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COMMEMORATION ON OTTÓ VARGA ON THE

CENTENARY OF HIS BIRTH

LAJOS TAMÁSSY

Ottó Varga was an outstanding researcher, an architect of Finsler geometry
in the 40-th and 50-th years of the last century, and initiator of the study of
this geometry in Hungary. The greatest number of citations relate to his works
both in the first and second monographs on Finsler geometry, written by Hanno
Rund in 1959, and a generation later, in 1986, by Makoto Matsumoto.

He was born in 1909 in Szepetnek, a small village in western Hungary as a
son of a Lutheran priest. Soon the family moved to Poprad (now in Slovakia).
Varga attended his secondary school in the nearby town Kezmarok, a picturesque
place of old historic tradition at the foot of the Tatra mountains. Here he
became perfect in the Czech and German languages. He started his university
studies at the Architecture Faculty of Vienna Polytechnic, but after a year he
changed for the German University in Prague. Here he became influenced by
the work of Ludwig Berwald, and started studies in Finsler geometry at its early
stage. He received his Ph.D. degree in 1934 under Berwald’s, supervision and
he acquired his Habilitation in 1937 at the German University at a young age.
In the meantime he spent a year in Hamburg at Wilhelm Blaschke. At the same
time was a postdoctoral fellow there the well known Chinese-American geometer
Shiing-Shen Chern, who passed away a few years ago in a high age. They never
could meet each other later. After the German occupation of Czechoslovakia
Varga left Prague, and after a short stay in Kolozsvár (Cluj), he moved to
Debrecen. At that time he was the single mathematician at Debrecen University.
This was not an exceptional phenomenon. Between the two world wars a chair
usually meant a single professor and not more. Only the chairs with laboratories,
as the chairs for physics or chemistry were exceptions, where one could find a
first (senior) assistant. After the war the number of the students increased
considerable, a new university structure was set up, and at the end of the 1950s
years, when out of family reason Varga left Debrecen for Budapest, he left behind
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a new institute with about 20 well trained young mathematicians, and a group
of Finsler geometers consisting of A. Rapcsák, A. Moór and Gy. Soós. I also
consider him as my master. Since then a group of Finsler geometers exists and
works in Debrecen. Also he founded the journal Publicationes Mathematicae
Debrecen, which is a widely known journal even now. In Budapest he worked
on the Technical University and in the Mathematical Research Institute of the
Hungarian Academy of Sciences. However, he spent the most productive 20
years of his carrier in Debrecen. Budapest was not so appropriate place for him.
He was separated from his collaborators, and also his health has impaired. He
died in 1969 at a relatively young age in heart decease.

Many of his results, in other form, in modern context and notation emerge
in papers of the last decades. In most of his articles he starts from a property
of Riemannian geometry, and asks for the analogue one in Finsler geometry, a
method often used in the modern investigations.

Nearly all of his papers are written in German. Today this is not fortunate
if somebody wants to look up the origin of a problem. Nevertheless before the
Second World War German was at least so widely used in science as French
or English. The change started during the war, and the victory of the English
became complete, when Varga’s carrier came to its end.

This commemoration is not the right place for a comprehensive survey on
Varga’s scientific achievements. (His list of publication is added to this article.)
So I present only a few details of his scientific work and ideas.

If somebody wants to develop Finsler geometry on the analogy of Riemann-
ian geometry, the existence of a linear metrical connection is indispensable. A
connection of this kind was created by Elie Cartan. First it was published in
his short Comptes Rendus article (1933), and then in his booklet Les espaces de
Finsler (1934). Varga finished his first work at the time of the publication of the
Comptes Rendus article. Varga introduced and studied in his work the concept
of an affine connection and its curvatures in the line element manifold of a Finsler
space. His work had a considerable overlapping with Cartan’s article and book-
let. Therefore it became published only in a local journal in 1936. A few years
later Varga resumed the theme, and gave an elegant, geometrical construction
for the metrical parallel translation, and thus for the metrical linear connection
in Finsler spaces. These ideas were applicable also for the introduction of the
Cartan connection and of the flag curvature.

Invariant differential [8]. Let us consider a Finsler space Fn = (M,F) over
a base manifold Mn with fundamental function F (in local coordinates F(x, y),
x ∈ M , y ∈ TxM). Let g(x, y) be the Finsler metric tensor, and L : (x(t), y(t)),
t1 ≤ t ≤ t2 a line-element sequence along the curve x(t) ⊂ M . Varga considered
the 1-parameter family of Finsler geodesics γ(s; x(t)) = γ(s, t) emanating from
x(t) in the direction of y(t). In γ(s, t) t is the parameter of the family, and s is
the arc length parameter on the geodesics γ(s, t0), t1 ≤ t0 ≤ t2. {γ(s, t)} can be
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extended in a narrow tube T around x(t) to a family γ(s, a), a = a1, a2, . . . , an

covering T 1-folded, such that the correspondence (s, a) → x ∈ T is one-to-one.
Thus

d

ds
γ(s, a) =: r(x)

is a vector field on T , and

g(x) := g(x, r(x)) ⇒ V n = (T , g)

determines a Riemannian space V n on T . Let ξ0 ∈ Tx0
M , and ξ(x(t)) be its

parallel translate along x(t) in V n:

(0.1) PV n

x(t)ξ0 = ξ(x(t)).

