
Acta Mathematica Academiae Paedagogicae Nýıregyháziensis
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CLIFFORD HYPERSURFACES IN A UNIT SPHERE

SHARIEF DESHMUKH

Abstract. Let M be a compact Minimal hypersurface of the unit sphere
Sn+1. In this paper we use a constant vector field on Rn+2 to characterize

the Clifford hypersurfaces Sl

(√
l
n

)
× Sm

(√
m
n

)
, l + m = n, in Sn+1. We

also study compact minimal Einstein hypersurfaces of dimension greater
than two in the unit sphere and obtain a lower bound for first nonzero
eigenvalue λ1 of its Laplacian operator.

1. Introduction

Let M be a compact Minimal hypersurface of the unit sphere Sn+1 and
A be its shape operator. In [4], it is shown that if ‖A‖2 = n, then the
hypersurface is either Veronese surface (n = 2) or the Clifford hypersurface

Sl
(√

l
n

)
× Sm

(√
m
n

)
, l + m = n. For a pair of integers l,m, l + m = n,

Clifford hypersurface is defined by

Sl

(√
l

n

)
× Sm

(√
m

n

)
=

{
(x, y) ∈ Rl+1 ×Rm+1 : ‖x‖2 =

l

n
, ‖y‖2 =

m

n

}

which is an embedded minimal hypersurface of the unit sphere Sn+1 of constant
scalar curvature and length of its shape operator satisfies ‖A‖2 = n. One of
the interesting questions is to obtain different characterizations of the Clifford
hypersurfaces in the unit sphere Sn+1. In this paper we obtain one such char-
acterization for Clifford hypersurfaces among compact minimal hypersurfaces
without assuming that they have constant scalar curvature. We denote by
N and N the unit normal vector field of the minimal hypersurface M in Sn+1

and that of the unit sphere Sn+1 in the Euclidean space Rn+2 respectively. We
denote by 〈, 〉 the Euclidean metric on Rn+2. One of the main results is the
following:
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Theorem 1. Let M be a compact and connected minimal hypersurface of the
unit sphere Sn+1, n > 2. Then M is a Clifford hypersurface if and only if there
exists a nonzero constant vector field a on Rn+2 such that 〈a, N〉 = c

〈
a, N

〉
holds for a nonzero constant c.

In the geometry of minimal hypersurfaces of the unit sphere the Chern’s
conjecture ”For compact minimal hypersurfaces of constant scalar curvature
in the unit sphere Sn+1 the set of values of the square of the length of the
shape operator ‖A‖2 is a discrete set”, is well known (cf. [15, p.693]). It is
known that first two values of ‖A‖2 are 0 and n (cg. [3, 7, 11]). In respect of
the third value of ‖A‖2, Peng and Terng [9] have proved that if ‖A‖2 > n, then
‖A‖2 > n+ c(n) where c(n) > 1

12n
is a positive constant. Also for n = 3 these

authors proved that ‖A‖2 ≥ 6 and consequently they conjectured that the
third value of ‖A‖2 should be 2n. Indeed the immersion f : SO(3) → S4 of the
Lie group SO(3) defined by f(g) = gBg−1, where B is a 3× 3 diagonal matrix
with diagonal 1√

2
,− 1√

2
, 0 is a minimal immersion with ‖A‖2 = 6 (cf. [6]). Then

Yang and Cheng (cf. [13, 14]) improved the result of Peng and Terng by proving
c(n) > 2

7
n− 9

14
. These authors in [12] further improved this result by proving

if ‖A‖2 > n, then ‖A‖2 ≥ 1
3
(4n + 1). In this paper we prove the following

Theorem.

Theorem 2. Let M be a compact minimal hypersurface of constant scalar
curvature in the unit sphere S2n+1. If the shape operator A and the Ricci
curvature of M satisfy ‖A‖2 > 2n, and Ric < 2(n − 1), then there exists an
eigenvalue λ > 4n of the Laplace operator on M satisfying ‖A‖2 = λ− 2n.

