Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 26 (2010), 45-53 www.emis.de/journals ISSN 1786-0091

ORE EXTENSIONS OVER NEAR PSEUDO-VALUATION RINGS

V. K. BHAT

ABSTRACT. We recall that a ring R is called near pseudo-valuation ring if every minimal prime ideal is a strongly prime ideal.

Let R be a commutative ring, σ an automorphism of R. Recall that a prime ideal P of R is σ -divided if it is comparable (under inclusion) to every σ -stable ideal I of R. A ring R is called a σ -divided ring if every prime ideal of R is σ -divided. Also a ring R is almost σ -divided ring if every minimal prime ideal of R is σ -divided.

We also recall that a prime ideal P of \mathbb{R} is δ -divided if it is comparable (under inclusion) to every δ -invariant ideal I of R. A ring R is called a δ -divided ring if every prime ideal of R is δ -divided. A ring R is said to be almost δ -divided ring if every minimal prime ideal of R is δ -divided.

We define a Min.Spec-type endomorphism σ of a ring R ($\sigma(U) \subseteq U$ for all minimal prime ideals U of R) and a Min.Spec-type ring (if there exists a Min.Spec-type endomorphism of R). With this we prove the following. Let R be a commutative Noetherian \mathbb{Q} -algebra (\mathbb{Q} is the field of rational numbers), δ a derivation of R. Then:

- (1) R is a near pseudo valuation ring implies that $R[x;\delta]$ is a near pseudo valuation ring.
- (2) R is an almost δ -divided ring if and only if $R[x; \delta]$ is an almost δ -divided ring.

We also prove a similar result for $R[x;\sigma]$, where R is a commutative Noetherian ring and σ a Min.Spec-type automorphism of R.

1. INTRODUCTION

We follow the notation as in Bhat [10], but to make the note self contained, we have the following. All rings are associative with identity. Throughout this paper R denotes a commutative ring with identity $1 \neq 0$. The nil radical of R and the prime radical of R are denoted by N(R) and P(R) respectively. The set of prime ideals of R is denoted by Spec(R), the set of minimal prime

²⁰⁰⁰ Mathematics Subject Classification. 16N40, 16P40, 16S36.

Key words and phrases. Ore extension, Min.Spec-type automorphism, derivation, divided prime, almost divided prime, pseudo-valuation ring, near pseudo-valuation ring.

ideals of R is denoted by Min. Spec(R), and the set of strongly prime ideals is denoted by S.Spec(R). The center of R is denoted by Z(R). The field of rational numbers and the ring of integers are denoted by \mathbb{Q} and \mathbb{Z} respectively unless otherwise stated.

We recall that as in Hedstrom and Houston [15], an integral domain R with quotient field F, is called a pseudo-valuation domain (PVD) if each prime ideal P of R is strongly prime ($ab \in P$, $a \in F$, $b \in F$ implies that either $a \in P$ or $b \in P$). For example let $F = \mathbb{Q}(\sqrt{2})$ and V = F + xF[[x]] = F[[x]]. Then Vis a pseudo-valuation domain. We also note that $S = \mathbb{Q} + \mathbb{Q}x + x^2V$ is not a pseudo-valuation domain (Badawi [6]). For more details on pseudo-valuation rings, the reader is referred to Badawi [6].

In Badawi, Anderson and Dobbs [7], the study of pseudo-valuation domains was generalized to arbitrary rings in the following way. A prime ideal P of Ris said to be strongly prime if aP and bR are comparable (under inclusion; i.e. $aP \subseteq bR$ or $bR \subseteq aP$) for all $a, b \in R$. A ring R is said to be a pseudo-valuation ring (PVR) if each prime ideal P of R is strongly prime.

We note that a strongly prime ideal is a prime ideal, but a prime ideal need not be a strongly prime ideal. Let $R = \begin{pmatrix} \mathbb{Z} & \mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} \end{pmatrix} = M_2(\mathbb{Z})$. If p is a prime number, then the ideal $P = M_2(p\mathbb{Z})$ is a prime ideal of R, but is not strongly prime, since for $a = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $b = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ we have $ab \in P$, even though $a \notin P$ and $b \notin P$.

We also note that a PVR is quasilocal by Lemma 1(b) of Badawi, Anderson and Dobbs [7]. An integral domain is a PVR if and only if it is a PVD by Proposition (3.1) of Anderson [1], Proposition (4.2) of Anderson [2] and Proposition (3) of Badawi [3].

