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CHARACTERIZATION OF FINITE GROUPS BY THEIR
COMMUTING GRAPH

A. IRANMANESH AND A. JAFARZADEH

Abstract. The commuting graph of a group G, denoted by Γ(G), is a
simple graph whose vertices are all non-central elements of G and two dis-
tinct vertices x, y are adjacent if xy = yx. In [1] it is conjectured that if M
is a simple group and G is a group satisfying Γ(G) ∼= Γ(M), then G ∼= M .
In this paper we prove this conjecture for many simple groups.

1. Introduction

We denote by π(n) the set of all prime divisors of n and if G is a finite group,
then π(G) is defined to be π(|G|).

In this paper we consider simple graphs which are undirected, with no loops
or multiple edges. The following definitions are standard and you can find
them for example in [10].

For any graph Γ, we denote the set of vertices of Γ by V (Γ). The degree
dΓ(v) of a vertex v in Γ, is the number of edges incident to v and if the graph
is understood, then we denote dΓ(v) simply by d(v). A graph is called regular
if the degrees of its vertices are the same. Two distinct vertices in Γ are called
to be adjacent, if they are joined by an edge in Γ. A path P is a sequence of
distinct vertices v0v1 . . . vk such that for all i (0 ≤ i ≤ k − 1), vi and vi+1 are
adjacent vertices. A graph Γ is a connected graph, if there is path between each
distinct pair of its vertices; otherwise Γ is disconnected. A maximal connected
subgraph of a graph Γ is called a component of Γ. The complement G′ of a
simple graph G is a simple graph with the same vertex set as G, two vertices
being adjacent in G′ if and only if they are not adjacent in G.

We construct the commuting graph, the non-commuting graph and the
prime graph of G as follows:

The commuting graph of G, denoted by Γ(G), is a graph whose vertex set is
G\Z(G), and two distinct vertices x and y are adjacent whenever xy = yx and
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the non-commuting graph of a group G, denoted by ∇(G), is the complement
of Γ(G), i.e. the graph with G \ Z(G) as its vertex set and two vertices x and
y are adjacent, if xy 6= yx (see [1, 32]).

Finally, the prime graph of G, denoted by Γ1(G), is a graph whose vertex
set is π(G), and two distinct vertices p and q are adjacent if and only if G
contains an element of order pq (see [30, 34]).

Denote the number of components of the prime graph of a group G with
t(G), and let π1, π2, . . . , πt(G) be the vertex set of the components of Γ1(G)
and T (G) = {πi(G)|i = 1, 2, . . . , t(G)}. If 2 ∈ π(G), then we always suppose
2 ∈ π1. Therefore,

π(G) =

t(G)⋃
i=1

πi.

Now, |G| can be expressed as a product of coprime positive integers mi, i =
1, 2, . . . , t(G) where π(mi) = πi. These integers are called the order compo-
nents of G and the set of order components of G is denoted by OC(G):

OC(G) = {mi|i = 1, 2, . . . , t(G)}.
If |G| is even, then m1 is called the even order component and m2, m3, . . . ,

mt(G) are called the odd order components of G.
In 1996, Chen posed the following question:

Question 1.1. Let M be a finite simple group. If G is a group such that
OC(G) = OC(M), do we have G ∼= M?

Although, the answer to this question is “No” in general, a positive answer
has been given for many groups. A simple group M is said to be characterizable
by its order components, if M ∼= G for each group G such that OC(G) =
OC(M).

Remark 1.2. Suppose M is a finite group. In [1, 32], the authors conjectured
that if G is a finite group such that ∇(M) ∼= ∇(G), then |M | = |G|. For every
group H, ∇(H) and Γ(H) are complement graphs, therefore for the groups H
and K we have ∇(H) ∼= ∇(K) if and only if Γ(H) ∼= Γ(K). Hence the above
conjecture is equivalent to say if G is a finite group such that Γ(M) ∼= Γ(G),
then |M | = |G|. Although, they proved the statement for the groups Sn, An,
D2n, all sporadic simple groups and all simple groups of Lie type with discon-
nected prime graph, recently in [31], the author found some counterexamples
to this conjecture. Here we state his counterexamples briefly:

For a prime p and an integer r > 1, there exists a non-abelian p-group P of
order p2r such that:

