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Abstract. Let G be a finite group. We denote by Γ(G) the prime graph
of G. Let S be a sporadic simple group. M. Hagie in (Hagie, M. (2003),
The prime graph of a sporadic simple group, Comm. Algebra, 31: 4405-
4424) determined finite groups G satisfying Γ(G) = Γ(S). In this paper
we determine finite groups G such that Γ(G) = Γ(A) where A is an almost
sporadic simple group, except Aut(McL) and Aut(J2).

1. Introduction

If n is an integer, then we denote by π(n) the set of all prime divisors of n.
If G is a finite group, then the set π(|G|) is denoted by π(G). Also the set of
order elements of G is denoted by πe(G). We construct the prime graph of G
as follows:

The prime graph Γ(G) of a group G is the graph whose vertex set is π(G),
and two distinct primes p and q are joined by an edge (we write p ∼ q) if
and only if G contains an element of order pq. Let t(G) be the number of
connected components of Γ(G) and let π1(G), π2(G), . . . , πt(G)(G) be the
connected components of Γ(G). We use the notation πi instead of πi(G). If
2 ∈ π(G), then we always suppose 2 ∈ π1.

The concept of prime graph arose during the investigation of certain coho-
mological questions associated with integral representations of finite groups. It
has been proved that for every finite group G we have t(G) ≤ 6 [12, 22, 31] and
the diameter of Γ(G) is at most 5 [23]. In [20] and [19] finite groups with the
same prime graph as a CIT simple group and PSL(2, q) where q = pα < 100
are determined.

In [18] we introduced the following concept for finite groups:
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Definition 1.1. ([18]) A finite group G is called recognizable by prime graph
(briefly, recognizable by graph) if H ∼= G for every finite group H with Γ(H) =
Γ(G). Also a finite simple nonabelian group P is called quasirecognizable by
prime graph, if every finite group G with Γ(G) = Γ(P ) has a composition
factor isomorphic to P .

It is proved that if q = 32n+1 (n > 0), then the simple group 2G2(q) is
uniquely determined by its prime graph [18, 32]. Also the authors in [21]
proved that PSL(2, p), where p > 11 is a prime number and p 6≡ 1 (mod 12) is
recognizable by prime graph. Hagie in [9] determined finite groups G satisfying
Γ(G) = Γ(S), where S is a sporadic simple group. In this paper, as the main
result we determine finite groups G such that their prime graph is Γ(A), where
A is an almost sporadic simple group, except Aut(J2) and Aut(McL).

In this paper, all groups are finite and by simple groups we mean non-abelian
simple groups. All further unexplained notations are standard and refer to [5],
for example. We use the results of J. S. Williams [31], N. Iiyori and H. Yamaki
[12] and A. S. Kondrat’ev [22] about the prime graph of simple groups and the
results of M. S. Lucido [24] about the prime graph of almost simple groups.
We note that the structure of the almost sporadic simple groups are described
in [5].

We denote by (a, b) the greatest common divisor of positive integers a and
b. Let m be a positive integer and p be a prime number. Then |m|p denotes
the p−part of m. In other words, |m|p = pk if pk‖m (i.e. pk|m but pk+1 - m).

2. Preliminary Results

First we give an easy remark:

Remark 2.1. Let N be a normal subgroup of G and p ∼ q in Γ(G/N). Then
p ∼ q in Γ(G). In fact if xN ∈ G/N has order pq, then there is a power of x
which has order pq.

Definition 2.1. ([8]) A finite group G is called a 2-Frobenius group if it has
a normal series 1 E H E K E G, where K and G/H are Frobenius groups with
kernels H and K/H, respectively.

Lemma 2.1. ([31, Theorem A]) If G is a finite group with its prime graph
having more than one component, then G is one of the following groups:

(a) a Frobenius or a 2-Frobenius group;
(b) a simple group;
(c) an extension of a π1−group by a simple group;
(d) an extension of a simple group by a π1−group;
(e) an extension of a π1−group by a simple group by a π1−group.

