
Acta Mathematica Academiae Paedagogicae Nýıregyháziensis
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FINSLER STRUCTURE IN THERMODYNAMICS AND

STATISTICAL MECHANICS

TAKAYOSHI OOTSUKA

Abstract. We consider the Finsler structure and contact structure in vari-
ational principle of equilibrium thermodynamic theory. Einstein’s statis-
tical thermodynamic theory was proposed as a statistical mechanics using
macroscopic thermodynamic variables as stochastic variables. We gener-
alise Einstein’s statistical theory from Finsler geometrical viewpoint, and
operating inverse process of variation, path integration, we propose a new
statistical theory. Einstein’s theory becomes the WKB approximation of
our new theory.

1. Geometrisation of Mechanics

We present the Finsler structure in thermodynamics and statistical mechan-
ics. Before that, we will sketch Finsler and contact structure in mechanics.

Conventionally, Lagrange mechanics is defined on configuration space Q. The
configuration space have no geometric structure. But there is Finsler structure
on an extended configuration space which is time together with configuration
space: M = R × Q. On the extended space M , Lagrangian mechanics can
be considered as Finsler geometry. If the conventional Lagrangian L(x, ẋ, t) is
given, we can define a Finsler function F (t, x, dt, dx) = L

(

x, dx
dt

, t
)

|dt| on M .
Then using Finsler function, the action A[γ] of curve γ : [s0, s1] ⊂ R → M is
defined by

A[γ] =

∫

γ

F (x, dx) =

∫ s1

s0

F

(

xµ(s),
dxµ(s)

ds

)

ds.

From homogeneity condition of F , the action A[γ] is reparametrisation invariant,
so it defines geometric length. From the principle of least action δA[γc] =
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0, we can get Euler-Lagrange equation of motion δA
δγµ = 0. The important

thing is, that this equation of motion is not only time coordinate free, but also
space coordinate free. So, equation of motion becomes a geodesic equation.
This is the geometrisation of mechanics. For physics from the general principle
of relativity, which says that the physical phenomena should be described by
geometry, we should consider Lagrangian mechanics as Finsler geometry. So we
call this Finsler Lagrangian mechanics.

2. Hamilton formalism

Next we review Hamiltonian formalism for Finsler Lagrangian mechanics.
We define conjugate momentum pµ = ∂F

∂yµ from Finsler function F (x, y). From

homogeneity condition of Finsler function : yµ ∂F
∂yµ = F , this momentum pµ have

0-th homogeneity: pµ(x, λy) = pµ(x, y) or yν ∂pµ

∂yν = 0. Therefore, det
(

∂pµ

∂yν

)

= 0

and there is a constraint equation G(x, p) = 0. This function G is a covariant
Hamiltonian, or, state equation in thermodynamics. The action given by this
Hamiltonian is

A[γ] =

∫

γ

(

pµ

dxµ

ds
− λG

)

ds,

where λ is a Lagrange multiplier and s is an arbitrary parameter. From the
principle of least action, we get Hamilton equation and constraint,

dxµ

ds
= λ

∂G

∂pµ

,
dpµ

ds
= −λ

∂G

∂xµ
, G = 0.

We should call these covariant Hamilton equations. This is the Hamiltonian
formalism for Finsler Lagrangian mechanics.

3. Geodesic distance

Here we review geodesic distance in Finsler Lagrangian mechanics. Using
solution of equation of motion γc, which is a geodesic curve, we can define
geodesic distance W (x1, x0) = A[γc] =

∫

γc

pµdxµ between two points x0 and

x1. W (x1, x0) is a value of action evaluated on geodesic curve between x0 and
x1. In language of physics, W corresponds to Hamilton’s principal function. By
taking variation of this action, we get δW (x1, x0) = p1δx1 − p0δx0, so pµ =
∂W
∂xµ . Substituting this into the constraint equation G(x, p) = 0, we can get the

Hamilton-Jacobi equation G
(

xµ, ∂W
∂xµ

)

