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KIMMERLE’S CONJECTURE FOR INTEGRAL GROUP

RINGS OF SOME ALTERNATING GROUPS

MOHAMED A. M. SALIM

Abstract. Using the Luthar–Passi method and results of Hertweck, we
study the long-standing conjecture of Zassenhaus for integral group rings of
alternating groups An, n ≤ 8. As a consequence of our results, we confirm
the Kimmerle’s conjecture about prime graphs for those groups.

1. Introduction and main results

Let G be a finite group and let ZG be the integral group ring of G. By
V (ZG) we denote the group

{

∑

g∈G

αgg ∈ U(ZG) :
∑

g∈G

αg = 1

}

of normalized units in ZG. As the group of units U(ZG) is completely deter-
mined by U(ZG) = U(Z)× (ZG), throughout this paper all units are normal-
ized and distinct from the identity element of G.
A long-standing conjecture in the theory of integral group rings is the fol-

lowing conjecture of H. Zassenhaus(see [32]).

Conjecture (ZC). Every torsion unit u in V (ZG) is conjugate to an element in
G within the rational group algebra QG; i.e. there exist a group element g in
G and w in QG for which w−1uw = g.

A positive answer is given for nilpotent groups and for some other special
types of groups. For finite simple groups, the main tool for investigating (ZC)
is the Luthar–Passi method introduced in [26] to confirm the conjecture for
A5. Later, M. Hertweck applied the method to Brauer character tables in the
investigation of the Zassenhaus conjecture for PSL(2, 7) (see [20]). Using the
same technique of Hertweck on the group A6 (≅ PSL(2, 9)), almost a positive
solution we achieved in [29] with one remaining case for units of order 6 which
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been completed by M. Hertweck in [23]. Also some related properties can be
found in [1] and [27], while in the latter paper some weakened variations of
the conjecture have been made. The Zassenhaus conjecture (ZC) is still open
for all sporadic simple groups, and for some recent results on sporadic simple
groups we refer to the papers [4]–[15].
In parallel to the (ZC) and as a useful technique that we have used is the

conjecture of W. Kimmerle (KC), which involves the concept of prime graph
(see [25]). For a group H, let pr(H) denotes the set of all prime divisors of
the orders of torsion elements of H. The Gruenberg–Kegel graph (or the prime
graph) of H is a graph π(H) with vertices labelled by primes in pr(H), such
that vertices p and q are adjacent if H contains an element of order pq. In [25],
W. Kimmerle made the following conjecture.

Conjecture (KC). If G is a finite group then π(G) = π(V (ZG)).

Obviously, the Zassenhaus conjecture (ZC) implies the Kimmerle’s conjec-
ture (KC). In [25], W. Kimmerle has shown that (KC) holds for finite Frobe-
nius and solvable groups. However the (ZC) remains open for such groups.
Although, (KC) still open for symmetric groups in general, it been confirmed
for Sn, where n ≤ 7 (see [27], [23], [29] and [30]).
In this paper, we continue these investigations for the alternating groups A7

and A8. Our main results, Theorems 1 and 2, give a reasonable amount of
information on all possible torsion units in V (ZA7) and V (ZA8), respectively.
For torsion units which we can not confirm (ZC), a strong restrictions on their
partial augmentations been obtained. And hence, an immediate consequence
of these results, we get a positive answer to (KC) for those two groups.
Let u =

∑

αgg be a normalized torsion unit of ZG of order k. For any
character χ (of G) of degree n, we have that χ(u) =

∑m
i=2 νiχ(hi), where

h′
is are representatives of the conjugacy classes C′

is, 2 ≤ i ≤ m, of G and
νi = εCi(u) are the partial augmentations of u. In addition, from Higman-
Berman’s Theorem (see [1]), we know that ν1 = 0 and

(1) ν2 + ν3 + · · ·+ νm = 1.

The main results of this paper are the following two theorems.