Lemma 2.2. If G is a finite group with more than one prime graph component
and has a normal series 1 E H E K E G such that H and G/K are π1-groups
and K/H is simple, then H is a nilpotent group.
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Proof. The prime graph of G has more than one component. So let q ∈ π2.
Let y ∈ G be an element of order q. Since, H CG, y induces an automorphism
σ ∈ Aut(H). If σ(h) = h, for some 1 6= h ∈ H, then yh = hy. From the
assumption, H is a π1−group and o(y) = q. So (o(h), o(y)) = 1, which implies
that o(hy) = o(h)o(y). Hence, q ∈ π1, which is a contradiction. Therefore, σ
is a fixed-point-free automorphism of order q. Thus, H is a nilpotent group,
by Thompson’s theorem ([7, Theorem 10.2.1]). ¤

The next lemma summarizes the basic structural properties of a Frobenius
group [7, 25]:

Lemma 2.3. Let G be a Frobenius group and let H, K be Frobenius comple-
ment and Frobenius kernel of G, respectively. Then t(G) = 2, and the prime
graph components of G are π(H), π(K). Also the following conditions hold:

(1) |H| divides |K| − 1.
(2) K is nilpotent and if |H| is even, then K is abelian.
(3) Sylow p-subgroups of H are cyclic for odd p and are cyclic or generalized

quaternion for p = 2.
(4) If H is a non-solvable Frobenius complement, then H has a normal

subgroup H0 with |H : H0| ≤ 2 such that H0 = SL(2, 5)×Z, where the
Sylow subgroups of Z are cyclic and (|Z|, 30) = 1.

Also the next lemma follows from [8] and the properties of Frobenius groups
[10]:

Lemma 2.4. Let G be a 2-Frobenius group, i.e. G has a normal series 1 E
H E K E G, such that K and G/H are Frobenius groups with kernels H and
K/H, respectively. Then

(a) t(G) = 2, π1 = π(G/K) ∪ π(H) and π2 = π(K/H);
(b) G/K and K/H are cyclic, |G/K| | (|K/H|−1) and G/K ≤ Aut(K/H);
(c) H is nilpotent and G is a solvable group.

By using the above lemmas it follows that:

Lemma 2.5. Let G be a finite group and let A be an almost sporadic simple
group, i.e. there exists an sporadic simple group S such that S ≤ A ≤ Aut(S).
If the prime graph of A is not connected and Γ(G) = Γ(A), then one of the
following holds:

(a) G is a Frobenius or a 2-Frobenius group;
(b) G has a normal series 1EH EK EG such that G/K is a π1-group, H

is a nilpotent π1-group, and K/H is a non-abelian simple group with
t(K/H) ≥ 2 and G/K ≤ Out(K/H). Also π2(A) = πi(K/H) for some
i ≥ 2 and π2(A) ⊆ π(K/H) ⊆ π(S).

The next lemma was introduced by Crescenzo and modified by Bugeaud:
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Lemma 2.6. ([6, 17]) With the exceptions of the relations (239)2−2(13)4 = −1
and (3)5 − 2(11)2 = 1 every solution of the equation

pm − 2qn = ±1; p, q prime ; m,n > 1,

has exponents m = n = 2; i.e. it comes from a unit p − q.2
1
2 of the quadratic

field Q(2
1
2 ) for which the coefficients p, q are prime.

Lemma 2.7. ([17]) The only solution of the equation pm− qn = 1; p, q prime;
and m,n > 1 is 32 − 23 = 1.

Lemma 2.8 (Zsigmondy’s Theorem [33]). Let p be a prime and n be a positive
integer. Then one of the following holds:

(i) there is a primitive prime p′ for pn − 1, that is, p′|(pn − 1) but p′ -
(pm − 1), for every 1 ≤ m < n,

(ii) p = 2, n = 1 or 6,
(iii) p is a Mersenne prime and n = 2.

Definition 2.2. A group G is called a Cpp group if the centralizers in G of its
elements of order p are p−groups.

Lemma 2.9. ([4]) (a) The C13,13-simple groups are: A13, A14, A15; Suz, Fi22;
L2(q), q = 33, 52, 13n or 2 × 13n − 1 which is a prime, n ≥ 1; L3(3), L4(3),
O7(3), S4(5), S6(3), O+

8 (3), G2(q), q = 22, 3; F4(2),U3(q), q = 22, 23; Sz(23),
3D4(2), 2E6(2), 2F4(2)′.

(b) The C19,19-simple groups are: A19, A20, A21; J1, J3, O′N , Th, HN ;
L2(q), q = 19n, 2 × 19n − 1 which is a prime, (n ≥ 1); L3(7), U3(2

3), R(33),
2E6(2).

Definition 2.3. By using the prime graph of G, the order of G can be ex-
pressed as a product of coprime positive integers mi, i = 1, 2, . . . , t(G) where
π(mi) = πi(G). These integers are called the order components of G. The set of
order components of G will be denoted by OC(G). Also we call m2, . . . , mt(G)

the odd order components of G.

