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24 (2008), 83–92
www.emis.de/journals
ISSN 1786-0091

SOME RIGIDITY THEOREMS FOR FINSLER MANIFOLDS

CHANG-WAN KIM

Abstract. This is a survey article on global rigidity theorems for complete
Finsler manifolds without boundary.

Introduction

Finsler geometry is actually the geometry of a simple integral and hence is
differentiable metric geometry. Since the notion of Finsler manifolds is a gen-
eralization of Riemannian manifolds, it seems natural to consider the problem:
How to distinguish Finsler manifolds from Riemannian manifolds? In this paper
we will obtain some global rigidity properties in Finsler geometry.

A Finsler manifold M is locally symmetric if, for any p ∈ M , the geodesic
reflection sp is a local isometry of the Finsler metric, and called the geodesic
symmetry relative to the point p. It is obvious that such sp induces − id on
the tangent space TpM , therefore, complete locally symmetric Finsler manifolds
have reversible metrics. Let us just mention that Busemann and Phadke proved
(without differentiability assumptions) that, on the universal cover, the geodesic
reflections extend to global isometries. Egloff [7] proves that Hilbert surfaces are
symmetric if and only if they are Riemannian, hence hyperbolic. For surfaces
the situation is completely resolves, whereas the higher dimensional case remains
open. Due to recent result of Foulon [8], there are no compact example of genuine
Finsler manifolds with parallel negative definite Jacobi endomorphism. The
author [10] showed that any compact symmetric Finsler metrics with positive
flag curvature must be Riemannian. In [6] Deng and Hou have independently
proved the more general result (Corollary 8.4) in essentially the different manner.

In [21] Wang is proved that if a Finsler manifold M of n(> 4)-dimension
admits group of isometries of dimension greater than n(n−1)/2+1 then M is a
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Riemannian manifold with constant sectional curvature. Under some additional
topological conditions, we also have the rigidity result in the equality cases of
the theorem of Wang.

Theorem A. Let M be an n(6= 4)-dimensional simply connected compact Finsler
manifold and the dimension of isometry group of M is greater than or equal to
n(n − 1)/2 + 1. Then M is a Riemannian manifold with positive constant sec-
tional curvature.

A connected locally compact metric space (M, dist) is called two-point homo-
geneous if the group G of isometries of M is transitive on equidistant pairs of
points. This mean that whenever xi, yi ∈M, i = 1, 2, with distance dist(x1, y1) =
dist(x2, y2), there is an isometry g ∈ G such that g(x1) = x2 and g(y1) = y2.
The special case xi = yi then proves M homogeneous; in particular M is com-
plete. Two-point homogeneous Riemannian spaces have all been determined,
all compact and the odd-dimensional non-compact spaces by Wang ([22]), the
even-dimensional non-compact spaces by Tits([20]). Tits and Wang gave a clas-
sification of these spaces: It turns out, just from this list, that these spaces were
symmetric. The following theorem gives a non-Riemannian Finsler manifold
occupy too much symmetry.

Theorem B. The two-point homogeneous Finsler spaces are Riemannian.

The Finsler metric on M can be lifted to the Sasaki metric on unit tangent
space SM in a natural way and define the Laplacian ∆ of a scalar function ϕ
on SM by

∆ϕ = ∆ϕ+ ∆̇ϕ, ∆ϕ := −gijDiDjϕ, ∆̇ϕ := −F 2gij∂i∂jϕ,

whereDi denotes the horizontal covariant differentiation in the connection and ∂i

denotes the ordinary vertical partial differentiation. We call ∆ is the horizontal
Laplacian and ∆̇ the vertical Laplacian. In [1], Akbar-Zadeh have proved that on
an n-dimensional Finsler manifold with Ricci curvature bounded blew by (n−1)
and vanishing vertical Laplacian, the first nonzero eigenvalue of the Laplacian
of SM is greater than or equal to n = dimM . We have the rigidity result in the
equality cases.