Then, defining this ξ(x, (t)) as the parallel translate of ξ0 in Fn along L, i.e., by
the prescription

PF n

(x(t),y(t))ξ0 = ξ(x(t), y(t)) := ξ(x(t)).

Varga obtains a metrical linear connection, which turns out to be the Cartan
connection.

This construction can also be considered as a geometric interpretation of the
Cartan connection. The method applied here is the method of osculation of a
Finsler space by a Riemannian one along a line-element sequence.

Flag curvature [22]. The above method of osculation could be applied also
in case of the flag curvature. It is well known that the sectional curvature
R(x0, p0) of a Riemannian space V n = (M, g) at x0 ∈ M and at a 2-dimensional
plane position p0 in Tx0

M is the Gauss curvature KV 2(x0) of a 2-dimensional
Riemannian space V 2 = (Φ2, g) at x0 ∈ Φ2, where Φ2 = {γ(x0, ẋ0 | ẋ0 ∈ p0}
consists of the geodesics of V n emanating from x0 in directions ẋ0 tangent to
p0, and g means the Riemann metric induced on Φ2 by the original V n:

(0.2) R(x0, p0) = KV 2(x0), V 2 = V n(Φ2).

Does a similar relation exist in Finsler spaces Fn? Varga gave a positive
answer to the question. He proved that

(0.3) B(x, y, X) = SF 2(x, y),

where B is the flag curvature with flag pole X(x, y). Varga called it Berwald
curvature, and it was called Riemann curvature by H. Rund. S(x, y) is the
“interior curvature” of a 2-dimensional Finsler space F 2 defined and used by
P. Finsler in his dissertation (Kurven and Flächen in allgemeinen Räumen. Diss.
Göttingen 1918, pp. 104–106). The F 2 in (0.3) is constructed by the use of
X(x, y).

Let us consider a Finsler space Fn with metric tensor g(x, y), and a geodesic
γ(s) (denoted also by C0(s)) related to the arc length parameter s. C0 can
be extended again to a congruence of curves C = {C(s, a)}, a = a1, . . . , an;
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C(s, 0) = C0 in a tube T around C0 = γ, such that the correspondence (s, a) →
x ∈ T is one-to-one. Then

d

ds
C(s, a) = r(x)

yields a vector field on T , and by

(0.4) g(x, r(x)) =: g(x) =⇒ V n
F = (T , g)

r(x) induces a Riemannian space V n on T . Varga proved that along γ

Γj
i
k(x) = Γ∗

j
i
k(x, r(x)),

where Γj
i
k are the coefficients of the Levi-Civita connection of the constructed

V n, and Γ∗

j
i
k are the connection coefficients appearing in the Cartan connection

of Fn. Then along γ

Rijkl(x)rj(x)rk(x) = Rijkl(x, r(x))rj (x)rk(x),

where R is the curvature tensor of V n, and R is a curvature tensor of Fn. Let
now X(γ(s)) be a vector field (flag poles) along γ. Then

p(s) := (r(γ(s)), X(γ(s))

are plane positions along γ. Then

B(x, r, X) = R(x, p) = KV 2(x),

and at (x0, p0) we obtain

(0.5) B0 = K0.

This is very similar to (0.2). Yet B0 is a curvature of a Finsler space, and K0 is
the curvature of a Riemannian, not of a 2-dimensional Finslerian space.

By making use of the interior curvature Varga went a step further. The notion
of the interior curvature S of an F 2 is related to the parallel curves. Let γ(t) be
a geodesic of F 2, and γΨ(s, t) a family of geodesics emanating from the points
γ(t) and making an angle Ψ0 with d

dt
γ(t). Then γΨ0(d0, t) is a parallel curve. If

s = d0 sinΨ then Ψ is a function of s, and S is defined by

S := lim
Ψ→0

d2Ψ

ds2
.

Finsler proved that in case of a Riemannian space V 2 the interior curvature is
independent of y, and equals the sectional curvature of V 2:

F 2 = V 2 =⇒ S(x, y) = KV 2(x).

If r(x) is tangent to φ2, then from (0.4) one obtains K0 = S0 at any (x0, p0),
x0 ∈ γ. Then by (0.5)

B0 = S0,

that is the flag curvature of Fn equals the interior curvature of an F 2.
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Invariant basis [24]. According to Felix Klein each classical geometry is the
invariant theory of a transformation group. For example notions and theorems
of Euclidean, affine or projective geometries are invariants of groups of certain
linear transformations. Moreover, for each of them there exists an invariant
notion (an invariant basis) by which one can express any other invariant notion
of the related geometry. At the mentioned geometries these are (in succession)
distance, affine ratio and cross ratio. Riemannian and Finsler geometries are
not classical geometries. There exists no transformation group such that every
theorem of these geometries could be characterized as a statement invariant
under the transformations of a group. Nevertheless there may exist geometric
objects, such that any geometric object of a Riemannian or of a Finsler space,
or of their non-metric version can be expressed by several given objects. These
form an invariant basis of the concerned geometry. In case of a Riemannian
or affinelly connected space such geometric objects (called invariant basis) was
found by T. Y. Thomas and O. Veblen. The basic tool to this yielded the normal
coordinates. These are certain geodesic polar coordinates, where the geodesics
emanating from the origin cover a domain 1-folded.