The order components of non-abelian simple groups are listed in [13, Table
1].

Lemma 2.10. ([3, Lemma 8]) Let G be a finite group with t(G) ≥ 2 and
let N be a normal subgroup of G. If N is a πi−group for some prime graph
component πi of G and m1,m2, . . . , mr are some order components of G but
not πi-numbers, then m1m2 · · ·mr is a divisor of |N | − 1.

3. Main Results

Let A be an almost sporadic simple group, that is S ≤ A ≤ Aut(S) where S
is a sporadic simple group. Since |Aut(S) : S| ≤ 2 for sporadic simple groups
S (see [5]), so A = S or A = Aut(S). Hagie considered the case A = S. So in
the sequel we only assume the case A = Aut(S).
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We note that some of the sporadic simple groups have trivial outer auto-
morphism groups. Also if S is one of the following groups: M12, He, Fi22 or
HN , then Aut(S) 6= S. But, Γ(S) = Γ(Aut(S)). Therefore, we consider the
case A = Aut(S), where S is one of the following groups: M22, J3, HS, Suz,
O′N or Fi′24.

Now, we consider the following Diophantine equations:

(i)
qp − 1

q − 1
= yn, (ii)

qp − 1

(q − 1)(p, q − 1)
= yn,

(iii)
qp + 1

q + 1
= yn, (iv)

qp + 1

(q + 1)(p, q + 1)
= yn.

These Diophantine equations have many applications in the theory of finite
groups (for example see [16] or [17]). We note that the odd order compo-
nents of some non-abelian simple groups of Lie type are of the form (qp ±
1)/((q±1)(p, q±1)) [13] and there exists some results about these Diophantine
equations [15]. Now, we prove the following lemma about these Diophantine
equations to determine some Cpp-simple groups.

Lemma 3.1. Let p ≥ 3 and p0 be prime numbers and q = pα
0 .

(a) If y = 11 and p0 ∈ {2, 3, 5, 7}, then (p, q, n) = (5, 3, 2) is the only solution
of (i) and (ii). Also (p, q, n) = (5, 2, 1) is the only solution of (iii) and (iv).

(b) If y = 29 and p0 ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23}, then the Diophantine
equations (i)-(iv) have no solution.

(c) If y = 31 and p0 ∈ {2, 3, 5, 7, 11, 19}, then (p, q, n) = (5, 2, 1) and (3, 5, 1)
are the only solutions of (i) and (ii). Also (iii) and (iv) have no solution.

Proof. Let q = pα
o and (qp − 1)/(q − 1) = 11n or (qp − 1)/((q − 1)(p, q − 1)) =

11n. Then 11 | (pαp
0 − 1), which implies that pαp

0 ≡ 1 (mod 11) and hence
β := ord11(p0) is a divisor of αp. Since, p ≥ 3 and (pαp

0 − 1)/(pα
0 − 1) = 11n or

(pαp
0 − 1)/(pα

0 − 1)(p, pα
0 − 1)) = 11n, it follows that 11 is a primitive prime for

pαp
0 − 1. Also 11 is a primitive prime for pβ

o − 1, by the definition of ord11(p0).
Therefore, β = αp, by the definition of the primitive prime (see Lemma 2.8).
Also by using the Fermat theorem we know that β is a divisor of 10. Hence, the
only possibility for p is 5 and so 1 ≤ α ≤ 2. Now, by checking the possibilities
for q it follows that (p, q, n) = (5, 3, 2) is the only solution of the Diophantine
equations (i) and (ii). Similarly consider the Diophantine equations

qp + 1

q + 1
= 11n, and

qp + 1

(q + 1)(p, q + 1)
= 11n,

Then 11 is a divisor of p2αp
o − 1 and in a similar manner it follows that p = 5

and α = 1. Therefore, the only solution of these Diophantine equations is
(p, q, n) = (5, 2, 1).

The proof of (b) and (c) are similar and for convenience we omit the proof
of them. ¤

Now, by using Lemmas 2.6, 2.7 and 3.1, we can prove the following lemma:
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Lemma 3.2. Let M be a simple group of Lie type over GF (q).