Theorem C. Let (M,F ) be an n-dimensional reversible Finsler manifold with
Ricci curvature bounded blew by (n − 1) and vanishing vertical Laplacian. If
the first nonzero eigenvalue of the Laplacian of SM is equal to n = λ1(Sn),
then M is isometric to the standard Riemannian sphere Sn of constant sectional
curvature one.

The author is indebted to László Kozma and Lajos Tamássy for many valu-
able discussions and comments in the preparation of this paper while visiting
Balatonföldvár, Hungary in May 28 – June 2, 2007. The author also would like
to thank the referee for useful comments and remarks.
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1. Preliminaries

In this section, we shall recall some well-known facts about Finsler geometry.
See [1, 2, 11], for more details. Let M be an n-dimensional smooth manifold
without boundary and TM denote its tangent bundle. A Finsler structure on a
manifold M is a map F : TM → [0,∞) which has the following properties:

• F is smooth on T̃M := TM \ {0};
• F (tv) = tF (v), for all t > 0, v ∈ TxM ;
• F 2 is strongly convex, i.e.,

gij(x, y) :=
1
2
∂2F 2

∂yi∂yj
(x, y)

is positive definite for all (x, y) ∈ T̃M .
A Finsler structure F is called reversible if F (−v) = F (v) for all v ∈ TxM .

A Minkowski space is a finite dimensional real vector space V that has a Finsler
metric independent of x, F (x, y) = F (y). Let Fx denote the restriction of F onto
TxM . When F is Riemannian, (TxM,Fx) are all isometric to the Euclidean space
Rn. For a general Finsler metric F , however, the Minkowski space (TxM,Fx)
may not be isometric to each other.

The Finsler structure F induces a distance dF on M ×M by

dF (p, q) := inf
γ

∫ 1

0

F (γ̇(t))dt,

where the infimum is taken over all Lipschitz continuous curves γ : [0, 1] → M
with γ(0) = p and γ(1) = q. It is easy to verify that for all p, q, r ∈M

dF (p, r) ≤ dF (p, q) + dF (q, r).

At any point x ∈M , there are an open neighborhood U of x, a constant C ≥ 1
and a diffeomorphism ψ : U → B ⊂ Rn such that

|u− v|Rn/C ≤ dF (ψ−1(u), ψ−1(v)) ≤ C · |u− v|Rn , u, v ∈ B.
Thus dF (p, q) = 0 if and only if p = q. We conclude that (M,dF ) is a metric
space and the Finsler manifold topology coincides with metric topology. A
diffeomorphism is an isometry on a Finsler manifoldM if it preserves this metric.
By the classical van Dantzing and van der Waerden Theorem and Montgomery-
Zippin Theorem, the group of isometries on a Finsler manifold form a Lie group
(see [12, Chapter 1, Theorem 4.6]).

In Euclidean geometry the group of isometries plays a fundamental role and
intervenes in the introduction of notions as well as in powerful techniques such as
the method of moving frames. In Minkowski geometry the group of rigid motions
plays a modest role, nevertheless it is important to understand this role and to
study the ways in which different Minkowski spaces can be distinguished. The
first easy remark on the group of isometries of a Minkowski space is that contains
all affine transformation. A more detailed study of the group of isometries is
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possible thanks to a beautiful theorem due to Loewner and Berhrend. For the
sake of completeness we sketch the proof.

Theorem 1.1. For a unit disk D on a Minkowski space, there is just one Eu-
clidean ball of minimal volume contains D.

Proof. It is clear that there exists at least a Euclidean ball of minimal volume
contains D. If B1, B2 is two such Euclidean balls we must show they coincide
by contradiction. They key idea is to define the Euclidean ball

B3 :=
1
2

(B1 + B2) ,

to notice that if v ∈ ∂D, then v ∈ Bc
3 and the volume of B3 is strictly smaller

that of B1 and B2 unless these two Euclidean balls are coincide. ¤

The Chern connection on a Finsler manifold M is defined by the unique set
of local 1-forms {ω i

j }1≤i,j≤n on T̃M such that

dωi = ωj ∧ ω i
j ,

dgij = gkjω
k

i + gikω
k

j + 2Aijkω
k

n , where Aijk =
∂gij

∂yk
.