In Badawi [5], another generalization of PVDs is given in the following way. Let R be a ring with total quotient ring Q such that N(R) is a divided prime ideal of R, let $\phi: Q \to R_{N(R)}$ such that $\phi(a/b) = a/b$ for every $a \in R$ and every $b \in R \setminus Z(R)$. Then ϕ is a ring homomorphism from Q into $R_{N(R)}$, and ϕ restricted to R is also a ring homomorphism from R into $R_{N(R)}$ given by $\phi(r) = r/1$ for every $r \in R$. Denote $R_{N(R)}$ by T. A prime ideal P of $\phi(R)$ is called a T-strongly prime ideal if $xy \in P$, $x \in T$, $y \in T$ implies that either $x \in P$ or $y \in P$. $\phi(R)$ is said to be a T-pseudo-valuation ring (T-PVR) if each prime ideal of $\phi(R)$ is T-strongly prime. A prime ideal S of R is called ϕ -strongly prime ideal if $\phi(S)$ is a T-strongly prime ideal of $\phi(R)$. If each prime ideal of R is ϕ -strongly prime, then R is called a ϕ -pseudo-valuation ring $(\phi - PVR)$.

This article concerns the study of skew polynomial rings over PVDs. Let R be a ring, σ an endomorphism of R and δ a σ -derivation of R ($\delta: R \to R$ is an additive map with $\delta(ab) = \delta(a)\sigma(b) + a\delta(b)$, for all $a, b \in R$). In case σ is identity, δ is just called a derivation. For example let R = F[x], F a

field. Then $\sigma: R \to R$ defined by $\sigma(f(x)) = f(0)$ is an endomorphism of R. Also let $K = \mathbb{R} \times \mathbb{R}$. Then $g: K \to K$ by g(a, b) = (b, a) is an automorphism of K. Let σ be an automorphism of a ring R and $\delta: R \to R$ any map. Let $\phi: R \to M_2(R)$ defined by

$$\phi(r) = \begin{pmatrix} \sigma(r) & 0\\ \delta(r) & r \end{pmatrix},$$

for all $r \in R$ be a homomorphism. Then δ is a σ -derivation of R. Also let R = F[x], F a field. Then the usual differential operator $\frac{d}{dx}$ is a derivation of R.

We denote the Ore extension $R[x; \sigma, \delta]$ by O(R). If I is an ideal of R such that I is σ -stable; i.e. $\sigma(I) = I$ and I is δ -invariant; i.e. $\delta(I) \subseteq I$, then we denote $I[x; \sigma, \delta]$ by O(I). We would like to mention that $R[x; \sigma, \delta]$ is the usual set of polynomials with coefficients in R, i.e. $\{\sum_{i=0}^{n} x^{i}a_{i}, a_{i} \in R\}$ in which multiplication is subject to the relation $ax = x\sigma(a) + \delta(a)$ for all $a \in R$.

In case δ is the zero map, we denote the skew polynomial ring $R[x;\sigma]$ by S(R) and for any ideal I of R with $\sigma(I) = I$, we denote $I[x;\sigma]$ by S(I). In case σ is the identity map, we denote the differential operator ring $R[x;\delta]$ by D(R) and for any ideal J of R with $\delta(J) \subseteq J$, we denote $J[x;\delta]$ by D(J).

Ore-extensions (skew-polynomial rings and differential operator rings) have been of interest to many authors. For example see [10, 11, 12, 14, 16].

Recall that a ring R is called a near pseudo-valuation ring (NPVR) if each minimal prime ideal P of R is strongly prime (Bhat [12]). For example a reduced ring is NPVR.

Here the term near may not be interpreted as near ring (Bell and Mason [8]). We note that a near pseudo-valuation ring (NPVR) is a pseudo-valuation ring (PVR), but the converse is not true. For example a reduced ring is a NPVR, but need not be a PVR.

We recall that a prime ideal P of R is said to be divided if it is comparable (under inclusion) to every ideal of R. A ring R is called a divided ring if every prime ideal of R is divided (Badawi [4]). It is known (Lemma (1) of Badawi, Anderson and Dobbs [7]) that a pseudo-valuation ring is a divided ring. Recall that a ring R is called an almost divided ring if every minimal prime ideal of R is divided (Bhat [12]).

We also recall that a prime ideal P of R is σ -divided if it is comparable (under inclusion) to every σ -stable ideal I of R. A ring R is called a σ -divided ring if every prime ideal of R is σ -divided (see Bhat [10]). A ring R is said to be almost σ -divided ring if every minimal prime ideal of R is σ -divided (Bhat [12]).

