions:

< A, A > =< B, B >= 0, < A, B >= −1,

< A, C > =< B, C >= 0, < C,C >= 1,

and
α′ = A,

C ′ = −aA− k(s)B,

where a is a constant and k(s) a function vanishing nowhere.
Then the map

x : M −→ L3

(s, t) → α + tB(s)

defines a Lorentz surface M in L3 that L. K. Graves ([8]) called a B-scroll.
On the other hand, many geometers have been interested in studying sub-

manifolds of Euclidean and pseudo-Euclidean space in terms of the so-called
finite type immersion ([5]). Also, such a notion can be extended to smooth
maps on submanifolds, namely the Gauss map ([6]). In this regards, Y.H. Kim
and the present author defined pointwise finite type Gauss map ([9]). In par-
ticular, the Gauss map G on a submanifold M of a pseudo-Euclidean space
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Em
s of index s is said to be of pointwise 1-type if ∆G = fG for some smooth

function f on M where ∆ denotes the Laplace operator defined on M . They
showed that minimal non-cylindrical ruled surfaces in a 3-dimensional Lorentz-
Minkowski space have pointwise 1-type Gauss map ([9]). Based on this fact,
they proved the following theorem:

Theorem 2.1 ([9]). Let M be a non-cylindrical ruled surface with space-like
or time-like base curve in a 3-dimensional Lorentz-Minkowski space. Then,
the Gauss map is of pointwise 1-type if and only if M is an open part of one
of the following spaces: the space-like or time-like helicoid of the 1st, the 2nd
and the 3rd kind, the space-like or time-like conjugate of Enneper’s surface of
the 2nd kind.

This theorem will be useful to prove our theorems in this paper.

3. Main Theorems

In this section we study a ruled surface with non-degenerate second fun-
damental form in a 3-dimensional Lorentz-Minkowski space L3 satisfying the
condition (1.4). It is well known that a cylindrical ruled surface is developable,
i.e., the Gaussian curvature K is identically zero. Therefore, the second funda-
mental form is degenerate. Thus, non-cylindrical ruled surfaces are meaningful
for our study.

Theorem 3.1. Let m, n be natural numbers. A non-cylindrical ruled sur-
face with non-degenerate second fundamental form in a 3-dimensional Lorentz-
Minkowski space satisfying the condition KII = KmHn along each ruling is an
open part of one of the following surfaces:

1. the helicoid of the 1st kind as space-like or time-like surface,
2. the helicoid of the 2nd kind as space-like or time-like surface,
3. the helicoid of the 3rd kind as space-like or time-like surface,
4. the conjugate of Enneper’s surfaces of the 2nd kind as space-like or

time-like surface.

Proof. We consider two cases separately.
Case 1. Let M be a non-cylindrical ruled surface of the three types M1

+,M3
+

or M1
−. Then the parametrization for M is given by

x = x(s, t) = α(s) + tβ(s)

such that 〈β, β〉 = ε1(= ±1), 〈β′, β′〉 = ε2(= ±1) and 〈α′, β′〉 = 0. In this
case α is the striction curve of x, and the parameter is the arc-length on the
(pseudo-)spherical curve β. And we have the natural frame {xs, xt} given by
xs = α′ + tβ′ and xt = β. Then, the first fundamental form of the surface is
given by E = 〈α′, α′〉 + ε2t

2, F = 〈α′, β〉 and G = ε1. For later use, we define
the smooth functions Q, J and D as follows :

Q = 〈α′, β × β′〉 6= 0, J = 〈β′′, β′ × β〉, D =
√
|EG− F 2|.
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In terms of the orthonormal basis {β, β′, β × β′} we obtain

α′ = ε1Fβ − ε1ε2Qβ × β′, β′′ = ε1ε2(−β + Jβ × β′), α′ × β = ε2Qβ′.

On the other hand, one obtains EG − F 2 = −ε2Q
2 + ε1ε2t

2. And, the unit
normal vector N is written as N = 1

D
(ε2Qβ′− tβ×β′). Then, the components

e, f and g of the second fundamental form are expressed as

e =
1

D
(ε1Q(F −QJ)−Q′t + Jt2), f =

Q

D
6= 0, g = 0.

Therefore, using the data described above and (2.2), we obtain

(3.1)

KII =
1

f 4

(
fft(fs − 1

2
et)− f 2(−1

2
ett + fst)

)

=
1

2Q2D3

(
Jt4 + ε1Q(F − 2QJ)t2 + 2ε1Q

2Q′t + Q3(F + QJ)
)
.

Furthermore, the mean curvature H and the Gaussian curvature K are given
respectively by

(3.2)
H =

1

2

Eg − 2Ff + Ge

|EG− F 2|
=

1

2D3

(
ε1Jt2 − ε1Q

′t−Q(F + QJ)
)
,

and

(3.3) K = 〈N, N〉 eg − f 2

EG− F 2
=

Q2

D4
.

Suppose that the ruled surface M satisfies the equation KII = KmHn for some
natural numbers m and n. Then we have by using (3.1), (3.2) and (3.3)

(3.4)
22n−2D8m+6n−6(Jt4 + ε1Q(F − 2QJ)t2 + 2ε1Q

2Q′t + Q3(F + QJ))2

= Q4m+4(ε1Jt2 − ε1Q
′t−Q(F + QJ))2n.

Thus, the coefficient of the highest order t8m+6n+2 of the equation (3.4) is

(−1)4m+3n−322n−2J2 = 0,

which implies J = 0. So, we can rewrite (3.4) in the form

(3.5)
22n−2D8m+6n−6(ε1QFt2 + 2ε1Q

2Q′t + Q3F )2

= Q4m+4(−ε1Q
′t−QF )2n.