Define the set of local curvature forms Ω i
j by

Ω i
j := dω i

j − ω k
j ∧ ω i

k .

Then one can write

Ω i
j =

1
2
R i

j kl ω
k ∧ ωl + P i

j kl ω
k ∧ ωn+l.

Define the curvature tensor R by R(U, V )W = ukvlwjR i
j klEi, where U =

uiEi, V = viEi,W = wiEi are vectors in the pull-back bundle π∗TM of TM by
π : T̃M →M . For a fixed v ∈ TxM let γv be the geodesic from x with γ̇v(0) = v.
Along γv, we have the osculating Riemannian metrics gγ̇v(t) := g

(
γv(t), γ̇v(t)

)

in Tγv(t)M . Define the flag curvature Rγ̇v(t)
(
u(t)

)
: Tγv(t)M → Tγv(t)M by

Rγ̇v(t)
(
u(t)

)
:= R

(
U(t), V (t)

)
V (t),

where U(t) = (γ̂v(t);u(t)), V (t) = (γ̂v(t); γv(t)) ∈ π∗TM . The flag curvature is
independent of connections, that is, the term appears in the second variation
of arc length, thus is of particular interest to us. We remark that if F is Rie-
mannian, then the flag curvature coincides with the sectional curvature. Then
the Ricci curvature is defined by

Ric(v) :=
n∑

i=1

gv
(
Rv(ei), ei)

)
, v ∈ TxM,

where {ei}n
i=1 is a gv-orthonormal basis for TxM .
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Let { ∂
∂xi }n

i=1 be a local basis for TM and {dxi}n
i=1 be its dual basis for T ∗M .

Put SxM := {y ∈ TxM : F (x, y) = 1}. Let α(n − 1) be the volume of the unit
(n− 1)-sphere Sn−1 in Rn. The volume form dv on M is defined by

dv(x) :=
α(n− 1)
vol(SxM)

dx1 ∧ · · · ∧ dxn := σ(x) dx,

where vol(A) denotes the volume of a subset A with respect to the standard
Euclidean structure on Rn. Busemann proved that for any bounded open subset
U ⊂ M , volF (U) :=

∫
U
dv(x) = HdF

(U), where HdF
(U) denotes the Hausdorff

measure of U for the metric dF on M .
For a tangent vector v = (x, y) ∈ T̃M , define the mean distortion ρ by

ρ(v) :=
σ(x)√
det(gv

ij)
=

α(n− 1)
vol(SxM)

· 1√
det(gv

ij)
=

α(n− 1)
volgv (SxM)

,

and the mean tangent curvature S : T̃M → R is defined by

S(v) :=
d

dt

∣∣∣∣
t=0

{
ln ρ

(
γ̇v(t)

)}
.

The mean tangent curvature measures the rate of changes of Minkowski tangent
spaces over a Finsler manifold. An important property is that S = 0 for Finsler
manifolds modeled on a single Minkowski space. In particular, S = 0 for Berwald
spaces. Locally Minkowski spaces and Riemannian spaces are all Berwald spaces.

2. Proof of Theorem A

In view of [21], it is natural to ask which Finsler manifold of dimension n
admits a group of isometries of dimension n(n − 1)/2 + 1. In the Riemannian
cases, Kuiper [13] and Obata [14] has classified all such groups together with their
actions, and in the non-Riemannian Finsler cases, Szabó [18] also determines.
A local version of Szabó result is essentially due to Tashiro [19, Theorem 6.3]
although he excluded the case n = 4 from consideration.

Theorem 2.1. Let M be an n (6= 4)-dimensional simply connected compact
Finsler manifold and the dimension of isometry group of M is greater than or
equal to n(n−1)/2+1. Then M is a Riemannian manifold with positive constant
sectional curvature.

Proof. First let us consider n = 2 and the dimension of isometry group is equal
to two. Then M is diffeomorphic to two-dimensional sphere S2 and the isometry
group is compact and hence torus S1 × S1. Since no S1 × S1 actions on S2, the
isometry group is three-dimensional, and hence M is a Riemannian manifold
with positive constant sectional curvature.