Theorem 1. Let G be the alternating group A7 and u be a torsion unit in
V (ZG) of order |u|. Then the following statements hold.

(i) If |u| 6= 12, then |u| coincides with the order of some element g ∈ G.
(ii) If |u| ∈ {2, 3, 5, 7}, then u is rationally conjugate to some element

g ∈ G.
(iii) If |u| = 4, then the tuple of the partial augmentations of u belongs to

{(ν2a, ν3a, ν3b, ν4a, ν5a, ν6a, ν7a, ν7b) ∈ Z8 |

(ν2a, ν4a) ∈ {(0, 1), (2,−1)}, νnt = 0, nt 6∈ {2a, 4a}}.
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(iv) If |u| = 6, then the tuple of the partial augmentations of u belongs to

{(ν2a, ν3a, ν3b, ν4a, ν5a, ν6a, ν7a, ν7b) ∈ Z8 |

(ν2a, ν3a, ν3b, ν6a) ∈ { (−2, 1, 2, 0), (0, 0, 0, 1), (2, 0, 0,−1), (0, 1,−1, 1),

(−2, 2, 1, 0), (2,−1, 1,−1) }, νnt = 0, nt 6∈ {2a, 3a, 3b, 6a}}.

(v) If |u| = 12, then the tuple of the partial augmentations of u does not
belong to

Z8 \ { (ν2a, ν3a, ν3b, ν4a, ν5a, ν6a, ν7a, ν7b) ∈ Z8 |

(ν2a, ν3a, ν3b, ν4a, ν6a) ∈ { (2, 0, 0,−2, 1), (1, 0, 0, 1,−1), (0, 1, 2,−2, 0),

(0, 0, 0, 2,−1), (1, 0, 0,−1, 1) }, νnt = 0, nt 6∈ {2a, 3a, 3b, 4a, 6a} }.

Theorem 2. Let G be the alternating group A8 and u be a torsion unit in
V (ZG) of order |u|. The following statements hold.

(i) If |u| 6= 12, then |u| coincides with the order of some element g ∈ G.
(ii) If |u| ∈ {5, 7, 15}, then u is rationally conjugate to some g ∈ G.
(iii) If |u| = 2, then the tuple of the partial augmentations of u belongs to

{ (ν2a, ν2b, ν3a, ν3b, ν4a, ν4b, ν5a, ν6a, ν6b, ν7a, ν7b, ν15a, ν15b) ∈ Z13 |

(ν2a, ν2b) ∈ { (0, 1), (2,−1), (1, 0), (−1, 2) }, νnt = 0, nt 6∈ {2a, 2b} }.

(iv) If |u| = 3, then the tuple of the partial augmentations of u belongs to

{ (ν2a, ν2b, ν3a, ν3b, ν4a, ν4b, ν5a, ν6a, ν6b, ν7a, ν7b, ν15a, ν15b) ∈ Z13 |

(ν3a, ν3b) ∈ { (0, 1), (1, 0), (−1, 2) }, νnt = 0, nt 6∈ {3a, 3b} }.

As an immediate consequence of above results, we have a positive answer
for (KC).

Corollary. If G = An, where n ≤ 8, then π(G) = π(V (ZG)).

2. Preliminaries

Throughout the paper, we simply denote the p-Brauer character table of the
group G will by BCT(p). For a torsion unit u in V (ZG), the (ZC) provides
that χ(u) = χ(x) for some x ∈ G; and hence an equivalence statement for
(ZC) was given by Luthar–Passi as follows.

Lemma 1. (See [26].) Let u ∈ V (ZG) be of order k. Then u is conjugate in
QG to an element g ∈ G if and only if for each d dividing k there is precisely
one conjugacy class C with partial augmentation εC(u

d) 6= 0.

