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SUFFICIENT CONDITIONS FOR OSCILLATORY
BEHAVIOUR OF A FIRST ORDER NEUTRAL DIFFERENCE

EQUATION WITH OSCILLATING COEFFICIENTS

R. N. RATH, N. MISRA, AND S. K. RATH

Abstract. In this paper, we obtain sufficient conditions so that every
solution of neutral functional difference equation

∆(yn − pnyτ(n)) + qnG(yσ(n)) = fn

oscillates or tends to zero as n → ∞. Here ∆ is the forward difference op-
erator given by ∆xn = xn+1−xn, and pn, qn, fn are the terms of oscillating
infinite sequences; {τn} and {σn} are non-decreasing sequences, which are
less than n and approaches ∞ as n approaches ∞. This paper generalizes
and improves some recent results.

1. Introduction

In this work, we find sufficient conditions, so that every solution of neutral
functional difference equation

(1) ∆(yn − pnyτ(n)) + qnG(yσ(n)) = fn

oscillates or tends to zero as n →∞, where ∆ is the forward difference operator
given by ∆xn = xn+1 − xn, {pn}, {qn} and {fn} are infinite sequences of real
numbers (not necessarily positive) and G ∈ C(R,R), τ(n) and σ(n) are non-
decreasing sequences, which are less than n and approaches ∞ as n approaches
∞.

Let n0 be a fixed nonnegative integer. Let ρ = min{τ(n0), σ(n0)}. By a
solution of (1) we mean a real sequence {yn} which is defined for all positive
integer n ≥ ρ and satisfies (1) for n ≥ n0. Clearly if the initial condition

(2) yn = an for ρ ≤ n ≤ n0

is given then the equation (1) has a unique solution satisfying the given initial
condition (2). A solution {yn} of (1) is said to be oscillatory if for every
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positive integer n0 > 0, there exists n ≥ n0 such that ynyn+1 ≤ 0, otherwise
{yn} is said to be non-oscillatory.

If we put τ(n) = n − m and σ(n) = n − k, where m, k are non-negative
integers then (1) reduces to

(3) ∆(yn − pnyn−m) + qnG(yn−k) = fn.

Further, if we put pn = 0 in (3), then we obtain the delay difference equation

(4) ∆(yn) + qnG(yn−k) = fn.

Hence (1) is more general than (3) and (4).
Recently the oscillatory and asymptotic behavior of (3) and (4) have been

investigated by many authors (see [13]–[23], [25]) when qn is non-negative.
However, the general case, when qn is allowed to oscillate, it is difficult to study
the oscillation of (3) or (4), since the difference ∆(yn−pnyn−m−

∑n−1
i=n0

fi) of any
non-oscillatory solution of (3) is always oscillatory. Therefore, the results on
oscillation of (4), (3), with oscillating qn, are relatively scarce; see [18, 24, 22].
The motivation of this work is because of the interesting open problem for the
above case in [9].

The open problem 7.11.3 of [9, pp197] reads as:

Problem 1.1. Extend the following result to difference equation with oscillating
coefficients qn.

Theorem 1.2 ([9, Theorem 7.5.1]). Suppose that {qn} is a non negative se-
quence of real numbers and k be a positive integer. Then

(5) lim inf
n→∞

[
n−1∑

i=n−k

qi

]
>

(
k

k + 1

)k+1

is a sufficient condition for every solution of

(6) yn+1 − yn + qnyn−k = 0

to be oscillatory.

Note that if k = 2 and qn =
(

1
e2 − 1

e3

)
then the difference equation (6) admits

a positive solution yn = e−n, which approaches zero as n → ∞. In this case
(5) does not hold. However,

(7)
∞∑

n=n0

qn = ∞

holds and (5) implies (7).
In view of this, we deal in this paper, with the problem which is slightly

different from the Problem 1.1. In fact, our main result would be the following
theorem, where sufficient conditions are obtained so that every solution of (6)
oscillates or tends to zero as n →∞.
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Theorem 1.3. Suppose that qn changes sign and satisfies the condition
∞∑

n=0

q−n < ∞ where q−n = max(−qn, 0).