In the three-dimensional case, four-dimensional group of isometries acts on
a three-dimensional Finsler manifold, this action is transitive. Thus M has
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an osculating Riemannian metric g∗ and satisfies that the isometry group of
Finsler manifold (M,F ) is a closed subgroup of isometry group of the osculating
Riemannian manifold (M, g∗). So if the isometry group is four-dimensional, then
by the theorem of Obata [14], the Riemannian manifold (M, g∗) must be one of
the following:

• R×Σ2 and S1×Σ2, where Σ2 is the two-dimensional Riemannian man-
ifold with constant curvature.

• H3 is the hyperbolic space.
Since the above all spaces are not compact simply connected, the dimension of
isometry group is larger that four. Because neither can a M admit a group of
isometries of dimension five, we have proved.

In the n > 4 cases, with a standard argument we can assume that the di-
mension of isometry group is n(n− 1)/2 + 1 or n(n+ 1)/2. In the last cases by
Wang’s argument [21] we have proved and in the other cases, the lists of classifi-
cation of Kuiper [13], Obata [14] and Szabó [18] are not contained the compact
simply connected manifold. Thus the group of isometries of M is n(n + 1)/2-
dimensional. ¤

Remark 2.2. In the simply connected four-dimensional cases, Oh [16] proved that
if M supports an effective action of a compact Lie group G, then G is one of the
groups SO(5), SU(3)/Z3, SO(3) × SO(3), SO(4), SO(3) × S1, (SU(2) × S1)/D,
SU(2), SO(3), S1 × S1, S1. By the restriction to the dimension of isometry
group, the group G is either SO(5) or SU(3)/Z3. If G = SO(5), then the Finsler
metric on M is the canonical Riemannian metric on four-dimensional sphere
with positive constant sectional curvature. In the case G = SU(3)/Z3, Oh [16]
also proved that M is diffeomorphic to a two-dimensional complex projective
space.

3. Proof of Theorem B

In this section we prove Theorem B. Let G be a group of isometries of M and
for x ∈M , Gx := {g ∈ G : g(x) = x} is the isotropy group of G at x. Then Gx

acts on the tangent space TxM and preserves the unit tangent sphere SxM at
x. M is called isotropic at x if Gx is transitive on the SxM at x; it isotropic if it
is isotropic at every point. The notion of transitive is easier to use than that of
two-point homogeneity because it is formulated in group theoretic terms. But
the two concepts are equivalent:

Proposition 3.1. The Finsler manifold M is two-point homogeneous if and
only if M is isotropic.

Proof. Let M be two-point homogeneous, r be the radius of a normal coordinate
neighborhood

U = expx({v ∈ TxM : F (v) < r})



SOME RIGIDITY THEOREMS FOR FINSLER MANIFOLDS 89

of x, and y, z ∈ U be at a distance r/2 from x. Then there exist g ∈ G with
g(x) = x, g(y) = z. There are v, w ∈ r

2SxM with expx(v) = y, expx(w) = z, so
dg(v) = w. Thus Gx is transitive on r

2SxM , hence on SxM .
Let M be isotropic, and xi, yi ∈ M with dF (x1, y1) = dF (x2, y2). By homo-

geneity, we have g ∈ G with g(x2) = x1. Let expx1
(tv) be the minimal geodesic,

with arc-length parameterization, from x1 to y1 and expx1
(tw) from x1 to g(y2).

Then we obtain
F (v) = dF (x1, y1) = dF (x2, y2)

= dF

(
g(x2), g(y2)

)
= dF

(
x1, g(y2)

)
= F (w).

This yield h ∈ Gx1 with dh(w) = v. Now hg sends x2 to hg(x2) = h(x1) = x1

and sends y2 to

hg(y2) = h expx1
(w) = exphx1

(
dh(w)

)
= expx1

(v) = y1.

This proves that M is two-point homogeneous. ¤

Remark 3.2. The Banach-Mazur rotation problem asks whether a separable
isotropic Banach space is isometrically isomorphic to a Hilbert space. As well as
we know, that question remains open to date. As we have just commented, the
answer is negative if the assumption of separability is removed (see [3]). On the
other hand, it is worth to mention that problem has an affirmative answer if the
assumption of separable Banach spaces is strengthened to Minkowski spaces.