= 0, which is in the covariant form. Here
we make a brief statement about the relation to contact geometry, which we
will return in the latter section. Let Σ be submanifold of T ∗M , defined by the
constraint G(x, p) = 0. Σ corresponds to extended phase space of mechanics
or thermodynamics. With Θ = pµdxµ, (Σ, Θ) becomes a contact manifold.
This contact manifold can be considered as the stage of covariant Hamiltonian
formalism.
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4. Variational principle of thermodynamics

We discuss the variational principle in thermodynamics, which is a good ex-
ample of Finsler structure. That is, thermal configuration space M can be
considered simply as the space of extensive variables {(E, V )}. E, V represent
energy and volume of the thermal system respectively. Then the second law of
thermodynamics is represented by the following inequality relation.

dS ≥
δQ

Tex
(1)

LHS is the infinitesimal entropy difference of thermal points, and RHS is the
given amount of heat by the heat bath. If equal, then the thermal process is
reversible, which is also called quasi-static change in physics. If not, the thermal
process is irreversible. In conventional physics, RHS of (1) could not be written
more accurately. But here, we will assume that RHS of (1) can be represented
by Finsler function:

δQ

Tex
= F (E, V, dE, dV ).

That is to say, the infinitesimal thermal process between (E, V ) and (E+dE, V +
dV ) can be given by Finsler function F (E, V, dE, dV ). Then the thermal con-
figuration space becomes Finsler manifold (M, F ). For later convenience, We
write F (E, V, dE, dV ) as

F (E, V, dE, dV ) = pe(X, Ẋ)Ėds + pv(X, Ẋ)V̇ ds

using the conjugate momentum of E and V , and considering homogeneity con-
dition of F . Here, X represents E or V and s is an arbitrary parameter. By this
assumption, the action of thermodynamic process becomes A[γ] =

∫

γ
F (X, dX),

where γ represents the thermodynamic process. Then we can get reversible pro-
cess or quasi-static change as a maximum change of this action. So quasi-static
change γc is given as a geodesic δA[γc] = 0.

5. Analogy with Mechanics

Table 1 shows the analogy between thermodynamics and mechanics [10].
Entropy S corresponds to the geodesic distance W . First law of reversible
thermodynamics dS = kβdE − kβpdV corresponds to dW = pµdxµ. State
equation of thermodynamics f(E, V, T, p) = 0 is in analogy to a constraint
G = 0. Hamilton-Jacobi equation G

(

xµ, ∂W
∂xµ

)

= 0 in mechanics corresponds

to f
(

E, V, ∂S
∂E

, ∂S
∂V

)

= 0 which is Hamilton-Jacobi equation of thermodynam-
ics. The relations corresponding to Hamilton equation and action functional are
unknown. But still we can understand these in a special example, ideal gas.
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thermodynamics analytical mechanics

S W

dS = kβdE − kβpdV dW = pµdxµ

f(E, V, T, p) = 0 G(xµ, pµ) = 0

f
(

E, V, ∂S
∂E

, ∂S
∂V

)

= 0 G
(

xµ, ∂W
∂xµ

)

= 0

∗ ∗ ∗ dxµ

ds
= λ ∂G

∂pµ

,
dpµ

ds
= −λ ∂G

∂xµ

∗ ∗ ∗ A[γ] =
∫

γ
F (x, dx)

Table 1. Analogy between thermodynamics and mechanics

6. Geometrisation of thermodynamics

Here we will construct Finsler structure or contact structure of thermodynam-
ics taking a special and simple example, ideal gas. At the beginning, we do not
know the Finsler function of thermal configuration space (M, F ) = ({(E, V )}, F )
neither the action A[γ] =

∫

γ
F (X, dX). But we do know the entropy S = A[γc] =

∫

γc

F (X, dX), which is the geodesic distance. So, we can determine the Finsler

structure by considering the Hamiltonian formalism. Thermal phase space is a
submanifold Σ of T ∗M . T ∗M is the space of extensive and intensive variables.
For example, the coordinates of the space, are E, V , T : temperature, p: pres-
sure. The submanifold Σ, which is the thermal phase space, is determined by
thermal state equation G1(E, V, T, p) = 0. For ideal gas, G1 = pV − 2

3E = 0.