Other important question in the geometry of compact minimal hypersurface
in the unit sphere Sn+1 is to show that the first nonzero eigenvalue λ1 of
its Laplacian operator satisfies λ1 = n, known as Yau’s problem (cf. [15]).
For embedded compact minimal hypersurfaces it has been known that λ1 ≥ n

2
(cf. [5]), however no such result is available for immersed minimal hypersurfaces
in Sn+1. In this paper we prove the following result for an immersed compact
minimal Einstein hypersurface of the unit sphere Sn+1:

Theorem 3. Let M be an immersed compact minimal Einstein hypersurface
of the unit sphere Sn+1, n > 2. Then the first nonzero eigenvalue λ1 of the
Laplacian operator on M satisfies

λ1 ≥ n

(
1− 1

n− 1

)

2. Preliminaries

Let M be an immersed compact minimal hypersurface of the unit sphere
Sn+1 with unit normal vector field N and shape operator A. We denote by ∇
and ∇ the Riemannian connections on M and Sn+1 respectively and by g the
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Riemannian metric on Sn+1 as well as that induced on M . The Ricci tensor
Ric and the scalar curvature S of M are given by (cf. [2])

(2.1) Ric(X,Y ) = (n− 1)g (X,Y )− g(AX,AY ), S = n(n− 1)− ‖A‖2

X, Y ∈ X(M), where X(M) is the Lie-algebra of smooth vector fields on M .
For a constant vector field a on Rn+2, we define smooth functions f, h : M → R
by

(2.2) f = 〈a, N〉 , h =
〈
a, N

〉

where 〈, 〉 is the Euclidean metric on Rn+2 and consequently the restriction of
a to M can be expressed as

(2.3) a = t+ fN + hN

where t ∈ X(M) is the tangential component of a to M . Using Gauss formula
for the hypersurface M in Sn+1 and for the hypersurface Sn+1 in Rn+2, we
obtain

(2.4) ∇Xt = fA(X)− hX, X(f) = −g(At,X), X(h) = g(t,X)

X ∈ X(M), and consequently the gradient fields ∇f , ∇h of the functions f , h
are given by

(2.5) ∇f = −A(t), ∇h = t

Since M is minimal hypersurface, using equations (2.4) and (2.5), we obtain
the following expressions for the Laplacians ∆f and ∆h of the functions f and
h

(2.6) ∆f = −‖A‖2 f , ∆h = −nh
Using the fact 1

2
∆f 2 = f∆f + ‖∇f‖2 and the equations (2.5) and (2.6) we

have the following

Lemma 2.1. Let M be a compact orientable minimal hypersurface of the unit
sphere Sn+1. Then∫

M

‖t‖2 = n

∫

M

h2,

∫

M

‖A(t)‖2 =

∫

M

‖A‖2 f 2.

An odd dimensional unit sphere S2n+1 in the Euclidean space R2n+2 inherits
contact structure induced by the complex structure J on R2n+2. The unit
normal vector field N of the unit sphere defines a unit vector field ξ = −JN
on the sphere S2n+1 with its dual form η and a tensor filed ϕ of type (1,1)
defined by

(2.7) ∇Xξ = −ϕX
for a smooth vector field X on S2n+1. This gives contact structure (ϕ, ξ, η, g)
on the unit sphere S2n+1 that satisfies (cf. [1])

ϕ2X = −X + η(X)ξ, η(ξ) = 1, ϕξ = 0, η(ϕX) = 0,
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g(ϕX,ϕY ) = g(X, Y )− η(X)η(Y )

η(X) = g(X, ξ),
(∇Xϕ

)
(Y ) = g(X, Y )ξ − η(Y )X

for smooth vector fields X, Y on S2n+1. For an immersed hypersurface M of
the unit sphere S2n+1 with unit normal vector field N , ϕ(N) is tangential to
M and thus we put u = −ϕ(N) where u ∈ X(M). Define a smooth function
ρ = g(ξ,N) on M and thus we express the restrictions of ξ and ϕX to M ,
X ∈ X(M) as

(2.8) ξ = v + ρN , ϕX = ψX + α(X)N

where v, ψ(X) are tangential components of ξ and ϕX to M respectively and
α is a 1-form on M dual to u, that is α(X) = g(X, u), X ∈ X(M). Let β be
the 1-form dual to the vector field v. Then the hypersurface M inherits the
structure (ψ, u, v, α, β, g) which has the property summarized in the following
Lemma the proof of which follows trivially by the properties of the contact
structure on S2n+1 and the Gauss formula for the hypersurface.