(a) If q is a power of 2, 3, 5 or 7 and M is a C11,11-group, then M is
one of the following simple groups: L2(11), L5(3), L6(3), U5(2), U6(2),
O11(3), S10(3) or O+

10(3).
(b) If q is a power of 2, 3, 5, 7, 11, 13, 17, 19 or 23 and M is a C29,29-

group, then M = L2(29).
(c) If q is a power of 2, 3, 5, 7, 11 or 19 and M is a C31,31-group, then M

is L5(2), L3(5), L6(2), L4(5), O+
10(2), O+

12(2), L2(31), L2(32), G2(5) or
Sz(32).

Proof. The odd order components of finite non-abelian simple groups are listed
in Table 1 in [13]. Now, by using Lemmas 2.6, 2.7, 2.8 and 3.1 we get the result.
For convenience we omit the proof. ¤
Theorem 3.1. Let G be a finite group satisfying Γ(G) = Γ(A).

(a) If A = Aut(J3), then G/Oπ(G) ∼= J3, where 2 ∈ π, π ⊆ {2, 3, 5} and
Oπ(G) 6= 1 or G/Oπ(G) ∼= J3.2, where π ⊆ {2, 3, 5}.

(b) If A = Aut(M22), then G/O2(G) ∼= M22 and O2(G) 6= 1 or G/Oπ(G) ∼=
M22.2, where π ⊆ {2}.

(c) If A = Aut(HS), then G/Oπ(G) ∼= U6(2) or HS, where 2 ∈ π, π ⊆
{2, 3, 5} and Oπ(G) 6= 1 or G/Oπ(G) ∼= HS.2, U6(2).2 or McL, where
π ⊆ {2, 3, 5}.

(d) If A = Aut(Fi′24), then G/Oπ(G) ∼= Fi′24, where 2 ∈ π, π ⊆ {2, 3} and
Oπ(G) 6= 1 or G/Oπ(G) ∼= Fi′24.2, where π ⊆ {2, 3}.

(e) If A = Aut(O′N), then G/O2(G) ∼= O′N , where O2(G) 6= 1 or
G/Oπ(G) ∼= O′N.2, where π ⊆ {2}.

(f) If A = Aut(Suz), then G/Oπ(G) ∼= Suz, where 2 ∈ π, π ⊆ {2, 3, 5}
and Oπ(G) 6= 1 or G/Oπ(G) ∼= Suz.2, where π ⊆ {2, 3, 5}.

Proof. (a) Let Γ(G) = Γ(Aut(J3)). First, let G be a solvable group. Then
G has a Hall {5, 17, 19}-subgroup H. Since, G is solvable, it follows that H
is solvable. Hence, t(H) ≤ 2, which is a contradiction, since there exists no
edge between 5, 17 and 19 in Γ(G). Thus, G is not solvable, and so G is not
a 2-Frobenius group, by Lemma 2.4. If G is a non-solvable Frobenius group
and H and K be the Frobenius complement and the Frobenius kernel of G,
respectively, then by using Lemma 2.3 it follows that H has a normal subgroup
H0 with |H : H0| ≤ 2 such that H0 = SL(2, 5)×Z where the Sylow subgroups
of Z are cyclic and (|Z|, 30) = 1. We know that 3 � 17 and 3 � 19 in Γ(G).
Therefore, Z = 1. Hence, {17, 19} ⊆ π(K). This is a contradiction, since K is
nilpotent and 17 � 19 in Γ(G). Hence, G is neither a Frobenius group nor a 2-
Frobenius group. So by using Lemma 2.5, G has a normal series 1EH EK EG
such that K/H is a C19,19 simple group. By using Lemma 2.9, K/H is A19,
A20, A21, J1, J3, O′N , Th, HN , L3(7), U3(8), R(27), 2E6(2), L2(q), where
q = 19n or L2(q), where q = 2 × 19n − 1 (n ≥ 1) is a prime number. But,
π(K/H) ⊆ π(J3) and π(J3) ∩ {7, 11, 13, 31} = ∅. Also q = 2 × 19n − 1 > 19.
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Hence, the only possibilities for K/H are J3 and L2(19n), where n ≥ 1. The
orders of maximal tori of Am(q) = PSL(m + 1, q) are

∏k
i=1(q

ri − 1)

(q − 1)(m + 1, q − 1)
; (r1, . . . , rk) ∈ Par(m + 1).

Therefore, every element of πe(PSL(2, q)) is a divisor of q, (q+1)/d or (q−1)/d,
where d = (2, q−1). If q = 19n, then 3 | (19n−1)/2 and since 3 ∼ 5 and 3 � 17
in Γ(G), it follows that if 5 divides |G|, then 5 | (19n− 1) and if 17 is a divisor
of |G|, then 17 | (19n + 1). Note that π(19− 1) = {2, 3}, π(192− 1) = {2, 3, 5}
and 17 | (194 + 1). Now by using the Zsigmondy’s Theorem, Lemmas 2.6 and
2.7 it follows that the only possibility is n = 1.