Then the condition

(8)
∞∑

n=n0

|qn| = ∞

is sufficient for every solution of (6) to oscillate or to tend to zero as n →∞.

2. Main Results

We need the following hypothesis to be used in this article.

(H1) There exists integers n0 > 0,r ≤ 0 and R ≥ 0 such that R− r < 1 and
r ≤ pn ≤ R for n ≥ n0.

(H2) G is bounded.
(H3) xG(x) > 0 for x 6= 0.
(H4)

∑∞
n=0 q+

n = ∞, where q+
n = max(qn, 0).

(H5)
∑∞

n=0 q−n < ∞, where q−n = max(−qn, 0).
(H6)

∑∞
n=n0

|fn| < ∞.

As a proto type of an infinite sequence satisfying (H4) and (H5), we have

(9) qn =
n| sin(nπ/2)| − | sin((n− 1)π/2)|

n2

Hence, for n = 1, 2, 3, . . . we obtain

q+
2n−1 = 1/(2n− 1), q+

2n = 0, q−2n−1 = 0 and q−2n = 1/(2n)2.

A proto type of a function satisfying (H2)-(H3) is G(u) = ue−u2
or G(u) =

u
u2+1

, which are monotonic non-increasing.

¿From the definitions of q+
n and q−n , it follows that q+

n ≥ 0, q−n ≥ 0 and
qn = q+

n − q−n . Then using this decomposition, (1) can be rewritten as

(10) ∆(yn − pnyτ(n)) + q+
n G(yσ(n))− q−n G(yσ(n)) = fn

Now, we present our first result.

Theorem 2.1. Suppose (H1)–(H6) hold. Then every solution of (1) oscillates
or tends to zero as n tends to ∞.

Proof. Let {yn} be any solution of (1). If it oscillates, then we have nothing to
prove. If it does not oscillate then assume that {yn} be an eventually positive
solution of (1) for n ≥ n0. Our intention is to prove that yn approaches zero
as n →∞. If necessary increment n0 so that

(11) yτ(n) > 0, yσ(n) > 0 for n > n0.

For simplicity of notation, define

(12) zn = yn − pnyτ(n).
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Using (H2) and (H5), define

(13) Tn =
∞∑

i=n

q−i G(yσ(i)),

and

(14) wn = yn − pnyτ(n) + Tn −
n−1∑
i=n0

fi.

It may be noted that Tn > 0, when yn > 0 and Tn < 0, when yn < 0. From
(10), using Eqs(12)– Eq(14) for n > N1 > N0 we obtain

(15) ∆wn = −q+
n G(yσ(n)) ≤ 0.

Hence, {wn} is non-increasing, implying wn > 0 or wn < 0 for large n. By
(H6), the function

∑n
i=n0

fi being bounded, we have

(16) wn0 + sup
n≥n0

n∑
i=n0

fi ≥ yn − pnyτ(n) ≥ yn −Ryτ(n).

Next, we claim that {yn} is bounded. Otherwise, there exists a sequence
{ynk

} such that ynk
→ ∞ as k → ∞ and ynk

= max(yn : n0 ≤ n ≤ nk). Note
that yτ(nk) →∞ as k →∞. Since τ(n) ≤ n, from (16) it follows that for each
nk

wn0 + sup
k

nk∑
i=n0

fi ≥ (1−R)ynk
.

Since (1 − R) > 0, the right hand side approaches ∞, as k → ∞. This is a
contradiction, that proves, {yn} is bounded. Using (H5) and (H6),and noting
that, {pn} being bounded, we see that {zn} and {wn} are bounded sequences.
Then {wn} must converge, as it is monotonic. By (H5) the sequence {Tn} is
convergent and tends to zero as n →∞. This along with(H6), implies {zn} is
also convergent. Let

(17) l := lim
n→∞

zn = lim
n→∞

wn.