In this case, we can show that the coefficient of the highest order t8m+6n−2 of
the equation (3.5) is

(−1)4m+3n−322n−2Q2F 2 = 0.

Since Q 6= 0, we infer that F = 0. Therefore, (3.5) becomes

(3.6) 22nQ4Q′2D8m+6n−6t2 = Q4m+4Q′2n
t2n,
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from which Q′ = 0. Thus, by (3.2) the mean curvature H is identically zero,
that is, the surface M is minimal. Hence the surface is a helicoid of the 1st
kind, the 2nd kind and the 3rd kind according to Theorem 2.1.

Case 2. Let M be a non-cylindrical ruled surface of type M2
+ or M2

−. Then,
the surface M is parametrized by

x(s, t) = α(s) + tβ(s)

such that 〈β, β〉 = 1, 〈α′, β〉 = 0, 〈β′, β′〉 = 0 and 〈α′, α′〉 = ε1(= ±1). We have
put the non-zero smooth functions q and S as follows :

q = ||xs||2 = ε〈xs, xs〉 = ε(ε1 + 2St), S = 〈α′, β′〉,
where ε denotes the sign of xs. We note that β×β′ = β′. Then, the components
of the induced pseudo-Riemannian metric on M are obtained by E = εq, F = 0
and G = 1. For the moving frame {α′, β, α′ × β} we can calculate

(3.7) β′ = ε1S(α′ − α′ × β), α′′ = −Sβ − ε1Rα′ × β,

where R = 〈α′′, α′ × β〉. Furthermore, using (3.7) we have

〈β′′, α′ × β〉 = S ′ + ε1SR, 〈α′, β′′〉 = S ′ + ε1SR.

The unit normal vector N is given by

(3.8) N =
1√
q
(α′ × β − tβ′),

from which the coefficients of the second fundamental form are given by

e =
1√
q
(R + (S ′ + 2ε1SR)t), f =

S√
q
, g = 0.

On the other hand, the second Gaussian curvature KII , the mean curvature
H and the Gaussian curvature K are obtained respectively by

(3.9) KII =
ε1S

′

2Sq
3
2

,

(3.10) H =
1

2q
3
2

((S ′ + 2ε1SR)t + R)

and

(3.11) K =
S2

q2
.

Suppose that the ruled surface M satisfies the equation KII = KmHn for some
natural numbers m and n. Then, from (3.9), (3.10) and (3.11) we obtain

(3.12) 22n−2S ′2q4m+3n−3 = S4m+2((S ′ + 2ε1SR)t + R)2n.

Thus, the coefficient of the highest order t4m+3n−3 of the equation (3.12) is

(−1)4m+3n−324m+5n−5S ′2S4m+3n−3 = 0,
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which implies S ′ = 0. So, (3.12) becomes

S4m+2(2ε1SRt + R)2n = 0.

Thus, R = 0 and by (3.10) the mean curvature H is identically zero. Con-
sequently, the surface is a conjugate of Enneper’s surface of the 2nd kind
according to Theorem 2.1. This completes the proof. ¤

Combining the results of Theorems 3.1, 2.1 and Theorem 4.3 in [10] we have

Theorem 3.2. Let M be a non-cylindrical ruled surface with non-degenerate
second fundamental form in a 3-dimensional Lorentz-Minkowski space. Then,
the following are equivalent :

1. M has pointwise 1-type Gauss map.
2. M satisfies the equation aKII + bH = costant, a, b ∈ R−{0}, 2a− b 6= 0,

along each ruling.
3. M satisfies the equation aH + bK = costant, a 6= 0, b ∈ R along each

ruling.
4. M satisfies the equation KII = KmHn along each ruling, for some natural

numbers m,n.

Finally, we investigate the relations between the second Gaussian curvature,
the Gaussian curvature and the mean curvature of null scrolls M with non-
degenerate second fundamental form in L3.

Let α = α(s) be null curve in L3 and B = B(s) be null vector field along α.
Then, the null scroll M is parametrized by

x = x(s, t) = α(s) + tB(s)

such that 〈α′, α′〉 = 0, 〈B,B〉 = 0 and 〈α′, B〉 = −1. Furthermore, without
loss of generality, we may choose α as a null geodesic of M . We then have
〈α′(s), B′(s)〉 = 0 for all s. By putting, C = α′ × B, then {α′, B, C} is an
orthonormal basis along α in L3. In terms of the basis, we have

α′′ =< α′′, C > C,

B′ = −uC,

C ′ = −uα′+ < α′′, C > B

u being the function defined by u =< B, C ′ >. The induced Lorentz metric
on M is given by E = 〈B′, B′〉t2, F = −1, G = 0 and the unit normal vector
N is obtained by

N = C + tB′ ×B.

Thus, the component functions of the second fundamental form are given by

e = 〈α′′ + tB′′, N〉, f = 〈B′, C〉 = −u, g = 0,

which imply H = u and K = u2.
In the orthonormal basis {α′, B, C}, the vector B′′ can be reconstructed

from
B′′ = u2α′ − 〈α′, B′′〉B + 〈B′′, C〉C,
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from which
ett = 2〈B′′, Nt〉 = 2〈B′′, B′ ×B〉 = 2u3.

Therefore, using (2.2) and the above equation the second Gaussian curvature
KII is given by

KII =
1

2u2
ett = u.

Suppose that the null scroll M satisfies the equation KII = KmHn for some
natural numbers m and n. Then we obtain

u(u2m+n−1 − 1) = 0.

Thus, u is non-zero constant because of u 6= 0. Consequently, we have

Theorem 3.3. Let m,n be natural numbers. B-scrolls over null curves are
the only null scrolls with non-degenerate second fundamental form in a 3-
dimensional Lorentz-Minkowski space satisfying the condition KII = KmHn

along each ruling.
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