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COHOMOLOGY OF DEFORMATION PARAMETERS OF
DIAGONAL NONCOMMUTATIVE NONASSOCIATIVE

GRADED ALGEBRAS

LUIS ALBERTO WILLS-TORO, THOMAS CRAVEN, AND JUAN DIEGO VÉLEZ

Abstract. We study graded algebras with no monomial in the generators
having zero divisors and graded over a finite abelian group. As a vector
space over the field, the algebra is generated by a set of algebra elements
with as many elements as the grading group, and each generator is graded
by a different element of the grading group. Their noncommutativity and
nonassociativity turns out to be diagonal and governed by structure con-
stants of any (pure grade) generating basis as a vector space over the field.
There are functions q and r coding the noncommutativity and nonassocia-
tivity of the algebra. We study the cohomology of such q- and r-functions.
We discover that the r-function coding nonassociativity has always trivial
cohomology. Quaternions and octonions are constructed in this manner
and we study their noncommutativity and nonassociativity using cohomo-
logical tools.

1. Introduction

Let G be a finite abelian group. Let A be a G-graded algebra, which as a
vector space over the commutative field K can be generated by a set {va|a ∈
G}. We assume that there are no zero divisors (neither torsion since K is
a field) at the level of monomials in the basis elements. We call an algebra
(not necessarily associative) with these characteristics a finite perfect algebra [5].
This is the subject of the present paper. We explore very immediate properties
of such algebras. In particular, we characterize the structures underlying the
noncommutativity and nonassociativity by using group cohomological tools. We
analyze concretely the quaternion and octonion algebras.
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2. Finite Perfect Algebras

From the definition of a finite perfect algebra it follows that the structure
constants Ca,b ∈ K associated with the basis {va|a ∈ G},
(1) va · vb = Ca,b va+b,

are all non-zero, i.e.

(2) C : G×G → K∗, (a, b) 7→ Ca,b 6= 0.

We want to analyze the noncommutativity and nonassociativity in this type
of algebra. We define

qa,b = Ca,b (Cb,a)−1(3)

ra,b,c = Cb,c (Ca+b,c)−1 Ca,b+c (Ca,b)−1.(4)

(the exponents −1 denote the inverses as elements of K). Accordingly,

va · vb = qa,b vb · va,(5)
va · (vb · vc) = ra,b,c (va · vb) · vc.(6)

The q- and r-factors encode a very particular type of noncommutativity and
nonassociativity, called diagonal noncommutativity and diagonal nonassociativ-
ity since they involve respectively just the exchange of factors or the alteration
of parentheses. We want to explore the properties of the C, q and r functions:

q : G×G → K∗, (a, b) 7→ qa,b 6= 0,(7)
r : G×G×G → K∗, (a, b, c) 7→ ra,b,c 6= 0.(8)

We consider first a quadratic monomial in the generators (each q-factor results
from exchanging factors)

(9) va · vb = qa,b vb · va = qa,b qb,a va · vb.

Since there are no zero divisors at the level of monomials, we conclude:

(for b = a) qa,a = 1,(10)
(for b 6= a) qa,b qb,a = 1.(11)

We consider now a cubic product of the generators:

va · (vb · vc) = qa,b+c (vb · vc) · va,(12)

va · (vb · vc) = ra,b,c qa,b (rb,a,c)−1 qa,c rb,c,a (vb · vc) · va,(13)
va · (vb · vc) = ra,b,c qa+b,c qa,b rc,b,a qc,b (vb · vc) · va,(14)

where we have done the rearrangements in three different manners by exchanging
factors (getting extra q-factors) or rearranging parentheses (getting extra r-
factors) in the order they appear. In order to have no zero divisors at the level
of monomials we obtain
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qb,c q−1
a+b,c qa,b+c q−1

a,b = ra,b,c rc,b,a(15)

= qa,c qb,c q−1
a+b,c ra,b,c(rb,a,c)

−1 rb,c,a.(16)

Following Scheunert [3], we call q a commutation factor on an abelian group
G if following conditions are satisfied:

q(a, b)q(b, a) = 1,(17)
q(a, b + c) = q(a, b)q(a, c),(18)
q(a + b, c) = q(a, c)q(b, c).(19)

We could also call such “commutation factor” a separated q–function (in
analogy to the separation of variables method), since all identities obtained
from monomials with the exception of (10)–which is not enforced by these
requirements– are satisfied separately by identities in q-factors alone, or in r-
factors alone.

Observe that if q is a “commutation factor” or a “separated” q-function then
equations (15) and (16) become (“separated”):

1 = ra,b,c rc,b,a,(20)
1 = ra,b,c rc,a,b rb,c,a.(21)

The last identity relates to Jacobi identities and provides a generous source of
models for such r-factors [8].