In order to start our study, we consider the calculation (by GAP) of the
indicated numbers µm(u, χ, p) in what follow for each possible order k of a
torsion unit u in V (ZG), taking in account the following five facts. These
facts give the relations between the order k of u and the partial augmentations
ν = εCi(u).
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Lemma 2. (See [20] and [26]) Let p be either 0 or a prime divisor of |G| and
let F be the associated prime field. Suppose that u ∈ V (ZG) has finite order
k that is relatively prime to k (i.e. k and p are coprime) if p 6= 0. If z is a
primitive k−th root of unity and χ is either a classical character or a p-Brauer
character of G, then, for every integer m, the number

(2) µl(u, χ, p) =
1

k

∑

d|k

TrF (zd)/F{χ(u
d)z−dm}

is a non-negative integer.

Note that if p = 0, we use the notation µl(u, χ, ∗) for µl(u, χ, p).

Lemma 3. (See [17].) The order of any torsion unit u ∈ V (ZG) divides the
exponent of G.

Lemma 4. (See [26].) Let u be a torsion unit in V (ZG) and C be a conjugacy
class of G. If p is a prime divisor of the order of elements a ∈ C but not the
order of u, then εC(u) = 0.

Lemma 5. (See [21] and [22].) Let G be a finite group and u be a torsion unit
in V (ZG). If x is an element of G whose p-part, for some prime p, has order
strictly greater than the order of the p-part of u, then εx(u) = 0.

Lemma 6. (See [17].) Let p be a prime and u be a torsion unit in V (ZG) of
order pn, n ≥ 1. Then for any m( 6= n) the sum of all partial augmentations of
u with respect to conjugacy classes of elements of order pm is divisible by p.
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3. Proof of Theorem 1

Within this section G denote the alternating group A7. It is well-known
that exp(G) = 420 = 22 · 3 · 5 · 7. The character table of G, as well as the
Brauer character tables BCT(p), where p ∈ {2, 3, 5, 7}, can be found using the
computational algebra system GAP (see [6] and [19]).
Since the group G possesses elements of orders 2, 3, 4, 5, 6 and 7, we shall

study units in V (ZG) of these orders. Moreover, by Lemma 3, the order of
each torsion unit divides exp(G), thus it remains to consider units of orders
10, 12, 14, 15, 21 and 35. But among these numbers, except 12, we prove that
there is no unit of such orders are exist in V (ZG).
Obviously, G has exactly 8 distinct non-singleton conjugacy classes 2a, 3a,

3b, 4a, 5a, 6a, 7a and 7b. We consider each possible unit order separately, where
we use Lemma 4 and Equation (1) to determine the non-zero augmentations
νnt for which

∑

Cnt
νnt = 1. Then we use the Formula (2) of Lemma 2 to write

the appropriate system of inequalities for such order.
• If |u| ∈ {2, 5}, then, by Lemmas 1 and 5, u has only one non-zero partial
augmentation.
• Let |u| = 3. Then we have ν3a + ν3b = 1, and hence get the system

µ0(u, χ2, ∗) =
1

3
(6ν3a + 6) ≥ 0;µ1(u, χ2, ∗) =

1

3
(−3ν3a + 6) ≥ 0;

µ0(u, χ2, 2) =
1

3
(−4ν3a + 2ν3b + 4) ≥ 0;µ0(u, χ2, 7) =

1

3
(4ν3a − 2ν3b + 5) ≥ 0,

which has only the trivial solutions (ν3a, ν3b) ∈ {(1, 0), (0, 1)} satisfying that
all µi(u, χj, p) are non-negative integers.
• Let |u| = 7. Then we have ν7a + ν7b = 1, and hence get the system

µ1(u, χ3, ∗) =
1

7
(t1 + 10) ≥ 0;µ3(u, χ3, ∗) =

1

7
(−t2 + 10) ≥ 0;

