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ON CONCIRCULAR AND TORSE-FORMING VECTOR

FIELDS ON COMPACT MANIFOLDS

JOSEF MIKEŠ AND MARIE CHODOROVÁ

Abstract. In this paper we modify the theorem by E. Hopf and found
results and conditions, on which concircular, convergent and torse-forming
vector fields exist on (pseudo-) Riemannian spaces. These results are ap-
plied for conformal, geodesic and holomorphically projective mappings of
special compact spaces without boundary.

1. Introduction

Concircular and torse-forming vector fields on Riemannian manifolds and
manifolds with affine connection were studied by K. Yano [21, 22]. We studied
the theorem by E. Hopf (see [23], p. 26) about the existence of solutions of
differential equations in partial derivations and we found some interesting result.
If we modify this theorem we can prove that on a compact Riemannian manifold
Vn with an indefinite metric there are no global torse-forming vector fields and
we can also determine other examples for which these fields do not exist.

Immediately we can find these results in the theory of conformal, geodesic,
holomorphically projective and almost geodesic mappings and transformations.
For example, conformal transformations of Einstein spaces [2, 16, 12], geodesic,
holomorphically projective mappings and transformations of semisymmetric,
Ricci-semisymmetric and other spaces are connected with the existence of con-
circular vector fields on them, see [11, 12, 13, 17]. We generalize and intensify
the results which were achieved in [18, 19, 20].

Examples of the existence of global concircular, convergent and torse-forming
vector fields are introduced in [14, 15].
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2. Modifications of Theorem by E. Hopf

First we modify the Theorem by E. Hopf (see [23], p. 26).

Theorem 1. Let Mn be a compact n-dimensional manifold and ϕ ∈ C2 be a

scalar function on Mn. Let at every point P0 ∈ Mn there exists a coordinate

neighbourhood U(x1, x2, . . . , xn) ⊂ Mn, on which there exist continuous func-

tions Aij(x) and Bi(x) at a point P (x) ∈ U such that

(1) Aαβ(x)
∂2ϕ(x)

∂xα∂xβ
+ Bα(x)

∂ϕ(x)

∂xα
≥ 0 (≤ 0),

holds all over U , and Aαβ(x)zαzβ is a positive definite quadratic form on U.

Then ϕ ≡ const on Mn.

Remarks. • Signs “≤ ” or “≥ ” in the inequalities (1) for every neighbour-
hood are identical. Here and further we consider that the studied spaces
are connected and boundless.

• Evidently we can replace partial derivatives by covariant derivations on
spaces with affine connection and on Riemannian spaces [3, 23].

• In Theorem 1 it is not demanded that functions Aij(x) and Bi(x) are
defined on every coordinate neighbourhood by geometric objects globally
on Mn as it is demanded in the theorem by S. Bochner and K. Yano
[23], p. 26, and its applications [19].

Proof. On a compact manifold Mn there is possible to select a set of coordinate
neighbourhoods U so that their union covers Mn and on each of them there hold
equations (1); due to the determinacy we give the sign “≥ ”.

Because a function ϕ is continuous and a manifold Mn is compact, ϕ reaches
its maximum at a point P0 ∈ U0 where U0 is one of the neighbourhoods. Hence
ϕ(P ) ≤ ϕ(P0) for all P ∈ U0. On U0 there holds every conditions of the theorem
by E. Hopf (see [23], p. 26) and according to it holds ϕ(P ) = ϕ(P0) for all P ∈ U0.

Further we take a coordinate neighbourhood U1 which covers U0. Obviously
ϕ(P ) ≤ ϕ(P0) for all P ∈ U1, however ϕ(P ) = ϕ(P0) for all P ∈ U1. Similarly
we can choose all selected neighbourhoods U . Because the number of these
neighbourhoods is finite and Mn is connected, we verify that ϕ(P ) = ϕ(P0) for
all P ∈ Mn. �

This theorem is possible to prove as well as in case if functions Aij and Bi

depend also on ϕ(x). We have the following theorem.

Theorem 2. Let Mn be a compact n-dimensional manifold and ϕ ∈ C2 be a

scalar function on Mn. Let at every point P0 ∈ Mn there exist a coordinate

neighbourhood U(x1, x2, . . . , xn) ⊂ Mn, on which there exist continuous func-

tions Aij(x, ϕ(x)) and Bi(x, ϕ(x)) at a point P (x) ∈ U such that

(2) Aαβ(x, ϕ(x))
∂2ϕ(x)

∂xα∂xβ
+ Bα(x, ϕ(x))

∂ϕ(x)

∂xα
≥ 0 (≤ 0),
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holds all over U . Let Aαβ(x, ϕ(x))zαzβ be a positive definite quadratic form

on U, then ϕ ≡ const on Mn.