Lemma 2.2. Let M be an orientable hypersurface of the unit sphere S2n+1.
Then M inherits the structure (ψ, u, v, α, β, g) satisfying

(i) ψ2X = −X + α(X)u + β(X)v, α(u) = β(v) = 1 − ρ2, ψ(u) = −ρv,
ψ(v) = ρu, α(ψX) = ρβ(X), β(ψX) = −ρα(X)

(ii) g(ψX,ψY ) = g(X,Y ) − α(X)α(Y ) − β(X)β(Y ), α(X) = g(X, u),
β(X) = g(X, v), g(ψX, Y ) = −g(X,ψY )

(iii) (∇Xψ) (Y ) = g(X, Y )v − β(Y )X + α(Y )AX − g(AX, Y )u, ∇Xu =
ρX + ψ (AX), ∇Xv = −ψ(X) + ρAX

where ∇ is the Riemannian connection on the hypersurface and X,Y ∈ X(M).

For a non-totally geodesic compact minimal hypersurface M of constant
scalar curvature in the unit sphere Sn+1 by equations in (2.6) it follows that n
and ‖A‖2 are eigenvalues of the Laplacian operator on M . It is an interesting
question to see whether sum of two eigenvalues of Laplacian operator on a
Riemannian manifold is also an eigenvalue of the Laplacian operator. Indeed
for compact minimal hypersurface of constant scalar curvature in the odd
dimensional unit sphere S2n+1, 2n+‖A‖2 is also an eigenvalue of the Laplacian
operator as seen in the following:

Lemma 2.3. Let M be a compact minimal hypersurface of constant scalar
curvature of the unit sphere S2n+1. Then the function ρ satisfies

∆ρ = −(2n+ ‖A‖2)ρ

Proof. Using the definition of ρ and equations (2.7), (2.8) we immediately get
the following expression for the gradient ∇ρ
(2.9) ∇ρ = −u− Av

Now using (iii) in Lemma 2.2 and the skew-symmetry of the operator ψ, get

div(u) = 2nρ, div(v) = ‖A‖2 ρ
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and consequently using this in equation (2.9) we have proved the Lemma. ¤

3. Proof of theorems

Proof of Theorem 1. Let M be the minimal hypersurface of the unit sphere
Sn+1 and a, be a nonzero constant vector field on Rn+2 satisfying 〈a, N〉 =
c
〈
a, N

〉
for a constant c 6= 0. Thus using f = ch in equation (2.6) we conclude

that
(
n− ‖A‖2)h = 0. Since M is connected, we have either n = ‖A‖2 or

else h = 0. If h = 0, then by our assumption f = 0 and by first equation
in Lemma 2.1 we have t = 0. This together with equation (2.3) and the fact
that a is a constant vector field implies that a = 0 which is a contradiction.
Hence ‖A‖2 = n, n > 2 and this proves that M is a Clifford hypersurface

Sl
(√

l
n

)
× Sm

(√
m
n

)
, l +m = n (cf. [3]).

Conversely supposeM = Sl
(√

l
n

)
×Sm

(√
m
n

)
, l+m = n. Let Ψ1 : Sl

(√
l
n

)
→

Rl+1 and Ψ2 : Sm
(√

m
n

) → Rm+1 be the natural embeddings with unit normals
N1 and N2 respectively. Then the embedding Ψ = (Ψ1,Ψ2) gives the minimal

hypersurface M = Sl
(√

l
n

)
× Sm

(√
m
n

)
, l + m = n of the unit sphere Sn+1

and the unit normals N of M in Sn+1 and N of Sn+1 in Rn+2 are given by

N =

(√
m

n
N1,−

√
l

n
N2

)
, N =

(√
l

n
N1,

√
m

n
N2

)