A prime ideal P of R is said to be δ -divided if it is comparable (under inclusion) to every σ -stable and δ - invariant ideal I of R. A ring R is called a δ -divided ring if every prime ideal of R is δ -divided (Bhat [10]). A ring R is said to be almost δ -divided ring if every minimal prime ideal of R is δ -divided (Bhat [12]).

V. K. BHAT

The author of this paper has proved in Theorems (2.6) and (2.8) of [10] the following. Let R be a ring and σ an automorphism of R. Then:

- (1) If R is a commutative pseudo-valuation ring such that $x \notin P$ for any $P \in \text{Spec}(S(R))$, then S(R) is also a pseudo-valuation ring.
- (2) If R is a σ -divided ring such that $x \notin P$ for any $P \in \text{Spec}(S(R))$, then S(R) is also a σ -divided ring.

In Theorems (2.10) and (2.11) of [10] the following results have been proved. Let R be a commutative Noetherian \mathbb{Q} -algebra and δ a derivation of R. Then

- (1) If R is a pseudo-valuation ring, then D(R) is also a pseudo-valuation ring.
- (2) If R is a divided ring, then D(R) is also a divided ring.

An analogue of the above results for near Pseudo-valuation rings, almost divided rings and almost δ -divided rings has been proved in (Bhat [12]), where R is a $\sigma(*)$ -ring. Recall that a ring R is said to be a $\sigma(*)$ -ring (σ an endomorphism of R) if $a\sigma(a) \in P(R)$ implies $a \in P(R)$ for $a \in R$ (Kwak [16]).

Theorem ([12, 2.5]). Let R be a commutative Noetherian near pseudo valuation ring which is also an algebra over \mathbb{Q} . Let σ be an automorphism of R such that R is a $\sigma(*)$ -ring and δ a σ -derivation of R. Then O(R) is a Noetherian near pseudo-valuation ring.

Theorem ([12, 2.7]). If R is a commutative Noetherian almost δ -divided $\sigma(*)$ ring which is also an algebra over \mathbb{Q} , then O(R) is a Noetherian almost δ divided ring.

In this paper we give a necessary and sufficient condition for D(R) over a Noetherian Q-algebra R to be a near pseudo valuation ring. We also give a necessary and sufficient condition for D(R) over a Noetherian Q-algebra R to be an almost divided ring. We prove similar results for S(R) over a Noetherian ring R. These results have been proved in Theorems (2.5) and (2.7) respectively. But before that, we have the following definition:

Definition 1.1. Let R be a ring. We say that an endomorphism σ of R is Min.Spec-type if $\sigma(U) \subseteq U$ for all minimal prime ideals U of R. We say that a ring R is Min.Spec-type ring if there exists a Min.Spec-type endomorphism of R.

Example 1.2. Let $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$, where F is a field. Let $\sigma \colon R \to R$ be defined by $\sigma \left(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \right) = \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix}$. Then it can be seen that σ is a Min.Spec-type endomorphism of R, and therefore, R is a Min.Spec-type ring.

Proposition 1.3. If R is a Noetherian ring and σ is an automorphism of R such that R is a $\sigma(*)$ -ring, then σ is a Min.Spec-type automorphism of R; i.e. R is a Min.Spec-type ring.

Proof. Note that σ is an automorphism, therefore, $\sigma(U) \subseteq U$ implies that $\sigma(U) = U$. Now let R be a $\sigma(*)$ -ring. We will first show that P(R) is completely semiprime. Let $a \in R$ be such that $a^2 \in P(R)$. Then $a\sigma(a)\sigma(a\sigma(a)) = a\sigma(a)\sigma(a)\sigma^2(a) \in \sigma(P(R)) = P(R)$. Therefore $a\sigma(a) \in P(R)$ and hence $a \in P(R)$. So P(R) is completely semiprime. Now let $U = U_1$ be a minimal prime ideal of R. Let U_2, U_3, \ldots, U_n be the other minimal primes of R. Suppose that $\sigma(U) \neq U$. Then $\sigma(U)$ is also a minimal prime ideal of R. Renumber so that $\sigma(U) = U_n$. Let $a \in \bigcap_{i=1}^{n-1} U_i$. Then $\sigma(a) \in U_n$, and so $a\sigma(a) \in \bigcap_{i=1}^n U_i = P(R)$. Therefore $a \in P(R)$, and thus $\bigcap_{i=1}^{n-1} U_i \subseteq U_n$, which implies that $U_i \subseteq U_n$ for some $i \neq n$, which is impossible. Hence $\sigma(U) = U$. \Box

The converse of the above need not not be true. For example let R = F[x], F a field. Then R is a commutative domain with P(R) = 0. Let $\sigma \colon R \to R$ be defined by $\sigma(f(x)) = f(0)$. Then σ is a Min.Spec-type endomorphism of R. Now let f(x) = xa, $0 \neq a \in F$. Then $f(x)\sigma(f(x)) \in P(R)$, but $f(x) \notin P(R)$. Therefore R is not a $\sigma(*)$ -ring.