The problem of finding an invariant basis for line-element spaces was solved by
Varga. The basic difficulty was that geodesics (autoparallel curves) emanating
from a point (x0, y0) of a line-element space do not cover 1-folded a domain of the
line-element space. Varga surmounted this difficulty by introducing a new type
of curves consisting not of points, but of line-elements, and called them quasi-
geodesics. A quasi-geodesic is given by a line-element (x0, y0) and a vector ξ0,
and it is by definition a curve of line-elements L(t) = (x(t), y(t)) such that ẋ(t)
is a parallel vector field along L(t):

ẋ(t) = PL(t)ẋ0, ẋ0 = ξ0,

while y(t) is also parallel along L(t):

y(t) = PL(t)y0.

The quasi-geodesic curves belonging to a given line-element (x0, y0) and to vary-
ing ξ form a (normal) coordinate system. Using these coordinates Varga proved
that by the connection coefficients Cj

i
k(x, y) and Γ∗

j
i
k(x, y) and their deriva-

tives one can express every geometric objects of a line-element space.

Angular metric [36]. Varga revealed the geometric role of the v-curvature
tensor S of a Finsler spaces. It is known that Fn induces a Riemannian metric on
the indicatrix I(x). He found that S can be expressed in terms of the curvature
tensor R of the Riemann space induced on the indicatrix. He proved that

S(y, p) =
Shkijp

hkpij

prsprs

= c(const.) ⇐⇒
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Skhij = c

∣

∣

∣

∣

∣

gkj−lklj gki − lkli

ghj − lklj ghi − lhl0

∣

∣

∣

∣

∣

,

where p means a plane position, (gik) is the metric tensor of Fn, and l(y) is the
unit vector in the direction of y. From these it follows that S vanishes if and
only if the sectional curvature c vanishes:

S(y) = 0 ⇐⇒ c = 0,

and for the curvatures we obtain that

R = (1 + S)k,

where k = 1
F 2(y) , which has the value 1 on the indicatrix I(x).

On the indicatrix we have ds = dϕ (ds means the infinitesimal distance on
I(x), and dϕ means the corresponding infinitesimal angle). Then the angular
metric is Euclidean if and only if S = 0, which is a result having already appeared
also at Cartan without proof.

These results are of basic importance.

Spaces of constant curvature [43], [46]. According to the plane criterion
of F. Schur and E. Cartan, a Riemannian space V n = (M, g) is of constant
curvature iff to any (n − 1) dimensional plane position p in TxM there exists a
totally geodesic hypersurface φn−1 tangent to p. Varga characterized the V n of
constant positive and of constant negative curvature separately. He proved that
a V n is of constant negative curvature iff through any p there exist two φn−1

with Euclidean metric, and of constant positive curvature iff there exists one
φn−1 with the same constant curvature for each p. According to his result, the
Finsler spaces of constant curvature can also be characterized by this property:
Fn is of constant curvature iff through any plane position p there exists a total
geodesic φn−1.

His further results can be found in his papers, a list of which we present in
what follows.

Ottó Varga’s list of publication

1. Beiträge zur Theorie der Finslerschen Räume und der affinzusammen-
hängenden Räume von Linienelementen. Lotos, Prague 84 (1936), 1–4.

2. Integralgeometrie 3. Croftons Formeln für den Raum. Math. Z. 40
(1935), 384–405.

3. Integralgeometrie 8. Über Masse von Paaren linearer Mannigfaltigkeiten
im projektiven Raum Pn. Rev. Mat Hispano - Americana (1935), 241–
279.

4. Integralgeometrie 9. Über Mittelwerte an Eikörpern, Mathematica 12,
65–80. – with W. Blaschke.
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6. Integralgeometrie 24. Über die Schiebungen im Raum. Math. Z. 42
(1937), 710–736.
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mationsgruppe bestimmt ist. Acta Sci. Math. Szeged 11 (1946), 55–62.
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37. Eine Charakterisierung der Kawaguchischen Räume metrischer Klasse
mittels eines Satzes über derivierte Matrizen. Publ. Math. Debrecen 4
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39. Verallgemeinerte Riemannsche Normalkoordinaten und einige Anwen-
dungen derselben. Izvestija Szofia 4 (1959), 61–69.

40. Ein elementargeometrischer Beweis des Sylvester–Frankeschen Determi-
nantensatzes. Izvestija Szofia 4 (1959), 105–107.
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metrie. Math. Notae 18 (1962), 185–196.
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Räumen. Tensor N. S. 13 (1963), 246–250.
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l’Univ. de Jassy 11B (1965), 507–512.
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– with J. Merza.
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Math. Nachrichten 38 (1968), 47–52.
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