Now, we consider these possibilities for K/H, separately.
Case 1. Let K/H ∼= J3.
We note that Out(J3) ∼= Z2 and hence G/H is isomorphic to J3 or J3.2. Also

H is a nilpotent π1-group. Hence, π(H) ⊆ {2, 3, 5, 17}. If 17 ∈ π(H), then let
T be a {3, 17, 19} subgroup of G, since J3 has a 19 : 9 subgroup. Obviously,
T is solvable and hence t(T ) ≤ 2, which is a contradiction. Therefore, π =
π(H) ⊆ {2, 3, 5} and G/Oπ(G) ∼= J3 or G/Oπ(G) ∼= J3.2. If G/Oπ(G) ∼= J3,
then Oπ(G) 6= 1 and 2 ∈ π, since 2 � 17 in Γ(J3).

Case 2. Let K/H ∼= L2(19).
Since Out(L2(19)) ∼= Z2, it follows that G/H ∼= L2(19) or L2(19).2. But,

in this case π(K/H) = {2, 3, 5, 19} and so 17 | |H|. We know that L2(19)
contains a 19 : 9 subgroup and hence G has a {3, 17, 19}-subgroup T which
is solvable and so t(T ) ≤ 2. But, this is a contradiction, since t(T ) = 3.
Therefore, K/H � L2(19).

(b) Let Γ(G) = Γ(Aut(M22)).
If G is a solvable group, then let T be a Hall {3, 5, 7}-subgroup of G. Ob-

viously T is solvable and hence t(T ) ≤ 2, which is a contradiction. If G is a
non-solvable Frobenius group, then G has a Frobenius kernel K and a Frobe-
nius complement H. By using Lemma 2.3, it follows that H has a normal
subgroup H0 = SL(2, 5) × Z, where |H : H0| ≤ 2 and (|Z|, 30) = 1. Since,
5 � 7 and 3 � 11 in Γ(G), it follows that Z = 1 and so π(K) = {7, 11}, which
is a contradiction since K is nilpotent and 7 � 11 in Γ(G). Therefore, G is
not a Frobenius group or a 2-Frobenius group. By using Lemma 2.5, G has a
normal series 1EHEKEG such that K/H is a C11,11-simple group. If K/H is
an alternating group or a sporadic simple group which is a C11,11-group, then
K/H is: A11, A12, M11, M12, M22, M23, M24, McL, HS, Sz, O′N , Co2 or
J1. Also Γ(K/H) is a subgraph of Γ(G), by Remark 2.1. Therefore, 3 � 5 in
Γ(K/H) and π(K/H) ⊆ {2, 3, 5, 7, 11}, which implies that the only possibili-
ties for K/H are L2(11), M11, M12 and M22. If K/H ∼= M11, M12 or L2(11),
then K/H has a 11 : 5 subgroup by [5]. Also in these cases 7 6∈ π(K/H) and
hence 7 ∈ π(H). Now, consider the {5, 7, 11} subgroup T of G which is solv-
able and hence t(T ) ≤ 2, a contradiction. Therefore, K/H ∼= M22 and since
Out(M22) ∼= Z2 it follows that G/H ∼= M22 or M22.2. Also H is a nilpotent
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π1-group and so π(H) ⊆ {2, 3, 5, 7}. By using [5] we know that M22 has a
11 : 5 subgroup. If 3 ∈ π(H), then let T be a {3, 5, 11} subgroup of G which
is solvable and hence t(T ) ≤ 2, which is a contradiction, since there exists any
edge between 3, 5 and 11 in Γ(G). Therefore, 3 6∈ π(H). Similarly, it follows
that 7 6∈ π(H). Let 5 ∈ π(H) and Q ∈ Syl5(H). Also let P ∈ Syl3(K). We
know that H is nilpotent and hence Q char H. Since H C K it follows that
Q C K. Therefore P acts by conjugation on Q and since 3 � 5 in Γ(G) it
follows that P acts fixed point freely on Q. Hence, QP is a Frobenius group
with Frobenius kernel Q and Frobenius complement P . Now by using Lemma
2.3 it follows that P is a cyclic group which implies that a Sylow 3-subgroup of
M22 is cyclic. But, this is a contradiction since a 3-Sylow subgroup of M22 are
elementary abelian by [5]. Therefore, H is a 2-group. Then G/O2(G) ∼= M22,
where O2(G) 6= 1 or G/Oπ(G) ∼= M22.2, where π ⊆ {2}.