We could consider now a weaker condition than “commutation factor” or
“separated” q-function. We call q a 2-cocycle if

(22) qb,c q−1
a+b,c qa,b+c q−1

a,b = 1

This name will be clear bellow. Using equations (18-19) we verify that every
“commutation factor” or a “separated” q-function is a 2-cocycle. Now, if q is a
2-cocycle, then equations (15) and (16) become:

1 = ra,b,c rc,b,a,(23)

1 = (qa,c qb,c q−1
a+b,c) (ra,b,c rc,a,b rb,c,a).(24)

Scheurnert [3] shows that a general “commutation factor” or “separated”
q-function (i.e. satisfying (17-19)) over the reals or complex numbers can be
generated by factors of the form

q2(a, b) = (−1)ab, for a, b ∈ {0, 1} = Z2 (Supergrading),(25)

q
N⊕N

((n,m), (n′,m′)) = exp
{

2πi
N

(nm′ − n′m)
}

,(26)

for N ≥ 2, (n,m), (n′,m′) ∈ ZN ⊕ ZN .

and replications of such factors, where G being finite abelian, it can be decom-
posed:

(27) G = ZN1

⊕
· · ·

⊕
ZNs .
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Observe that the function q2 in (25) does not satisfy (10), and leads to zero
divisors. This is actually the main feature in exterior or Grassmann algebras,
having nilpotent Grassmann variables. Only functions in (26) and their repli-
cations (involving diverse ZN factors in G) provide models for “commutation
factors” or “separated” q-functions in finite perfect algebras.

We now consider a constraint from monomials in the generators of order four:

(va · vb) · (vc · vd) = ra+b,c,d ((va · vb) · vc) · vd,(28)

(va · vb) · (vc · vd) = (ra,b,c+d)−1 rb,c,d ra,b+c,d ra,b,c ((va · vb) · vc) · vd.(29)

Again, to avoid zero divisors at the level of monomials we obtain:

(30) rb,c,d (ra+b,c,d)−1 ra,b+c,d (ra,b,c+d)−1 ra,b,c = 1.

This identity bears clear similarity with the pentagon identity (and in general
with the associahedra) satisfied by the associator [4], and it is remarkable since,
much like (9-10) which involve only q-factors, this involves only r-factors (rear-
rangements of parentheses). We call an r-factor satisfying (31) a 3-cocycle.

Let f be a function

(31) f : G× · · · ×G → K∗.

We can use an inclusion map L from image(f) into the abelian group G′ gener-
ated by image(f), which can be finite, and it is clearly a subgroup of the abelian
multiplicative group K∗,

(32) L : image(f) → G′ = gen(image(f)) ⊂ K∗.

In the case of K∗ = C∗ (the non-zero complex numbers), the additive notation
in G′ can be obtained by using a logarithm mod 2πi. We can use the map L to
convert f into a function f̂ between abelian groups (with additive operation),
where we can consider cohomological properties of such maps:

(33) f̂ = L ◦ f : G× · · · ×G → G′.

In this way we define functions Ĉ, q̂, and r̂. The coboundary of the function
q̂ is given by [1, 2]:

(34) (δ(2)q̂)[a, b, c] = a q̂(b, c)− q̂(a + b, c) + q̂(a, b + c)− q̂(a, b).

Now, let q be a 2-cocycle. Equation (22) in terms of q̂ becomes

(35) q̂(b, c)− q̂(a + b, c) + q̂(a, b + c)− q̂(a, b) = 0.

Hence, by assuming the trivial action of G on G′ (in the term a q̂(b, c) in (34)),
q̂ has vanishing coboundary, and thus we understand why q was labelled a 2-
cocycle. The question arises whether the function in equation (26) which gives
the possible building elements for the “commutation factor” in a finite perfect
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algebra has trivial cohomology, i.e. we ask if q itself is a 1-coboundary. We
obtain first q̂

N⊕N
:

(36) q
N⊕N

((n,m), (n′,m′)) = exp
{

2πi
N

q̂
N⊕N

((n, m), (n′,m′))
}

,

q̂
N⊕N

: (ZN ⊕ ZN )2 → ZN ,

q̂
N⊕N

((n,m), (n′,m′)) = (nm′ − n′m)mod N.
(37)

Let us assume that q̂N⊕N is a 1-coboundary, i.e. there exists a homomorphism

(38) φ̂ : ZN ⊕ ZN → ZN

such that the function q̂ can be written:

(39) q̂
N⊕N

(a, b) = (δ(1)φ̂)[a, b] = a φ̂(b)−φ̂(a+b)+φ̂(a) = φ̂(b)−φ̂(a+b)+φ̂(a).