Now we are ready to prove Theorem B.

Theorem 3.3. The two-point homogeneous (but not necessary reversible) Finsler
spaces are Riemannian.

Proof. We will assert that for all x ∈ M , the Minkowski space (TxM,Fx) is
Euclidean. Let B be the Euclidean ball of minimal volume which contains the
unit tangent disk DxM on (TxM,Fx). Since the volume of B is minimal, the
boundary ∂B of the Euclidean ball B contains at least one point v of SxM .
For a given point w of SxM , by hypothesis and Proposition 3.1 there is affinity
g ∈ Gx, g(v) = w, which maps SxM on itself; it leaves volumes unchanged,
hence it maps B on a Euclidean ball of the same volume which contains DxM .
By Theorem 1.1 it must coincide with B. Since g ∈ Gx maps B on itself with
g(v) = w, we obtains that the point w lies on ∂B, hence SxM = ∂B. ¤

4. Proof of Theorem C

Throughout this section M is a compact Finsler manifold without boundary.
Before proving Theorem C, we need a simple but frequently useful theorem.

Theorem 4.1 ([9]). Any reversible Finsler metrics with positive constant flag
curvature must be Riemannian.
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In [1] Akbar-Zadeh improved Obata’s theorem [15] to Finsler cases. For a
Finsler manifold M with Ricci curvature bounded blew by (n−1) and vanishing
vertical Laplacian, the first nonzero eigenvalue λ1 of the Laplacian of SM is
equal to n = dimM if and only if M has constant flag curvature one. Thus by
Theorem 4.1, we have:

Theorem 4.2. Let (M,F ) be an n-dimensional reversible Finsler manifold with
Ricci curvature bounded blew by (n− 1) and vanishing vertical Laplacian. If the
first nonzero eigenvalue λ1 is equal to n = dimM , then M is isometric to the
unit Riemannian sphere Sn.

In order to prove Cheng’s maximal diameter theorem on Riemannian manifold
M , Cheng [4] obtained an upper bound on the first eigenvalue of Laplacian
operator on M and showed that the equality holds if and only if M is isometric
to the standard Riemannian sphere Sn of constant sectional curvature one. Shen
[17] also obtained an upper bound the first eigenvalue of Laplacian operator on
Finsler manifolds with Ricci curvature bounded below. However in his argument
the equality does not guarantee the rigidity property on Finsler manifolds with
vanishing mean tangent curvature. Thus in order to extend Cheng’s maximal
diameter theorem to Finsler manifolds, the author and Yim [11] have adopted a
well-known technique in Riemannian geometry and we have the following result;

Theorem 4.3 ([11, Corollary 1]). Let (M,F ) be an n-dimensional reversible
Finsler manifold with Ricci curvature bounded blew by (n−1) and mean tangent
curvature S = 0. If the diameter of M is equal to π, then M is isometric to the
unit Riemannian sphere Sn.

Recall that for an n-dimensional Riemannian manifold M whose Ricci curva-
ture ≥ n− 1, Obata ([15]) showed that the first nonzero eigenvalue λ1 can only
be n if M is the unit Riemannian sphere Sn. Cheng ([4]) have proved that if the
diameter of M is close to π, then λ1 is close to n. Coupling this with Obata’s
result shows that the diameter of M is equal to π implies λ1 = n, and therefore
M is the unit sphere. Croke ([5]) showed a converse to Cheng’s result, namely,
that if λ1 is close to n, then the diameter of M is close to π.

In Finsler geometry, the first nonzero eigenvalue of Laplacian on M(SM ,
resp.) has a close relationship with Ricci curvature and mean tangent curvature
(vertical Laplacian, resp.) but the relation between the vertical Laplacian and
the mean tangent curvature is not understood.

Problem 4.4. Is it true that the vertical Laplacian is vanishing if and only if the
mean tangent curvature is zero?

The answer to question is known to be affirmative if Finsler manifolds are
Berwald.
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