In case of Theorem 2 we have analogous remarks as we had for Theorem 1.

Proof. On a compact manifold Mn there is possible to select a set of coordinate
neighbourhoods U so that their union covers Mn and on every of them there
hold equations (2); due to the determinacy we give the sign “≥ ”.

Let
∗

ϕ be a solution on Mn, for which formula (2) holds. On all domains U we

set Aij(x) ≡ Aij(x,
∗

ϕ(x)) and Bi(x) ≡ Bi(x,
∗

ϕ(x)). Then inequalities (2) have

forms (1) for a solution
∗

ϕ.
We search a solution ϕ on Mn which satisfies inequalities (1). According to

Theorem 1, we have ϕ ≡ const for all solutions ϕ.

Because
∗

ϕ is a solution of (1),
∗

ϕ ≡ const on Mn. �

3. Concircular and torse-forming vector fields

A vector field Φ defined on a space An with affine connection is called torse-

forming if it holds:

(3) ∇XΦ = ν X + µ(X)Φ

where ν is a function, µ(X) is a linear form, X is an arbitrary vector field, and
∇X is a covariant derivation on An respectively to a vector X .

In local transcriptions we can write

(4) ϕh
,i = ν δh

i + µi ϕh

where ϕh and µi are components of Φ and µ(X), respectively, “ , ” means a
covariant derivation on An, and δh

i is the Kronecker symbol.
A torse-forming field we call concircular if µ(x) = 0 and ν is an arbitrary

function. If µ(X) = 0 and ν = const this field is convergent.

If µ(X) is a gradient-like (i.e. it holds µ(X) = ∇X
∗

µ , where
∗

µ is a function)

then a vector field Θ = exp(−
∗

µ )Φ satisfying equations ∇XΘ = ρX where

ρ = ν exp(−
∗

µ) is concircular too. Vice versa, if Θ is concircular then every
vector field which is collinear with Θ is torse-forming too.

On a Riemannian space Vn with a metric tensor g(X, Y ) we consider a linear
form ϕ(X) = g(X, Φ). Locally this form ϕ(X) is always gradient.

A torse-forming (including concircular and convergent) vector field will be
called gradient if a linear form ϕ(X) is gradient, i.e. that on Vn there exists
a scalar function ϕ for which ϕ(X) = ∇Xϕ. A form µ(X) corresponding to
gradient torse-forming fields Φ is collinear to a form ϕ(X). Subsequently, we
can write equations (3) for these vector fields as follows:

(5) ∇X∇Y ϕ = ν g(X, Y ) + τ ∇Xϕ∇Y ϕ,
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where ν, τ are functions.
For concircular and torse-forming fields it is naturally required that

Φ, ϕ ∈ C1;
∗

ϕ ∈ C2; An ∈ C0; Vn ∈ C1.

See a local expression

Φh(x) ∈ C1; ϕ(x) ∈ C1;
∗

ϕ(x) ∈ C2; Γh
ij(x) ∈ C0; gij(x) ∈ C1,

where Γh
ij are components of affine connection ∇ on An, gij are components

of a metric tensor on Riemannian space Vn, Cr is the class of the continuity.
Naturally, ν ∈ C0 and τ ∈ C0.

4. Concircular and torse-forming vector fields globally on

compact manifolds

Below, we study some sufficient conditions on which torse-forming fields on
compact spaces do not exist.

It holds

Theorem 3. On compact pseudo-Riemannian spaces Vn ∈ C1 there exist only

vanishing torse-forming fields.

Proof. Let on Vn ∈ C1 there exist the mentioned vector fields, i.e. there exists
a scalar function ϕ ∈ C2 satisfying (5). We assume that ϕ (6≡ const ), ν and τ

are continuous functions. We prove that this solution does not exist.
Remark that the pseudo-Riemannian space Vn has an indefinite metric g.
Let P0 be some point on Vn. There exist such a coordinate neigbourhood

U∗(x) as
gij(P0) = diag (1,−1, e3, . . . , en), (ei = ±1).

We get

A(x)
def
=

−1

g11(x)
(n g22(x) + g33(x) + · · · + gnn(x)).

Evidently, A(P0) ≥ 2. Therefore there exists a domain U ⊂ U∗ which includes
a point P0 for which A(x) > 0. Hence

Aij(x)
def
= diag(A(x), n, 1, . . . , 1)

determine on a domain U the positive form Aαβ(x)zαzβ as well as on this domain
there holds

Aαβ(x) gαβ(x) = 0.

The local expression of (5) has the following form

(6) ϕ,ij − τ ϕ ,iϕ,j = ν gij .