(C) Let Γ(G) = Γ(Aut(HS)).
If G is solvable, then G has a Hall {3, 7, 11}-subgroup T . Hence, T is solvable

and so t(T ) ≤ 2, which is a contradiction. Hence, G is not a 2-Frobenius
group. If G is a non-solvable Frobenius group, then by using Lemma 2.3, H,
the Frobenius complement of G, has a normal subgroup H0 = SL(2, 5) × Z,
where (|Z|, 30) = 1 and |H : H0| ≤ 2. Since, 5 � 7 and 5 � 11 in Γ(G), it
follows that Z = 1 and hence 77 is a divisor of |K|, where K is the Frobenius
kernel of G. But, this is a contradiction. Since, 7 � 11 in Γ(G) and K is
nilpotent.

Now, similar to (b), G has a normal series 1 E H E K E G such that K/H
is one of the following groups: M11, M12, M22, McL, HS, U5(2), U6(2) and
L2(11).

Case 1. Let K/H ∼= M11, M12, U5(2) or L2(11).
By using [5] we know that |Out(K/H)| is a divisor of 2. Therefore, 7 6∈

π(G/H), and hence 7 ∈ π(H). Since in each case, K/H has a 11 : 5 subgroup
it follows that G has a {5, 7, 11} subgroup T , which is solvable and hence
t(T ) ≤ 2. But, this is a contradiction and so this case is impossible.

Case 2. Let K/H ∼= M22.
We note that out(M22) ∼= Z2. Hence, G/H ∼= M22 or M22.2. First let

G/H ∼= M22, where H is a π1-group and π1 = {2, 3, 5, 7}. We know that M22

has a 11 : 5 subgroup (see [5]). If 2 ∈ π(H), then G has a {2, 5, 11} subgroup
T which is solvable and hence t(T ) ≤ 2, a contradiction. Therefore, 2 6∈ π(H).
If 3 ∈ π(H) or 7 ∈ π(H), then let T be a {3, 5, 11} or {5, 7, 11} subgroup of
G, respectively. Then t(T ) ≤ 2, which is a contradiction. If 5 ∈ π(H), then
let P be a Sylow 5-subgroup of H. If Q ∈ Syl3(G), then Q acts fixed point
freely on P , since 3 � 5 in Γ(G). Therefore, PQ is a Frobenius group which
implies that Q be a cyclic group and it is a contradiction. Hence H = 1 and
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so G = M22. But, Γ(M22) 6= Γ(Aut(HS)), since 2 � 5 in Γ(M22). Therefore,
this case is impossible.

Now, let G/H ∼= M22.2. By using [5], M22 has a 11 : 5 subgroup. Similar
to the above discussion we conclude that {3, 5, 7} ∩ π(H) = ∅, and hence H is
a 2-group. But, in this case 3 and 5 are not joined which is a contradiction.
Therefore, Case 2 is impossible, too.

Case 3. Let K/H ∼= U6(2).
By using [5], it follows that Out(K/H) ∼= S3. We know that U6(2).3 has

an element of order 21. Therefore, G/H ∼= U6(2) or U6(2).2. Also 7 6∈ π(H),
since U6(2) has a 11 : 5 subgroup. Therefore, if G/H ∼= U6(2), then 2 ∈ π,
π ⊆ {2, 3, 5} and G/Oπ(G) ∼= U6(2), where Oπ(G) 6= 1. Similarly, if G/H ∼=
U6(2).2, then G/Oπ(G) ∼= U6(2).2, where π ⊆ {2, 3, 5}.

Case 4. Let K/H ∼= McL.
Note that Out(McL) = 2. But, G/H � McL.2, since McL.2 has an element

of order 22. Similar to the above proof it follows that G/Oπ(G) ∼= McL and
π ⊆ {2, 3, 5}, since McL has a 11 : 5 subgroup.

Case 5. Let K/H ∼= HS.
There exists a 11 : 5 subgroup in HS. Similar to Case 3, it follows that

G/Oπ(G) ∼= HS, where 2 ∈ π, π ⊆ {2, 3, 5} and Oπ(G) 6= 1, or G/Oπ(G) ∼=
HS.2, where π ⊆ {2, 3, 5}.

