Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 24 (2008), 367-371 www.emis.de/journals ISSN 1786-0091

NON-ELEMENTARY K-QUASICONFORMAL GROUPS ARE LIE GROUPS

JIANHUA GONG

ABSTRACT. Suppose that Ω is a subdomain of \mathbb{R}^n and G is a non-elementary K-quasiconformal group. Then G is a Lie group acting on Ω .

Hilbert-Smith Conjecture states that every locally compact topological group acting effectively on a connected manifold must be a Lie group. Recently Martin [8] has solved the solution of the Hilbert-Smith Conjecture in the quasiconformal category (Theorem 1.2):

Theorem 1. Let G be a locally compact group acting effectively by quasiconformal homeomorphisms on a Riemannian manifold. Then G is a Lie group.

We will apply the Martin's theorem in this paper to show the following theorem.

Theorem 2. Suppose that Ω is a subdomain of \mathbb{R}^n and G is a non-elementary K-quasiconformal group. Then G is a Lie group acting on Ω .

Let Ω and Ω' be domains in \mathbb{R}^n , $n \geq 2$. A homeomorphism $f: \Omega \to \Omega'$ is called to be *K*-quasiconformal if $f \in W^{1,n}_{loc}(\Omega, \mathbb{R}^n)$, the Sobolev space of functions whose first derivatives are locally L^n integrable, and for some $K < \infty$, f satisfies the differential inequality

(1) $|Df(x)|^n \le KJ(x, f)$ almost everywhere in Ω .

Here Df(x) is the derivative of f, |Df(x)| is operator norm and J(x, f) is the Jacobian determinant. We say f is quasiconformal if f is K-quasiconformal for some finite K. Thus, quasiconformal homeomorphisms are transformations which have uniformly bounded distortion. They provide a class of mappings

²⁰⁰⁰ Mathematics Subject Classification. 30C60.

Key words and phrases. non-elementary group, K-quasiconformal group, Lie group, locally compact group, Riemannian manifold, limit set, to act effectively.

This research was supported in part by UAE University grant 05-01-2-11/08.

JIANHUA GONG

that lie between homeomorphisms and conformal mappings. A quasiconformal homeomorphism of domain Ω in \mathbb{R}^n can be extended to a subdomain in the extended Euclidean space $\overline{\mathbb{R}^n} = \mathbb{R}^n \cup \{\infty\}$, for instance, by setting $f(\infty) = \infty$ [12].

Let Γ denote the family of all quasiconformal homeomorphisms of a domain Ω onto Ω' in $\overline{\mathbb{R}^n}$, then Γ forms a group under composition [1]. Let Γ_K denote the family of all K-quasiconformal homeomorphisms of a domain Ω onto Ω' in $\overline{\mathbb{R}^n}$. By contrast, Γ_K is not a group if K > 1. However, when K = 1, the family Γ_1 of all 1- quasiconformal self homeomorphisms of Ω in $\overline{\mathbb{R}^n}$ is the conformal group of Ω . Indeed, this group Γ_1 is a subgroup of the Möbius transformation group if n > 2 or if n = 2 with $\Omega = \overline{\mathbb{R}^n}$. In the latter case when n = 2 with $\Omega = \overline{\mathbb{R}^n}$, Γ_1 is just the classical Möbius transformation group, that is the group of linear fractional transformations of $\overline{\mathbb{C}}$.

Let E be a non-empty subset of Ω , and define the *stabilizer* of a subset E:

(2)
$$\Gamma(E) = \{ f \in \Gamma : f(E) = E \}$$

It is easy to see that $\Gamma(E)$ is a quasiconformal subgroup of Γ . And

(3)
$$\Gamma = \bigcup_{K \ge 1} \Gamma_K, \qquad \Gamma(E) = \bigcup_{K \ge 1} \Gamma_K(E)$$

where $\Gamma_K(E) = \{ f \in \Gamma_K : f(E) = E \}.$

A subfamily G of Γ_K is called a K-quasiconformal group if it constitutes a subgroup of Γ under composition. For example, the quasiconformal conjugate

$$G = f^{-1} \circ \Gamma_1 \circ f$$

of a subgroup of Möbius transformations Γ_1 of Ω' by a K-quasiconformal map $f: \Omega \to \Omega'$ is a K^2 -quasiconformal group acting on Ω . For subdomains of the plane Sullivan and Tukia showed in [9, 10], using a result of Maskit regarding groups of conformal transformations, that this is in fact the only construction. Namely a K-quasiconformal group of a domain $\Omega \subset \mathbb{R}^2$ is quasiconformally conjugate to a subgroup of Möbius transformations of a domain $\Omega' \subset \mathbb{R}^2$. The situation in higher dimensional is different, not every K-quasiconformal group is obtained in this way [7, 11].