Instead of T and p, we use pe = ∂S
∂E

= 1
kT

and pv = ∂S
∂V

= p
kT

that are conjugate
momentum of E and V . Then by (Σ, Θ = pµdXµ) we can regard this as a
contact structure of thermodynamics. But in this case contact form Θ becomes
singular by coincidence: dΘ ∧ Θ = 0. Therefore, we must take further gauge-
fixing conditon G2(E, V, pe, pv) = 0. Considering these conditions, we obtain the
action for Hamiltonian formalism, where λ1, λ2 are the Lagrange multipliers;

A[γ] =

∫

γ

pedE + pvdV + λ1(pvV − 2
3peE)ds + λ2G2(E, V, pe, pv)ds.

The Hamilton equations of thermodynamics are
{

dE
ds

= 2
3λ1E − λ2

∂G2

∂pe

, dV
ds

= −λ1V − λ2
∂G2

∂pv

,

dpe

ds
= − 2

3λ1pe + λ2
∂G2

∂E
, dpv

ds
= λ1pv + λ2

∂G2

∂V
.

And these solution becomes pe = rE−1, pv = 3rV −1 where r is a constant. It
is important to notice that usually the ideal gas is defined by the state equa-
tion pV = 2

3E and E = rT . However, we can get the latter relation from
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Hamilton equation. Therefore we are able to construct the Finsler structure of
thermodynamics if we have the state equation.

7. Einstein’s thermal statistics

Here is another story of statistical thermodynamics by Einstein. Usually sta-
tistical mechanics is based on microscopic point of view. But Einstein proposed
the statistical thermodynamics from macroscopic point of view. In thermody-
namics, all the thermal variables are definite values in equilibrium state. But
even in this equilibrium state, an accurate observation shows that these variables
have fluctuation. Therefore, Einstein considered these variables as stochastic

variables. He proposed the measure of these variables as P(α) ∝ exp
[

S(α)
k

]

.

The average of these variables αi are given by 〈αi〉 =
∫

dααi exp
[

S(α)
k

]

. How-

ever, Einstein’s theory is not so useful for physics for its lack of accuracy. In the
next section we will generalise Einstein’s theory using the previous discussion.

8. Generalise Einstein’s theory

We will generalise Einstein’s statistical thermodynamics by using the Finsler
structure of thermodynamics. We consider the analogy to the construction of
quantum mechanics from classical mechanics. By taking the inverse operation
of variation, a more fundamental quantum theory can be obtained from classical
Lagrangian mechanics.

δA[γc] = 0
quantisation

=⇒ Ψ =

∫

δγ exp

(

i

~
A[γ]

)

This is what Feynman had proposed. Similarly, by inverse operation of variation,
we can construct a more fundamental theory, a new statistical theory which is
a generalisation of Einstein’s theory.

δA[γc] = 0
statisticalisation

=⇒ P =

∫

δγ exp

(

1

k
A[γ]

)

By using the technique of Finsler path integral proposed by Ootsuka and Tanaka [7],
we can define this new statistical theory formally. Evidently, we can regard the
Einstein’s theory as a WKB approximation of this new theory.

9. Discussion

The geometrisation of thermodynamics in the perspective of contact structure
was initiated by Caratheodory, leading to works of Hermann [3] and Mruga la et
al’s [6]. On the other hand, introduction of a Riemannian structure to thermo-
dynamical phase space was proposed by Ruppeiner [9]. Janyszek-Mruga la [4]
makes a research from a standpoint of information geometry [1]. Thermody-
namics in curved spacetime or Finsler spacetime was considered by Antonelli-
Zastawniak [2] and Vacaru [11]. Our research is based on the Finsler structure,
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or contact structure, which could be naturally derived from the thermal state
equation describing the second law of thermodynamics. As far as we know, the
research which points out clearly to the existence of these geometrical structure
is done only by Suzuki [10]. Our motivation of geometrisation of thermodynam-
ics and generalisation of Einstein’s theory is very similar to one’s of Mruga la [5]
and Ruppeiner [8], however, it is different in the sense that we utilise point

Finsler geometry, and also our previous work Finsler pathintegral [7] as a tool
to generalise Einstein’s statistical mechanics.
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