(d) Let Γ(G) = Γ(Aut(Fi′24)).
We claim that G is not solvable, otherwise let T be a Hall {7, 17, 23}-

subgroup of G, which is solvable but t(T ) = 3, a contradiction. If G is a
non-solvable Frobenius group, then {11, 13, 17, 23, 29} ⊆ π(K), where K is the
Frobenius kernel of G. But, this is a contradiction since 11 � 13 and K is
nilpotent. Hence, by using Lemma 2.5, G has a normal series 1 E H E K E G,
where K/H is a C29,29-simple group and π(K/H) ⊆ π(G). Therefore, K/H
is L2(29), Ru or Fi′24. If K/H ∼= L2(29) or Ru, then {17, 23} ⊆ π(H), which
is a contradiction. Since, H is nilpotent and 17 � 23 in Γ(G). Therefore,
K/H ∼= Fi′24 and so G/H ∼= Fi′24 or Fi′24.2. By using [5], we know that Fi′24

has a 23 : 11 subgroup. Therefore, π(H) ∩ {5, 7, 13, 17} = ∅. Also Fi′24 has
a 29 : 7 subgroup, and hence π(H) ∩ {11, 13} = ∅. Therefore, π(H) ⊆ {2, 3}
and so G/Oπ(G) ∼= Fi′24, where 2 ∈ π, π ⊆ {2, 3} and Oπ(G) 6= 1; or
G/Oπ(G) ∼= Fi′24.2, where π ⊆ {2, 3}.

(e) Let Γ(G) = Γ(Aut(O′N)).
If G is solvable, then G has a Hall {3, 11, 31}-subgroup T , which has three

components and this is a contradiction. If G is a non-solvable Frobenius group,
then the Frobenius kernel of G has elements of order 7 and 11. But, 77 6∈ πe(G),
which is a contradiction. Therefore, G has a normal series 1EHEKEG, where
K/H is a C31,31-simple group and π(K/H) ⊆ π(G). Hence, K/H is L3(5),
L5(2), L6(2), L2(31), L2(32), G2(5) or O′N . If K/H ∼= L2(5), L6(2), L2(31)
or G2(5), then 11, 19 ∈ π(H), which is a contradiction. Since, 209 6∈ πe(G)
and H is nilpotent. If K/H ∼= L3(5) or L2(32), then {7, 19} ⊆ π(H), which
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is a contradiction. Since, 7 � 19 in Γ(G). Therefore, K/H ∼= O′N and
Out(O′N) = 2, which implies that G/H ∼= O′N or O′N.2. We know that
O′N has a 11 : 5 subgroup by [5] and if we consider {5, 11, p}-subgroup of
G, where p ∈ {7, 19, 31}, it follows that π(H) ∩ {7, 19, 31} = ∅. Therefore,
π(H) ⊆ {2, 3, 5, 11}. Also O′N has a 19 : 3 subgroup, which implies that
π(H) ∩ {11} = ∅. Let p ∈ {3, 5}. If p ∈ π(H), then let P be the p-Sylow
subgroup of H. If Q ∈ Syl7(G), then Q acts fixed point freely on P , since
7 � 3 and 7 � 5 in Γ(G). Therefore, PQ is a Frobenius group and hence Q is
a cyclic group. But, this is a contradiction. Since, Sylow 7-subgroups of O′N
are elementary abelian by [5]. Therefore, π(H) ∩ {3, 5} = ∅. Hence, π(H) is
a 2-group. Then G/O2(G) ∼= O′N , where O2(G) 6= 1; or G/Oπ(G) ∼= O′N.2
where π ⊆ {2}.

(f) Let Γ(G) = Γ(Aut(Suz)).
Since, 7 � 11, 11 � 13 and 7 � 13, it follows that G is not a solvable group.

If G is a 2-Frobenius group, then {11, 13} ⊆ π(K), where K is the Frobenius
kernel of G. Then 11 ∼ 13, since K is nilpotent. But, this is a contradiction.
Therefore, G is neither a Frobenius group nor a 2-Frobenius group. Hence,
there exists a normal series 1 E H E K E G, such that K/H is a C13,13 simple
group and π(K/H) ⊆ π(G). Therefore, K/H is Sz(8), U3(4), 3D4(2), Suz,
Fi22,

2F4(2)′, L2(27), L2(25), L2(13), L3(3), L4(3), O7(3), O+
8 (3), S6(3), G2(4),

S4(5) or G2(3).
If K/H ∼= 2F4(2)′, U3(4), L2(25), L4(3), S4(5) or G2(3), then {7, 11} ⊆ π(H),

which implies that 7 ∼ 11, since H is nilpotent. But, this is a contradiction.
If K/H ∼= 3D4(2), L2(27), L2(13) or L3(3), then {5, 11} ⊆ π(H) and we get a
contradiction similarly. Since, 5 � 11.