µ1(u, χ2, 2) =
1

7
(−t1 + 4) ≥ 0;µ3(u, χ2, 2) =

1

7
(3t2 + 4) ≥ 0,

where t1 = 4ν7a−3ν7b and t2 = 3ν7a−4ν7b.This system has only the trivial solu-
tions (ν7a, ν7b) ∈ {(1, 0), (0, 1)} satisfying that all µi(u, χj, p) are non-negative
integers.
Thus, for units of orders 2, 3, 5 and 7 there is precisely one conjugacy class

with non-zero partial augmentation. Hence, by Lemma 1, part (ii) of Theorem
1 is proved.
• Let |u| = 4. Then we have ν2a + ν4a = 1, and hence get the system

µ0(u, χ2, ∗) =
1

4
(4ν2a + 8) ≥ 0;µ2(u, χ2, ∗) =

1

4
(−4ν2a + 8);

µ0(u, χ2, 7) =
1

4
(2ν2a − 2ν4a + 6) ≥ 0,

which has only two solutions (ν2a, ν4a) ∈ {(0, 1), (2,−1)} satisfying Lemma 6
and the requirement for µi(u, χj, p) to be non-negative integers.
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• Let |u| = 6. Then we have ν2a+ν3a+ν3b+ν6a = 1, and either χ(u2) = χ(3a)
or χ(u2) = χ(3b) since u2 is of order 3.
Put t1 = ν3a + ν3b − 3ν6a, t2 = ν2a − 3ν3a + ν6a, t3 = ν2a + 2ν3a − ν3b − 2ν6a

and t4 = ν2a − 2ν3a + ν3b − 2ν6a.
For the first case χ(u2) = χ(3a), we get the system

µ1(u, χ3, 5) =
1

6
(−t1 + 9) ≥ 0; µ2(u, χ3, 5) =

1

6
(t1 + 9) ≥ 0;

µ0(u, χ8, ∗) =
1

6
(2t2 + 16) ≥ 0; µ3(u, χ8, ∗) =

1

6
(−2t2 + 14) ≥ 0;

µ0(u, χ6, 5) =
1

6
(2t3 + 10) ≥ 0; µ3(u, χ6, 5) =

1

6
(−2t3 + 8) ≥ 0;

µ1(u, χ2, ∗) =
1

12
(−2t2 + t3 + t4 + 1) ≥ 0; µ0(u, χ3, 5) =

1

6
(−2t1 + 6) ≥ 0,

that leads to

t1 ∈ {−9,−3, 3, 9}, t2 ∈ {−8,−5,−2, 1, 4, 7} and t3 ∈ {−5,−2, 1, 4}.

Solving this system, we have the solutions

(−2, 1, 2, 0), (0, 0, 0, 1) and (2, 0, 0,−1).

For the second case χ(u2) = χ(3b), we get the system

µ1(u, χ3, 5) =
1

6
(−t1 + 9) ≥ 0; µ2(u, χ3, 5) =

1

6
(t1 + 9) ≥ 0;

µ3(u, χ7, ∗) =
1

6
(2t2 + 16) ≥ 0; µ3(u, χ8, ∗) =

1

6
(−2t2 + 20) ≥ 0;

µ0(u, χ6, 5) =
1

6
(2t4 + 16) ≥ 0; µ3(u, χ6, 5) =

1

6
(−2t4 + 14) ≥ 0;

µ1(u, χ2, ∗) =
1

12
(−2t2 + t3 − t4 + 4) ≥ 0;

µ0(u, χ3, ∗) =
2

6
(−t2 − 2t3 − t4 + 10) ≥ 0;

µ0(u, χ2, 7) =
1

6
(2t3 + 4) ≥ 0; µ3(u, χ2, 7) =

1

6
(−2t3 + 2) ≥ 0.