Contracting the last formula with Aij , we get

(7) Aαβ ϕ , αβ − Bαϕα = 0,

where Bi ≡ τ Aiβϕ , β .



ON CONCIRCULAR AND TORSE-FORMING VECTOR FIELDS. . . 333

Evidently, according to Theorem 2 it holds ϕ ≡ const on Vn. �

Theorem 4. On compact Riemannian spaces Vn ∈ C1 there do not exist torse-

forming fields satisfying condition ν ≥ 0 (or ν ≤ 0) on whole Vn.

Proof. According to Theorem 3 it remains to study only the case if on Vn there
is a positive definite metric.

We consider equations (5) respective to a function ϕ. On coordinate neigh-
bourhoods U these equations have the form (6) and after the contraction (6)
with Aij ≡ gij (where ‖gij‖ = ‖gij‖

−1) we get

(8) Aαβ ϕ , αβ − Bαϕα = n ν,

where Bi ≡ τ Aiβϕ , β . The right side of (8) is either every non-negative or
non-positive. Considering a positive definite metric the conditions of Theorem 2
hold. Hence ϕ ≡ const . �

Evidently, the conditions for concircular fields are contained in Theorems 3
and 4. The next follows from Theorem 4:

Lemma 1. On compact Riemannian spaces Vn ∈ C1 there do not exist gradient

convergent vector fields.

In fact, conditions of Theorem 4 in this case are ν = const then they satisfy
conditions of the Theorem 4.

Lemma 2. On compact Riemannian spaces Vn ∈ C1 there do not exist covari-

antly non-constant convergent vector fields.

Proof. On Vn there is a convergent vector field Φ satisfying ∇XΦ = µX , µ is
constant. We consider a function λ ≡ g(Φ, Φ). It is easy to see, that ∇X∇Y λ =
2µg(X, Y ). According to Lemma 1 it follows λ ≡ const . Hence µ = 0. Then it
follows ∇XΦ = 0. �

In [17] there are studied torse-forming vector fields Φ satisfying:

(9) g(Φ, Φ) = e; ∇XΦ = ν (X − e g(X, Φ)Φ),

where e = ±1.
These conditions hold on normalization non-vanishing non-isotropic torse-

forming vector fields.
Therefore we will call a vector field Φ satisfying (9) a normalized torse-forming

field. Naturally, the Theorems 1 and 3 hold as well as for these fields. It is shown
that the Theorems 1 and 3 generalize the results introduced in [18].
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5. Applications of achieved results

The above introduced results, we use for conformal, geodesic and holomorphically-
projective mappings of compact manifolds without boundary.

(Pseudo-) Riemannian manifold Vn admits conformal mappings onto (pseudo-
) Riemannian manifold Vn if their metrics are connected by the following con-
dition ḡ = ̺ · g where ̺ is a function. If ̺ ≡ const , then the mappings are
homothetic. A conformal mapping Vn → Vn is called conformal transformation

on Vn.
H. W. Brinkman, see [16], proved that if an Einstein space Vn admits a

conformal mapping onto Einstein space V̄n, then a gradient (like a vector field)
∇̺ is concircular.

The next Theorem follows from Theorem 3.

Theorem 5. If a compact pseudo-Riemannian Einstein space Vn (n ≥ 3) admits

a conformal mapping onto Einstein space V̄n, then this mapping is homothetic.

Theorem 6. If a compact pseudo-Riemannian Einstein space Vn (n ≥ 3) admits

a conformal transformation, then this transformation is homothetic.

Remark. Theorems 5 and 6 fail for classical Riemannian metrics (even if we re-
place ligt-line by usual completeness) – Möbius transformations of the standard
round sphere and the stereographic map of the punctured sphere to the Eu-
clidean space are conformal nonhomothetic mappings. One can construct other
examples on warped Riemannian manifolds, see [6].

If semisymmetric, Ricci-semisymmetric, Kählerian, Ricci-flat, and flat (pseu-
do-) Riemannian spaces admit non-trivial geodesic mappings, then on these
spaces there exists nonvanishing convergent vector field, see [9, 10, 8, 7, 11].

Analogically, if semisymmetric, Ricci-semisymmetric, and flat Kählerian spa-
ces admit non-trivial holomorphically-projective mappings, then also on these
spaces there exists nonvanishing convergent vector field, see [1, 10, 12].

According to Lemma 2, above mentioned compact special spaces do not admit
global geodesic and holomorphically-projective mappings.

Finally, we remark that I. Hinterleitner and V. Kiosak introduced ϕ-Ric vec-
tor fields by the following equation ϕi,j = µ Rij , where µ is a constant, Rij is
the Ricci tensor, see [4]. One can use Theorem 1 for a gradient vector field ϕi.
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