(1) |Z(P )| = pr;
(2) P/Z(P ) is an elementary abelian p-group;
(3) for every non-central element x of P , CP (x) = Z(P )〈x〉;
(4) the non-commuting graph of P is regular.
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According to this statement, there exists a 2-group P of order 210 such that
P/Z(P ) is an elementary abelian 2-group of order 25 and ∇(P ) is a regular
graph. Let A be an abelian group such that |A| = a and consider the product
G = P × A. Then ∇(G) is a (25)a(30)-regular graph, i.e., a graph with
d(v) = (25)a(30) for every vertex v of ∇(G) and has (25)a(31) vertices. With
a similar discussion, there exists a 5-group Q of order 56 such that Q/Z(Q) is
an elementary abelian 5-group of order 53 and ∇(Q) is a regular graph and if
B is any abelian group such that |B| = b and H = Q × B, then ∇(H) is a
4b(53)(30)-regular graph with 4b(53)(31) vertices. Now, we must choose A and
B so that a23 = b53. If we do that, both non-commuting graphs ∇(G) and
∇(H) are (25)a(30)-regular graphs with the same number of vertices, and in
fact they are isomorphic. However, the corresponding groups G and H have
different orders.

In [1], the authors put forward another conjecture for the non-commuting
graph of a group G. We rewrite this conjecture for the commuting graph of
groups as follows:

Conjecture 1.3. Let M be a finite simple group. If G is any finite group such
that Γ(M) ∼= Γ(G), then we have M ∼= G.

In this paper, we will find the relation between the commuting graph and
the prime graph of finite groups and then give a positive answer to Conjecture
1.3 for the groups pointed in Remark 1.2, using their characterization by their
prime graph. Note that this conjecture is not true if we suppose M is an
arbitrary finite group. In particular, the dihedral group and quaternion group
of order 8 are not isomorphic while Γ(D8) ∼= Γ(Q8).

We will also prove the following theorem that gives a special characterization
for all finite non-abelian simple groups:

Theorem 1.4. Let G and M be two finite simple non-abelian groups. If
Γ(G) ∼= Γ(M), then G ∼= M .

For a group G, let N(G) = {n |G has a conjugacy class of size n}.
Lemma 1.5. Let G1 and G2 be finite groups satisfying |G1| = |G2| and
N(G1) = N(G2). Then t(G1) = t(G2) and OC(G1) = OC(G2).

This is an immediate consequence of Lemma 1.5 in [9]:

Lemma 1.6. Let G1 and G2 be finite groups satisfying |G1| = |G2| and
N(G1) = N(G2). Then t(G1) = t(G2) and T (G1) = T (G2).

The following basic theorem makes a relation between commuting graph of
groups and their order components:

Theorem 1.7. Let G1 and G2 be finite groups such that |G1| = |G2| and
Γ(G1) ∼= Γ(G2). Then N(G1) = N(G2) and OC(G1) = OC(G2).
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Proof. Set |G1| = |G2| = n. Since Γ(G1) ∼= Γ(G2), we have |G1 \ Z(G1)| =
|G2 \Z(G2)| and therefore |Z(G1)| = |Z(G2)|. Also there exists a bijection ϕ :
V (Γ(G1)) −→ V (Γ(G2)) such that for all vertices a, b ∈ V (Γ(G1)), a and b are
adjacent if and only if ϕ(a) and ϕ(b) are adjacent. Set |Z(G1)| = |Z(G2)| = z
and suppose 1 6= k ∈ N(G1). Thus, there exists an element x ∈ G1 with the
conjugacy class clG1(x) in G1 including x of size k. Therefore, |CG1(x)| = n/k
and thus dΓ(G1)(x) = n/k−z−1. Obviously we have dΓ(G2)(ϕ(x)) = n/k−z−1
and thus |CG2(ϕ(x))| = n/k. Therefore, |clG2(ϕ(x))| = k and thus, k ∈ N(G2).
Hence, we have N(G1) ⊆ N(G2) and with a similar reason we have N(G2) ⊆
N(G1) and therefore the first statement is proved. The second statement
follows immediately from Lemma 1.5. ¤

2. Characterization of some finite groups by their commuting
graph

First, we present the proof of Theorem 1.4:

Proof of Theorem 1.4. Since, Γ(G) ∼= Γ(M), they must have the same number
of vertices, so |G\Z(G)| = |M\Z(M)|. On the other hand, |Z(G)| = |Z(M)| =
1, therefore |G| = |M |. Now, it is known that the only pairs of simple groups
of the same order are