Next, we claim lim infn→∞ yn = 0. Otherwise, for n ≥ N2 > N1 we have
yn > 0. Then yσ(n) > 0. From the definition of lim inf, there exists constants α
and N3 > N2 such that yσ(n) ≥ α for all n ≥ N3. Since {yn} is bounded, then
we can find a upper bound β for {yn}. The continuity of G and (H3) imply the
existence of a positive lower bound m for G on [α, β]; i.e., 0 < m < G(yσ(n))
for all n ≥ N4 ≥ N3. Then summing (15) from i = N4 to n−1, we obtain that

wN4 − wn =
n∑

i=N4

q+
i G(yσ(i)) ≥ m

n∑
i=N4

q+
i .



SUFFICIENT CONDITIONS FOR OSCILLATORY BEHAVIOUR. . . 59

Since the left hand side is a member of a bounded sequence, while the right
hand side approaches +∞, we have a contradiction. Therefore, lim inf yn = 0.
Next, we prove that lim sup yn = 0.

Since yn ≥ 0, from assumption (H1), it follows that yn−pnyτ(n) ≥ yn−Ryτ(n).
As we know that, for bounded functions,

lim sup{fn + gn} ≥ lim sup{fn}+ lim inf{gn}.
Therefore, by taking lim sup in (12), we obtain that

(18)

l = lim sup
n→∞

{yn − pnyτ(n)}
≥ lim sup

n→∞
{yn}+ lim inf

n→∞
{−Ryτ(n)}

≥ lim sup
n→∞

{yn} −R lim sup
n→∞

{yτ(n)}
≥ (1−R) lim sup

n→∞
{yn}.

From (H1), it follows that yn − pnyτ(n) ≤ yn − ryτ(n). Since

lim inf{fn + gn} ≤ lim inf{fn}+ lim sup{gn},
taking lim inf in (12), we obtain

l = lim inf
n→∞

{yn − ryτ(n)}
≤ lim inf

n→∞
{yn}+ lim sup

n→∞
{−ryτ(n)}

= 0− r lim sup
n→∞

{yn}.

From (18) and above inequality, we have

(1−R + r) lim sup
n→∞

{yn} ≤ 0.

Since yn ≥ 0, by (H1), it follows that lim supn→∞ yn = 0. Hence, limn→∞ yn =
0. The proof for the case yn < 0 is similar. ¤
Remark 1. It is not difficult to see that if pn satisfies the condition 0 ≤ pn ≤
p < 1 or −1 < −p ≤ pn ≤ 0, instead of (H1) then also the above theorem
holds. Note that if qn ≥ 0, then q−n = 0 and q+

n = qn. Hence, the above
theorem improves and generalizes [13, Theorems 2.1 and 2.3], [17, Theorems
2.3 and 2.4], and [20, Corollary 2.5].

Note that, in the above theorem, we assumed that G is bounded. However,
equation (6) that is considered in Theorem 1.3, does not satisfy this condition.
To address this problem, we introduce the following hypothesis, and state
another theorem.

(H7) There exists non-negative constants a, b such that |G(u)| ≤ a|u| + b,
for all u.

Theorem 2.2. Assume (H1),(H3)-(H7) hold. Then every solution of (1)
oscillates or tends to zero as n →∞.
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Proof. As in theorem 2.1, we prove that every non-oscillatory solution con-
verges to zero as n → ∞. Suppose {yn} be an eventually positive solution of
(1) for n ≥ no. If necessary increment n0 such that (11) is satisfied, and by
(H5),

(19) α := (a + b)
∞∑

i=n0

q−i < 1−R.

Using that τ(n) and σ(n) are non-decreasing and both tend to ∞ as n →∞,
we define τ0 = τn0 and σ0 = σn0 . Select a constant M large enough so that

1 ≤ M,

|yn| ≤ M for min{τ0, σ0} ≤ n ≤ n0,

α + R ≤ M

M + yn0 + |pn0yτ(n0)|+
∑∞

i=n0
|fi| .