As we know from Theorem 7.2 [3] that the compact-open topology of the space Γ of all quasiconformal homeomorphisms of a domain Ω onto Ω' in \mathbb{R}^n is equivalent to the topology induced from locally uniform convergence, where \mathbb{R}^n is a metric space with spherical metric. The space Γ is actually a metric space [4]. Therefore a compact subset coincides with a sequentially compact subset in Γ . And Γ possesses topological properties such as Hausdorff, normal and paracompact [3]. One of the most important aspects of quasiconformal homeomorphisms is their compactness properties. From now on every compact subset E of Ω in \mathbb{R}^n contains at least two points. We recall the following theorem from [4].

368

Theorem 3. Suppose that Ω is a subdomain of \mathbb{R}^n , that G is a K-quasiconformal group of Ω acting on a compact subset E of Ω , and that $G \subset \Gamma_K(E)$. Then G is a locally compact topological transformation group.

Notice that a manifold here is an *n*-dimensional smooth manifold (C^{∞} differentiable) and it is also second countable, thus it is paracompact [13]. A smooth manifold is called a *Riemannian manifold* if there exists a Riemannian metric on it. However, on a paracompact smooth manifold there always exists a Riemannian metric [5], and a topological manifold is paracompact. Hence:

Proposition 1. Every smooth manifold is a Riemannian manifold. In particular, every domain Ω in \mathbb{R}^n can be regarded as a Riemannian manifold.

Suppose that G is a topological transformation group of a topological space X. For each $x \in X$, consider the subset of G:

(4)
$$G_x = \{g \in G : g(x) = x\}.$$

It is a subgroup of G which is called the *isotropy* subgroup of G at the point x of X. Similarly, consider the subset of G:

(5)
$$G_X = \{g \in G : g(x) = x, \text{ for all } x \in X\}.$$

It is a normal subgroup of G, and we have

(6)
$$G_X = \cap_{x \in X} G_x.$$

The topological transformation group G is said to act *effectively* on a topological space X if $G_X = \{e\}$. In the case that a topological transformation group G acts effectively on a topological space X, the corresponding group action is said to be *faithful* [2], i.e., the homomorphism

(7)
$$\phi: G \to \operatorname{Homeo}(X)$$
, given by $g \mapsto g(x)$.

is faithful if ϕ is injective: Ker $\phi = \{e\}$. A topological transformation group may not act effectively on a topological space in general. But quasiconformal homeomorphisms are different, we have

Proposition 2. Let G be a K-quasiconformal group of a domain Ω in $\mathbb{R}^{\overline{n}}$. Then G is a topological transformation group acting effectively on Ω .

Proof. Notice that G is a topological transformation group [4]. Since $G \subset$ Homeo(Ω), where Homeo(Ω) is the group of all homeomorphisms of Ω , consider the inclusion ϕ of G into Homeo(Ω), then ϕ is injective, i.e., Ker $\phi = \{e\}$. It is easy to see that $G_X = \text{Ker } \phi$. Thus $G_X = \{e\}$.

Suppose that Ω is a subdomain of $\overline{\mathbb{R}^n}$, G is a K-quasiconformal group of Ω onto itself, and a compact subset E of Ω is invariant under G. Then the K-quasiconformal group G is a Lie group acting on Ω .

Theorem 4. Suppose that Ω is a subdomain of \mathbb{R}^n and $G \subset \Gamma_K(E)$ is a K-quasiconformal group. Then G is a Lie group acting on Ω .