2. Ore extensions

We recall that Gabriel proved in Lemma (3.4) of [13] that if R is a Noetherian \mathbb{Q} -algebra and δ is a derivation of R, then $\delta(U) \subseteq U$, for all $U \in \text{Min. Spec}(R)$. This result has been generalized in Theorem (2.2) of Bhat [9] for a σ -derivation δ of R and the following has been proved:

Theorem 2.1. Let R be a Noetherian Q-algebra. Let σ be an automorphism of R and δ a σ -derivation of R such that $\sigma(\delta(a)) = \delta(\sigma(a))$, for $a \in R$. Then $\delta(U) \subseteq U$ for all $U \in \text{Min. Spec}(R)$.

Proof. See Theorem (2.2) of Bhat [9].

Theorem 2.2 ([11, Theorem 3.7]). Let R be a Noetherian \mathbb{Q} -algebra and δ be a derivation of R. Then $P \in \text{Min. Spec}(D(R))$ if and only if $P = D(P \cap R)$ and $P \cap R \in \text{Min. Spec}(R)$.

Let R be a Noetherian ring. Then since Min. Spec(R) is finite and for any automorphism σ of R, $\sigma^j(U) \in \text{Min. Spec}(R)$ for all $U \in \text{Min. Spec}(R)$ and for all integers $j \geq 1$, it follows that there exists some positive integer m such that $\sigma^m(U) = U$ for all $U \in \text{Min. Spec}(R)$. We denote $\bigcap_{j=1}^m \sigma^j(U)$ by U^0 . With this we have the following

Theorem 2.3 ([11, Theorem 2.4]). Let R be a Noetherian ring and σ an automorphism of R. Then $P \in \text{Min. Spec}(S(R))$ if and only if there exists $U \in \text{Min. Spec}(R)$ Such that $S(P \cap R) = P$ and $P \cap R = U^0$.

Theorem 2.4 (Hilbert Basis Theorem). Let R be a right/left Noetherian ring. Let σ and δ be as usual. Then the ore extension $O(R) = R[x; \sigma, \delta]$ is right/left Noetherian.

Proof. See Theorem (1.12) of Goodearl and Warfield [14].

Remark 1. We note if R is a ring, σ an automorphism of R and δ a σ -derivation of R such that $\sigma(\delta(a)) = \delta(\sigma(a))$ for all $a \in R$. Then σ can be extended to an automorphism of O(R) by $\sigma(x) = x$; i.e. $\sigma(xa) = x\sigma(a)$ for $a \in R$. Also δ can be extended to a σ -derivation of O(R) by $\delta(x) = 0$; i.e. $\delta(xa) = x\delta(a)$ for $a \in R$.

It is known (Theorem (2.10) of Bhat [10]) that if R is a commutative Noetherian \mathbb{Q} -algebra which is also a PVR. Then D(R) is also a PVR. We generalize this result for NPVR and prove its converse also.

It is also known (Theorem (2.11) of Bhat [10]) that if R is a commutative Noetherian Q-algebra, and is also divided, then D(R) is also divided. We generalize this result for almost divided rings and prove its converse also. Towards this we prove the following:

Theorem 2.5. Let R be a Noetherian ring, which is also an algebra over \mathbb{Q} . Let δ be a derivation of R. Further let any $U \in S.Spec(R)$ with $\delta(U) \subseteq U$ implies that $O(U) \in S.Spec(O(R))$. Then

- (1) R is a near pseudo-valuation ring implies that D(R) is a near pseudo-valuation ring.
- (2) R is an almost δ -divided ring if and only if D(R) is an almost δ -divided ring.