Then the coordinate vector field a = ∂
∂x1 on Rn+2 satisfies f = ch, for the

constant c =
√

m
l
6= 0. ¤

Proof of Theorem 2. Let M be the minimal hypersurface of the unit sphere
S2n+1 with shape operator A and Ricci curvature satisfying the hypothesis of
the Theorem. Then by Lemma 2.2, the function ρ satisfies

(3.1) ∆ρ = −(2n+ ‖A‖2)ρ

We claim that the function ρ is not a constant on M . If is ρ a constant then
by equation (3.1) we get ρ = 0 and consequently the equations (2.8) and (2.9)
will imply that ξ = v is tangent to M and that Aξ = −u, and that u is a unit
vector field (by Lemma 2.2). Thus

Ric(ξ, ξ) = (2n− 1)− 1 = 2(n− 1)

which is a contradiction. Hence ρ is a non-constant smooth function. Thus
by equation (3.1) we see that ρ is an eigenfunction of the Laplacian operator
corresponding to eigenvalue λ = 2n+ ‖A‖2 > 4n, that is ‖A‖2 = λ− 2n. ¤
Proof of Theorem 3. Let M be a compact minimal Einstein hypersurface of
the unit sphere Sn+1. Then its Ricci curvature tensor is given by

Ric =
S

n
g
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where S is the scalar curvature of M which is a constant as n > 2, and
consequently ‖A‖2 is a constant. Moreover by equation (2.1) we have

A2 =
‖A‖2

n
I

This shows, as trA = 0 and eigenvalues of A are ±‖A‖√
n
, that dimM = even,

say 2m, and consequently M is a minimal hypersurface of the odd-dimensional
unit sphere S2m+1 and therefore has (ψ, u, v, α, β, g)-structure described in the
Lemma 2.2.

Let M be a compact minimal Einstein hypersurface of the unit sphere S2m+1

and σ : M → R be a smooth function. For this smooth function we define an
operator Bσ : X(M) → X(M) by

Bσ(X) = ∇X∇σ
Then the operator Bσ is symmetric and trBσ = ∆σ, moreover it is straight-
forward to verify that

(3.2) (∇Bσ) (X, Y )− (∇Bσ) (Y,X) = R(X,Y )∇σ
where R is the curvature tensor field of the hypersurface and the covariant
derivative (∇Bσ) (X, Y ) = ∇XBσ(Y )− Bσ(∇XY ). Also for a X ∈ X(M) and
a local orthonormal frame {e1, . . . , e2m} we have

X(∆σ) = X
(∑

g(Bσ(ei), ei)
)

=
∑

g((∇Bσ) (X, ei), ei)

which together with equation (3.2) gives

(3.3)
2m∑
i=1

(∇Bσ) (ei, ei) = ∇(∆σ) +
S

2m
∇σ

Now take σ as eigenfunction of ∆ corresponding to first nonzero eigenvalue
λ1, that is ∆σ = −λ1σ. Then we have

(3.4)

∫

M

‖∇σ‖2 = λ1

∫

M

σ2

We use equation (3.3) to compute

div(Bσ(∇σ)) = ‖Bσ‖2 +
∑

g (∇σ, (∇Bσ) (ei, ei))

= ‖Bσ‖2 − λ1 ‖∇σ‖2 + Ric(∇σ,∇σ)
(3.5)

If M is totally geodesic then we have λ1 = 2m = n and the result holds.
Therefore suppose M is not totally geodesic. Then M is Clifford hypersurface
(cf. [10]), and we have ‖A‖2 = 2m, consequently A2 = I which gives

(3.6) Ric(∇σ,∇σ) = 2(m− 1) ‖∇σ‖2
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Thus integrating equation (3.5) and using (3.4) and (3-6) we get

∫

M

(
‖Bσ‖2 − λ2

1
2m
σ2

)
=

λ1

2m
(λ1(2m− 1)− 4m(m− 1))

∫

M

σ2

As trBσ = −λ1σ, by Schwartz’s inequality the first integrand in above equation
is non-negative, which gives λ1(2m − 1) ≥ 4m(m − 1) and this proves the
Theorem. ¤
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