(20)

By (19), 0 ≤ α + R < 1. Then for n ≤ n0

(21) 0 ≤ yn ≤ M + yn0 + |pn0yτ(n0)|+
∞∑

i=n0

|fi| = M1.

Next, we prove yn < M1 for all n ≥ n0, by induction. As per induction
hypothesis, assume that (21) holds for all n < k. Then summing (10) from
n = n0 to k − 1, we obtain that

yk = pkyτ(k) + yn0 − pn0yσ(n0) −
k−1∑

n=n0

q+
n G(yσ(n))

+
k−1∑

n=n0

q−n G(yσ(n)) +
k−1∑

n=n0

fn.

(22)

Because τ(k) < k and σ(k) < k, we can use (21) to estimate each term in the
above expression. Using pn ≤ R, we obtain

pkyσ(k) ≤ RM1.

Applying induction hypothesis,(H7) and the fact that M1 > 1,we obtain for
n ≤ k − 1,

G(yσ(n)) ≤ a|yσ(n)|+ b ≤ aM1 + b ≤ (a + b)M1.

Hence,
k−1∑

n=n0

q−n G(yσ(n)) ≤ (a + b)M1

k−1∑
n=n0

q−n = M1α.

Since (20) implies M1(R + α) ≤ M, then it follows that

yk ≤ M1(R + α) + yn0 + |pn0yτ(n0)|+
∞∑

i=n0

|fi| ≤ M1.
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Thus, by the mathematical principle of induction, yn ≤ M1 for n ≥ n0. Hence
{yn} is bounded. Next, we define zn and wn as in Theorem 2.1 and prove
limn→∞ yn = 0 by the same method as in the proof of Theorem 2.1. The proof
for the case when yn is eventually negative is similar. ¤
Since the results in Theorems 2.1 and 2.2 hold for bounded solutions, then we
have the following result.

Theorem 2.3. Under assumptions (H1) and (H3)-(H6), every bounded solu-
tion of (1) oscillates or tends to zero as n →∞.

We have the following result in order to answer Theorem 1.3.

Theorem 2.4. Assume that qn changes sign and (H5) holds. If (H4) holds
then every solution of (6) oscillates or tends to zero as n →∞.

Proof. The delay equation (6) is a particular case of (1), when pn ≡ 0, σ(n) =
n− k, fn ≡ 0. Condition (H2) is not satisfied, but, (H7) is satisfied with a = 1
and b = 0. Since (H1), (H3)-(H7) are satisfied, we apply Theorem 2.2 and
obtain the desired result. ¤
Remark 2. If qn changes sign then |qn| = q+

n + q−n . Thus, if (H5) holds then
(H4) implies and implied by (8). Hence, Theorem 2.4 proves Theorem 1.3. To
emphasize the need of (H5) for Theorem 1.3, we present the following example.

Example 1. Consider the delay equation

∆yn + qnyn−2 = 0,

where

qn =

{
−1, if n is odd,
1
2
, if n is even.

Then, qn is oscillatory but, does not satisfy (H5). Moreover, G(u) = u, does
not satisfy (H2). Note that (H1), (H3), (H4), (H6)–(H7) hold, but we cannot
apply Theorem 2.1 or Theorem 2.2. In fact,

yn =

{
1, if n is odd,

2, if n is even,

is a solution of the above delay equation which neither oscillates nor tends to
zero as n →∞.

Before we close our article, we present an example to illustrate, one of our
main results.

Example 2. Consider the NDDE

(23) ∆(yn) + qnyn−2 = qne
2−n + e−n(e−1 − 1),

where qn is as given by Eq(9). It is easy to verify that Eq(23) satisfies all the
conditions of Theorem 2.2. Hence, every solution oscillates or tends to zero as
n →∞. Thus, yn = e−n is such a solution which → 0 as n →∞.
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