If K/H ∼= G2(4), S6(3), O7(3) or O+
8 (3), then 11 ∈ π(H) and K/H has a

13 : 3 subgroup by [5]. Let T be a {3, 11, 13}-subgroup of G. It follows that
t(T ) = 3, which is a contradiction. Since, T is solvable.

If K/H ∼= Fi22, then G/H ∼= Fi22 or Fi22.2, where π(H) ⊆ {2, 3, 5, 7, 11}.
Since, Fi22 has 11 : 5 and 13 : 3 subgroups it follows that {7, 11} ∩ π(H) = ∅.
Therefore, G/Oπ(G) ∼= Fi22 or Fi22.2, where π ⊆ {2, 3, 5}.

Let K/H ∼= Sz(8). It is known that Out(Sz(8)) ∼= Z3 and so G/H ∼= Sz(8)
or Sz(8).3. If G/H ∼= Sz(8), then {3, 11} ⊆ π(H) which is a contradiction.
Since, 3 � 11. If G/H ∼= Sz(8).3, then let T be {3, 7, 11}-subgroup of G.
Since, Sz(8) has a 7 : 6 subgroup. Then t(T ) = 3, which is a contradiction.

If K/H ∼= Suz, then G/H ∼= Suz or Suz.2. If G/K ∼= Suz, then π(H) ⊆
{2, 3, 5, 7, 11}. Since, Suz has a 11 : 5 and 13 : 3 subgroups it follows that
7, 11 6∈ π(H). Therefore, G/Oπ(G) ∼= Suz, where 2 ∈ π and π ⊆ {2, 3, 5} and
Oπ(G) 6= 1. If G/H ∼= Suz.2, then it follows that G/Oπ(G) ∼= Suz.2, where
π ⊆ {2, 3, 5}. ¤

Remark 3.1. W. Shi and J. Bi in [29] put forward the following conjecture:
Let G be a group and M be a finite simple group. Then G ∼= M if and only

if (i) |G| = |M |, and, (ii) πe(G) = πe(M).
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This conjecture is valid for sporadic simple groups [27], alternating groups
and some simple groups of Lie type [28, 26, 29]. As a consequence of the
main theorem, we prove the validity of this conjecture for the groups under
discussion.

Theorem 3.2. Let G be a finite group and A be an almost sporadic simple
group, except Aut(J2) and Aut(McL). If |G| = |A| and πe(G) = πe(A), then
G ∼= A.

We note that Theorem 3.2 was proved in [14] by using the characterization
of almost sporadic simple groups with their order components. Now, we give
a new proof for this theorem. In fact we prove the following result which is a
generalization of the Shi-Bi Conjecture and so Theorem 3.2 is an immediate
consequence of Theorem 3.3. Also note that Theorem 3.3 is a generalization
of a result in [1].

Theorem 3.3. Let A be an almost sporadic simple group, except Aut(J2) and
Aut(McL). If G is a finite group satisfying |G| = |A| and Γ(G) = Γ(A), then
G ∼= A.

Proof. First, let A = Aut(M22). By using Theorem 3.1, it follows that
G/O2(G) ∼= M22 or G/Oπ(G) ∼= M22.2, where π ⊆ {2}. If G/O2(G) ∼= M22,
then |O2(G)| = 2. Hence, O2(G) ⊆ Z(G) which is a contradiction. Since, G has
more than one component and hence Z(G) = 1. Therefore, G/Oπ(G) ∼= M22.2,
where 2 ∈ π, which implies that Oπ(G) = 1 and hence G ∼= M22.2

Let A = Aut(HS). By using Theorem 3.1, it follows that G/Oπ(G) ∼= U6(2)
or HS, where 2 ∈ π, π ⊆ {2, 3, 5} and Oπ(G) 6= 1; or G/Oπ(G) ∼= U6(2).2,
McL or HS.2, where π ⊆ {2, 3, 5}.

By using [5], it follows that 36 divides the orders of U6(2), U6(2).2 and McL,
but 36 - |G|.

Therefore, G/Oπ(G) ∼= HS or HS.2. Now, we get the result similarly to the
last case.

For convenience we omit the details of the proof of other cases. ¤
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