Proof. (1) Let R be a near pseudo-valuation ring which is also an algebra over \mathbb{Q} . Now D(R) is Noetherian by Theorem (2.4). Let $J \in \text{Min.Spec}(D(R))$. Then by Theorem (2.2) $J \cap R \in \text{Min.Spec}(R)$. Now R is a near pseudo-valuation \mathbb{Q} -algebra, therefore $J \cap R \in S.Spec(R)$. Also $\delta(J \cap R) \subseteq J \cap R$ by Theorem (2.1). Now Theorem (2.2) implies that $D(J \cap R) = J$, and by hypothesis $D(J \cap R) \in S.Spec(D(R))$. Therefore $J \in S.Spec(D(R))$. Hence D(R) is a near pseudo-valuation ring.

(2) Let R be an almost δ -divided which is also an algebra over \mathbb{Q} . Now D(R) is Noetherian by Theorem (2.4). Let $J \in \text{Min.Spec}(D(R))$ and K be an ideal of D(R). Now by Theorem (2.2) $J \cap R \in \text{Min.Spec}(R)$. Now R is an almost δ -divided commutative Noetherian \mathbb{Q} -algebra, therefore $J \cap R$ and $K \cap R$ are comparable (under inclusion), say $J \cap R \subseteq K \cap R$. Now $\delta(K \cap R) \subseteq K \cap R$ by Lemma (2.18) of Goodearl and Warfield [14]. Therefore, $D(K \cap R)$ is an ideal of D(R) and so $D(J \cap R) \subseteq D(K \cap R)$. This implies that $J \subseteq K$. Hence D(R) is an almost δ -divided ring.

Conversely suppose that D(R) is almost δ -divided (note that δ can be extended to a derivation of D(R) by Remark (1)). Let $U \in \text{Min.Spec}(R)$ and V be a δ -invariant ideal of R. Now by Theorem (2.1) $\delta(U) \subseteq U$, and Theorem (2.2) implies that $D(U) \in \text{Min.Spec}(D(R))$. Now D(R) is an almost δ -divided ring, therefore D(U) and D(V) are comparable (under inclusion), say $D(U) \subseteq D(V)$. Therefore, $D(U) \cap R \subseteq D(V) \cap R$; i.e. $U \subseteq V$. Hence R is an almost δ -divided ring.

We note that in above Theorem the hypothesis that any $U \in S.Spec(R)$ with $\delta(U) \subseteq U$ implies that $O(U) \in S.Spec(O(R))$ can not be deleted as extension of a strongly prime ideal of R need not be a strongly prime ideal of D(R).

Example 2.6. $R = \mathbb{Z}_{(p)}$. This is in fact a discrete valuation domain, and therefore, its maximal ideal P = pR is strongly prime. But pR[x] is not strongly prime in R[x] because it is not comparable with xR[x] (so the condition of being strongly prime in R[x] fails for a = 1 and b = x).

It is known (Theorem (2.6) of Bhat [10]) that if R is a commutative PVR such that $x \notin P$ for any $P \in \text{Spec}(S(R))$. Then S(R) is also a PVR. We generalize this result for NPVR and prove its converse also.

It is known (Theorem (2.8) of Bhat [10]) that if R is a σ -divided Noetherian ring such that $x \notin P$ for any $P \in \text{Spec}(S(\mathbb{R}))$. Then S(R) is also a σ -divided ring. We generalize this result for NPVR and prove its converse also. Towards this we have the following:

Theorem 2.7. Let R be a Noetherian ring. Let σ be a Min.Spec-type automorphism of R. Further let any $U \in S.Spec(R)$ with $\sigma(U) = U$ implies that $O(U) \in S.Spec(O(R))$. Then

- (1) R is a near pseudo-valuation ring implies that S(R) is a near pseudo-valuation ring.
- (2) R is an almost σ -divided ring if and only if S(R) is an almost σ -divided ring.

Proof. (1) Let R be a near pseudo-valuation ring. Now S(R) is Noetherian by Theorem (2.4). Let $J \in \text{Min.Spec}(S(R))$. Then by Theorem (2.3) there exists $U \in \text{Min.Spec}(R)$ Such that $S(P \cap R) = P$ and $P \cap R = U^0$. But σ being Min.Spec-type implies that $\sigma(U) = U$, and so $U^0 = U$. Now R is a near pseudo-valuation ring implies that $U \in S.\text{Spec}(R)$. Now by hypothesis $S(U) \in S.\text{Spec}(S(R))$. But S(U) = P. Therefore $P \in S.\text{Spec}(S(R))$. Hence S(R) is a near pseudo-valuation ring.