(A8, PSL(3, 4)) and (O(2n + 1, q) = Bn(q), PSp(2n, q) = Cn(q)),

where n ≥ 3 and q is odd (see [29] and [33]). Thus, if G �M , then G ∼= A8 and
M ∼= PSL(3, 4) or G ∼= Bn(q) and M ∼= Cn(q). For the first case, the element
a = (1 2)(3 4) ∈ A8 is included in a conjugacy class of length 210 and since
|A8| = 20160, we have dΓ(A8)(a) = |CA8(a)| − 2 = 94, while N(PSL(3, 4)) =
{1, 315, 1260, 2240, 2880, 4032} and thus 94 6∈ {dΓ(PSL(3,4))(x)|x ∈ PSL(3, 4) \
{1}}. Therefore, we have Γ(A8) � Γ(PSL(3, 4)), because they have different
degrees. For the second case, it has been proved that N(Bn(q)) 6= N(Cn(q))
(see [3]). Therefore, Γ(Bn(q)) and Γ(Cn(q)) have different sets of degrees and
hence Γ(Bn(q)) � Γ(Cn(q)). Therefore, we must have G ∼= M . ¤

Now, we characterize some groups by their commuting graph:

Corollary 2.1. Let M = PSL(p, q), where p is a prime number and q is a
prime power. If G is any group such that Γ(M) ∼= Γ(G), then M ∼= G.

Proof. Using Remark 1.2 and since t(M) ≥ 2, we get |M | = |G|. Then by
Theorem 1.7, we have OC(M) = OC(G). Finally, by [4, 11, 12, 22, 23] we get
the result. ¤

Corollary 2.2. Let M = PSU(p, q) where p is an odd prime and q is a prime
power. If G is any group such that Γ(M) ∼= Γ(G), then M ∼= G.

Proof. Similar to the proof of Corollary 2.1 and since t(M) ≥ 2, we have
OC(M) = OC(G). Thus, by [13, 18, 19, 20, 28], we get the result. ¤
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Now, we prove that the groups Bn(q) and Cn(q) where n = 2m ≥ 2, are
characterized by their commuting graphs, although we know that they cannot
be characterized by their order components (see [24]):

Corollary 2.3. Let M be a simple group of type Bn(q) or Cn(q) where n =
2m ≥ 4 or n = 2 and q > 5. If G is any group such that Γ(M) ∼= Γ(G), then
M ∼= G.

Proof. Suppose M ∼= Bn(q) where n = 2m ≥ 4 or n = 2 and q > 5 and suppose
Γ(M) ∼= Γ(G). Similar to the proof of Corollary 2.1 and since t(M) = 2, we
have OC(M) = OC(G). Thus, by [24], if q is even, then G ∼= M , and if q is
odd, then we have G ∼= M or G ∼= Cn(q). But, if q is odd and G ∼= Cn(q),
then Γ(Cn(q)) ∼= Γ(G) ∼= Γ(Bn(q)) and this is a contradiction by Theorem 1.4.
Thus, G ∼= M . The proof for the case M ∼= Cn(q) is the same. ¤
Corollary 2.4. Let M be a simple group of one of the following types:

(a): E6(q) or E8(q);
(b): F4(q) where q > 2;
(c): 2Dn(q) where n = 2m ≥ 4;
(d): 2Dp(3) where p = 2n + 1 ≥ 5;
(e): 2E6(q) where q > 2;
(f): 3D4(q);
(g): A Suzuki–Ree group, i.e. a group of type 2B2(q),

2F4(q) or 2G2(q);
(h): A sporadic simple group.

If G is any group such that Γ(M) ∼= Γ(G), then M ∼= G.

Proof. Similar to the proof of Corollary 2.1 and since t(M) ≥ 2, we have
OC(M) = OC(G). Thus, by [2, 26, 16, 17, 25, 14, 27, 7, 21, 6, 5], we get the
result. ¤

Professor J. G. Thompson has conjectured that:

Conjecture 2.5. If G is a finite group with Z(G) = 1 and M a finite non-abelian
simple group such that N(G) = N(M), then M ∼= G.

Lemma 2.6. Suppose M is a finite non-abelian simple group with t(M) ≥ 2
which satisfies Thompson’s Conjecture. If G is a group such that Γ(M) ∼=
Γ(G), then M ∼= G.

Proof. Since Γ(M) ∼= Γ(G), we have |M \Z(M)| = |G \Z(G)| and Z(M) = 1.
On the other hand, |M | = |G| by Remark 1.2. Hence, Z(G) = 1 and by
Theorem 1.7 we have N(G) = N(M). Therefore, M ∼= G. ¤

Therefore we have proved the following corollary:

Corollary 2.7. Let M be a simple group of type G2(q) where q > 2. If G is
any group such that Γ(M) ∼= Γ(G), then M ∼= G.

Proof. By [8], M satisfies Thompson’s Conjecture. Now, the result follows
from Lemma 2.6. ¤
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