Similarly, we have that t1 ∈ {−9,−3, 3, 9}, t2 ∈ {−8,−5,−2, 1, 4, 7, 10} and
t3 ∈ {−8,−5,−2, 1, 4, 7}. Which give the solutions (0, 1,−1, 1), (−2, 2, 1, 0)
and (2,−1, 1,−1). Union of solutions for both cases ends the proof of part (iv)
of Theorem 1.
• Let |u| = 12. Then we have ν2a + ν3a + ν3b + ν4a + ν6a = 1.. Since u4, u3

and u2 have orders 3, 4 and 6, respectively, we need to consider 2 · 2 · 6 = 24
cases those given by parts (ii), (iii) and (iv) of Theorem 1, i.e. we have either
χ(u4) = χ(3a) or χ(u4) = χ(3b).
Let s1 = 2ν2a+3ν3a−ν6a, s2 = 2ν2a−ν3a+2ν3b−ν6a, s3 = ν2a−3ν3a+ν4a+ν6a

and s4 = ν3a + ν3b − 3ν6a. So, we may consider the following two cases.
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Case 1. If χ(u4) = χ(3a), χ(u3) = χ(4a) and χ(u2) = χ(6a). we get the
system

µ2(u, χ2, ∗) =
1

12
(2s1 + 6) ≥ 0;µ4(u, χ2, ∗) =

1

12
(−2s1 + 6) ≥ 0;

µ0(u, χ3, ∗) =
1

12
(−8ν2a + 4ν3a + 4ν3b + 4ν6a + 12) ≥ 0;

µ4(u, χ3, ∗) =
1

12
(4ν2a − 2ν3a − 2ν3b − 2ν6a + 6) ≥ 0;

µ0(u, χ6, ∗) =
1

12
(4s2 + 12) ≥ 0;µ6(u, χ6, ∗) =

1

12
(−4s2 + 12) ≥ 0;

µ0(u, χ7, ∗) =
1

12
(−4s3 + 16) ≥ 0;µ2(u, χ7, ∗) =

1

12
(−2s3 + 14) ≥ 0;

µ4(u, χ7, ∗) =
1

12
(2s3 + 10) ≥ 0;

µ0(u, χ8, ∗) =
1

12
(4ν2a − 12ν3a − 4ν4a + 4ν6a + 16) ≥ 0;

µ0(u, χ9, ∗) =
1

12
(−4ν2a − 4ν3a − 4ν3b + 4ν4a − 4ν6a + 32) ≥ 0;

µ2(u, χ3, 5) =
1

12
(−2s4 + 6) ≥ 0;µ4(u, χ3, 5) =

1

12
(2s4 + 6) ≥ 0;

µ0(u, χ6, 5) =
1

12
(4ν2a − 8ν3a + 4ν3b − 4ν4a − 8ν6a + 4) ≥ 0.

Which leads to t1, t4 ∈ {−3, 3}, t2 ∈ {−3, 0, 3} and t3 ∈ {−5, 1, 7}. Then
we have the solutions (2, 0, 0,−2, 1), (1, 0, 0, 1,−1) and (0, 1, 2,−2, 0).
Case 2. If χ(u4) = χ(3a), χ(u3) = 2χ(2a)− χ(4a) and χ(u2) = χ(6a).

µ2(u, χ2, ∗) =
1

12
(2s1 − 2) ≥ 0;µ4(u, χ2, ∗) =

1

12
(−2s1 + 14) ≥ 0;

µ6(u, χ2, ∗) =
1

12
(−8ν2a − 12ν3a + 4ν6a + 4) ≥ 0;

µ4(u, χ3, ∗) =
1

12
(4ν2a − 2ν3a − 2ν3b − 2ν6a − 2) ≥ 0;

µ0(u, χ6, ∗) =
1

12
(4s2 + 20) ≥ 0;µ6(u, χ6, ∗) =

1

12
(−4s2 + 4) ≥ 0;

µ2(u, χ7, ∗) =
1

12
(−2s3 + 14) ≥ 0;

µ4(u, χ7, ∗) =
1

12
(2s3 + 10) ≥ 0;

µ2(u, χ3, 5) =
1

12
(−2s4 + 6) ≥ 0;µ4(u, χ3, 5) =

1

12
(2s4 + 6) ≥ 0.