Proof. Apply Theorem 3, Proposition 1 and Proposition 2 to Theorem 1, we have the result. \Box

A quasiconformal group G of self homeomorphisms of a domain Ω in \mathbb{R}^n is said to be *discontinuous* at a point $x \in \Omega$ if there exists a neighborhood U of xsuch that $g(U) \cap U = \emptyset$ for all but finite many $g \in G$. The ordinary set of G, denoted O(G), is the set of all $x \in \Omega$ at which G is discontinuous. We say that G is a discontinuous group if $O(G) \neq \emptyset$. In other words, there exists one point of Ω which has a neighborhood that is carried outside of itself by all but finitely many elements of G. The complement of O(G) is called the *limit set* of G and is denoted by L(G): $L(G) = \Omega \setminus O(G)$. We say that G is an elementary group if the limit set L(G) contains at most two points. Otherwise we say that G is non-elementary. Now it is ready for the main theorem mentioned at beginning.

Theorem 2. Suppose that Ω is a subdomain of \mathbb{R}^n and G is a non-elementary K-quasiconformal group. Then G is a Lie group acting on Ω .

Proof. Clearly, the ordinary set O(G) is an open set in Ω hence in $\overline{\mathbb{R}^n}$. It follows that the limit set L(G) is a closed set in Ω and $\overline{\mathbb{R}^n}$, thus L(G) is a compact. Since the limit set L(G) is invariant under G (Page 511, [6]), apply for E = L(G) in Theorem 4, we immediately have the result.

This result leads to a natural question. Is the hypothesis of Theorem 2 that the group is non-elementary?

Indeed, Theorem 2 is held for an elementary K-quasiconformal group if its limit set L(G) contains two points, because the subset E in Theorem 3 contains at least two points. Also, we believe that Theorem 2 will be true for an elementary K-quasiconformal group if its limit set L(G) contains at most one point.

References

- L. V. Ahlfors. Lectures on quasiconformal mappings. Manuscript prepared with the assistance of Clifford J. Earle, Jr. Van Nostrand Mathematical Studies, No. 10. D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London, 1966.
- [2] M. Berger. Geometry. I. Universitext. Springer-Verlag, Berlin, 1987. Translated from the French by M. Cole and S. Levy.
- [3] J. Dugundji. Topology. Allyn and Bacon Inc., Boston, Mass., 1966.
- [4] J. Gong and G. J. Martin. Compactness of uniformly quasiconformal groups. In Geometric Groups on the Gulf Coast. Pensacola, USA, 2008.
- [5] K. Itō, editor. Encyclopedic dictionary of mathematics. MIT Press, Cambridge, MA, second edition, 1987. Translated from the Japanese.
- [6] T. Iwaniec and G. Martin. Geometric function theory and non-linear analysis. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 2001.
- [7] G. J. Martin. Discrete quasiconformal groups that are not the quasiconformal conjugates of Möbius groups. Ann. Acad. Sci. Fenn. Ser. A I Math., 11(2):179–202, 1986.
- [8] G. J. Martin. The Hilbert-Smith conjecture for quasiconformal actions. Electron. Res. Announc. Amer. Math. Soc., 5:66–70 (electronic), 1999.

- [9] D. Sullivan. On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions. In Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), volume 97 of Ann. of Math. Stud., pages 465–496. Princeton Univ. Press, Princeton, N.J., 1981.
- [10] P. Tukia. On two-dimensional quasiconformal groups. Ann. Acad. Sci. Fenn. Ser. A I Math., 5(1):73–78, 1980.
- [11] P. Tukia. A quasiconformal group not isomorphic to a Möbius group. Ann. Acad. Sci. Fenn. Ser. A I Math., 6(1):149–160, 1981.
- [12] J. Väisälä. Lectures on n-dimensional quasiconformal mappings. Lecture Notes in Mathematics, Vol. 229. Springer-Verlag, Berlin, 1971.
- [13] F. W. Warner. Foundations of differentiable manifolds and Lie groups. Scott, Foresman and Co., Glenview, Ill.-London, 1971.

DEPARTMENT OF MATHEMATICAL SCIENCE, UNITED ARAB EMIRATES UNIVERSITY, P.O. BOX 17551, AL AIN, UNITED ARAB EMIRATES *E-mail address*: j.gong@uaeu.ac.ae