(2) Let R be a ring which is also almost σ -divided. Now S(R) is Noetherian by Theorem (2.4). Let $J \in \text{Min. Spec}(S(R))$ and K be an ideal of S(R) such that $\sigma(K) = K$ (note that σ can be extended to an automorphism of S(R)by Remark (1)). Now by Theorem (2.3) there exists $U \in \text{Min. Spec}(R)$ Such that $S(J \cap R) = J$ and $J \cap R = U^0$. But σ being Min. Spec-type implies that $\sigma(U) = U$, and so $U^0 = U$. Now R is an almost σ -divided, therefore U and $K \cap R$ are comparable (under inclusion), say $U \subseteq K \cap R$. Therefore, $S(U) \subseteq S(K \cap R)$. This implies that $J \subseteq K$. Hence S(R) is an almost σ -divided ring.

Conversely let R be a ring such that S(R) is almost σ -divided. Let $U \in$ Min. Spec(R) and V be a σ -stable ideal of R. Now σ being Min.Spec-type implies that $\sigma(U) = U$ and Theorem (2.3) implies that $S(U) \in$ Min. Spec(S(R)). Now S(R) is an almost σ -divided ring, therefore S(U) and S(V) are comparable (under inclusion), say $S(U) \subseteq S(V)$. Therefore, $S(U) \cap R \subseteq S(V) \cap R$; i.e. $U \subseteq V$. Hence R is an almost σ -divided ring.

Problem. Let R be a NPVR. Let σ be an automorphism of R and δ a σ -derivation of R. Is $O(R) = R[x; \sigma, \delta]$ a NPVR?

Acknowledgement. The author would like to express his sincere thanks to the referee for suggestions.

References

- D. F. Anderson. Comparability of ideals and valuation overrings. Houston J. Math., 5(4):451–463, 1979.
- [2] D. F. Anderson. When the dual of an ideal is a ring. Houston J. Math., 9(3):325–332, 1983.
- [3] A. Badawi. On domains which have prime ideals that are linearly ordered. Comm. Algebra, 23(12):4365-4373, 1995.
- [4] A. Badawi. On divided commutative rings. Comm. Algebra, 27(3):1465–1474, 1999.
- [5] A. Badawi. On φ-pseudo-valuation rings. In Advances in commutative ring theory (Fez, 1997), volume 205 of Lecture Notes in Pure and Appl. Math., pages 101–110. Dekker, New York, 1999.
- [6] A. Badawi. On pseudo-almost valuation domains. Comm. Algebra, 35(4):1167–1181, 2007.
- [7] A. Badawi, D. F. Anderson, and D. E. Dobbs. Pseudo-valuation rings. In Commutative ring theory (Fès, 1995), volume 185 of Lecture Notes in Pure and Appl. Math., pages 57–67. Dekker, New York, 1997.
- [8] H. E. Bell and G. Mason. On derivations in near-rings and rings. Math. J. Okayama Univ., 34:135–144 (1994), 1992.
- [9] V. K. Bhat. On 2-primal Ore extensions. Ukr. Mat. Visn., 4(2):173–179, 2007.
- [10] V. K. Bhat. Polynomial rings over pseudovaluation rings. Int. J. Math. Math. Sci., pages Art. ID 20138, 6, 2007.
- [11] V. K. Bhat. Associated prime ideals of skew polynomial rings. *Beiträge Algebra Geom.*, 49(1):277–283, 2008.
- [12] V. K. Bhat. On near pseudo-valuation rings and their extensions. Int. Electron. J. Algebra, 5:70–77, 2009.
- [13] P. Gabriel. Représentations des algèbres de Lie résolubles (d'après J. Dixmier). (Representation of solvable Lie algebras (following J. Dixmier)). Sem. Bourbaki 1968/69, No.347, 1-22 (1971)., 1971.
- [14] K. R. Goodearl and R. B. Warfield, Jr. An introduction to noncommutative Noetherian rings, volume 16 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1989.
- [15] J. R. Hedstrom and E. G. Houston. Pseudo-valuation domains. II. Houston J. Math., 4(2):199–207, 1978.
- [16] T. K. Kwak. Prime radicals of skew polynomial rings. Int. J. Math. Sci., 2(2):219–227, 2003.

Received March 1, 2009.

SCHOOL OF MATHEMATICS, SHRI MATA VAISHNO DEVI UNIVERSITY, KATRA, DISTT. REASI, JAMMU & KASHMIR PIN-182320, INDIA *E-mail address*: vijaykumarbhat2000@yahoo.com