Again, the action of the group ZN ⊕ ZN on ZN is trivial. Using q̂
N⊕N

(a, 0) =
q̂N⊕N (0, a) = 0 we confirm φ̂(0) = 0 (as it should since it is homomorphism).
From q̂

N⊕N
(a, a) = 0 we find φ̂(2a) = 2φ̂(a). Continuing the process, from

q̂
N⊕N

(a, (n − 1)a) = 0 we find φ̂(na) = nφ̂(a). Let φ̂((1, 0)) = k1 and and
φ̂((0, 1)) = k2. Now,

q̂
N⊕N

((n, 0), (0,m)) = nm

= φ̂((0,m))− φ̂((n,m)) + φ̂((n, 0))

= mk2 − φ̂((n,m)) + nk1,

(40)

q̂N⊕N ((0,m), (n, 0)) = −nm

= φ̂((n, 0))− φ̂((n,m)) + φ̂((0,m))

= nk1 − φ̂((n, m)) + mk2.

(41)

From this it follows 2nm = 0 mod N . This is a contradiction for N > 2. For
N=2 we obtain in this case that q̂2⊕2 is the 1-coboundary of:

(42) φ̂((n,m)) = nk1 − nm + mk2,

where k1, k2 ∈ ZN are arbitrary. Hence, for N > 2 the cohomology class associ-
ated with q̂

N⊕N
is not trivial [6], but for N=2 it has trivial cohomology. We just

have proved:

Proposition 1.

q
N⊕N

: (ZN ⊕ ZN )2 → C∗,

q
N⊕N

((n,m), (n′,m′)) = exp
{

2πi
N

(nm′ − n′m)
}

.
(43)

is a 2-cocycle. For N > 2 it has nontrivial cohomology (i.e. it is not a 1-
coboundary). For N = 2, q̂2⊕2 is the 1-coboundary of the homomorphism in
equation (42) for arbitrary k1, k2 ∈ Z2.
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The quaternion algebra H is a Z2⊕Z2–graded finite perfect algebra [5], where

(44) qH((n,m), (n′,m′)) = exp{πi(nm′ − n′m)},
rH((n,m), (n′,m′), (n′′, m′′)) = 1

∀ (n,m), (n′,m′), (n′′,m′′) ∈ Z2 ⊗ Z2.
(45)

Hence, its q-function has trivial cohomology, and clearly its r-function has trivial
cohomology as well.

The octonion algebra O is a Z2 ⊕ Z2 ⊕ Z2–graded finite perfect algebra [5]
where

(46) qO((n,m, s), (n′,m′, s′))

= eπi{(nm′−n′m)+(ns′−n′s)+(ms′−m′s)+n′ms−nm′s′+nm′s−n′ms′+nms′−n′m′s},

(47) rO((n, m, s), (n′, m′, s′), (n′′,m′′, s′′))

= e−πi{nm′s′′+nm′′s′+n′ms′′+n′m′′s+n′′ms′+n′′m′s},

∀(n,m, s), (n′,m′, s′), (n′′,m′′, s′′) ∈ Z2 ⊕ Z2 ⊕ Z2.

Consider the homomorphism

(48) φ̂O((n,m, s)) = nm + ns + ms + nms.

We can check that q̂O is the 1-coboundary of φ̂O. And so, it is also a 2-cocycle.
Hence, the q-function of the octonion algebra is a 1-coboundary, i.e. it has trivial
cohomology class.

Let us discuss the cohomology of the r-functions in finite perfect algebras.
Now, since the algebra is perfect (30) is satisfied, which is equivalent to saying
that r̂ is a 3-cocycle, since its 3-coboundary vanishes. Now, equation (4) also
holds, which just establishes that r̂ is the 2-coboundary of Ĉ. Therefore, it
always has trivial cohomology. We have just proved:

Proposition 2. All finite perfect algebras have r-functions with trivial coho-
mology. In fact, the r-function is the 2-coboundary of the structure constant
function for the chosen {va|a ∈ G} basis.

We obtain as a corollary of the previous propositions and the trivial coho-
mology of q̂O:

Corollary 1. The quaternion and octonion algebras are finite perfect algebras
whose q- and r-functions have trivial cohomology.

It is remarkable that although the noncommutative features of the quaternion
and octonion algebras are nontrivial and the nonassociativity of the octonion
algebra is nontrivial, they all result from group homomorphisms with trivial
cohomology.
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This is the basis of a new exploration [7, 8] to identify algebras with novel
gradings and remarkable properties, as the quaternion and octonion algebras are
in several respects.
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