Which leads to s1 ∈ {1, 7}, s2 ∈ {−5,−2, 1}, s3 ∈ {−5, 1} and s4 ∈ {−3, 3}.
Then we have the solutions (0, 0, 0, 2,−1) and (1, 0, 0,−1, 1).
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In all remaining 22 cases we get that µ1(u, χ3, ∗) = 3/2 6∈ Z whenever
χ(u4) = χ(3a) and χ(u2) = −2χ(2a) + χ(3a) + 2χ(3b), a contradiction. In all
other cases we get similar contradictions which are µ1(u, χ2, ∗) ∈ {1

4
, 1
2
, 3
4
}.

Thus, parts (ii)-(v) of the Theorem 1 are proved. Now, to prove part (i) it
remains to consider units of order 10, 14, 15, 21 and 35.
• Let |u| = 10. Then we have ν2a + ν5a = 1, and hence get

µ0(u, χ3, ∗) =
8

10
(−ν2a + 1) ≥ 0;µ5(u, χ3, ∗) =

4

10
(2ν2a + 3) ≥ 0;

µ1(u, χ7, ∗) =
1

10
(−ν2a + 16) ≥ 0,

which has no integral solutions.
• Let |u| = 14. Then we have ν2a + ν7a + ν7b = 1, and since χ(u2) ∈
{χ(7a), χ(7b)}, we may calculate that

µ0(u, χ2, ∗) = −µ7(u, χ2, ∗) =
1

14
(6(2ν2a − ν7a − ν7b) + 2) = 0,

that leads to a contradiction.
• Let |u| = 15. Then we have ν3a + ν3b + ν5a = 1, and hence get

µ0(u, χ7, ∗) =
1

15
(24ν3a + α1) ≥ 0; µ5(u, χ7, ∗) =

1

15
(−12ν3a + α2) ≥ 0;

µ1(u, χ2, ∗) =
1

15
(3ν3a + ν5a + α3) ≥ 0;µ3(u, χ2, ∗)

=
1

15
(−6ν3a − 2ν5a + α4) ≥ 0;

µ0(u, χ3, ∗) =
1

15
(8ν3a + 8ν3b + 12) ≥ 0,

where (α1, α2, α3, α4) =

{

(21, 12, 2, 11), if χ(u3) = χ(5a);

(15, 15, 5, 5), if χ(u3) = χ(5b),
that has no

integral solution.
• Let |u| = 21. Then we have ν3a + ν3b + ν7a + ν7b = 1, consider two cases.
If χ(u7) = χ(3a) and χ(u3) ∈ {χ(7a), χ(7b)}, we get the system

µ0(u, χ8, ∗) =
1

21
(−36ν3a + 15) ≥ 0; µ7(u, χ8, ∗) =

1

21
(18ν3a + 24) ≥ 0.

Secondly, if χ(u7) = χ(3b) and χ(u3) ∈ {χ(7a), χ(7b)} we get the system

µ0(u, χ8, ∗) =
1

21
(−36ν3a + 21) ≥ 0; µ7(u, χ8, ∗) =

1

21
(18ν3a + 21) ≥ 0.

Both systems have no integral solution.
• Let |u| = 35. Then we have ν5a + ν7a + ν7b = 1, and hence for χ(u5) ∈
{χ(7a), χ(7b)} we get the system

µ0(u, χ5, ∗) =
1

35
(−24ν5a + 10) ≥ 0; µ0(u, χ8, ∗) =

1

35
(24ν5a + 25) ≥ 0,
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which has no integral solution, too.

4. Proof of Theorem 2

Within this section G = A8. It is well-known that exp(G) = 420 = 22 ·3·5·7.
The character table of G, as well as the Brauer character tables BCT(p), where
p ∈ {2, 3, 5, 7}, can be found using the computational algebra system GAP (see
[6] and [19]).
Since the group G possesses elements of orders 2, 3, 4, 5, 6, 7 and 15, we

shall study units in V (ZG) of these orders. Moreover, by Lemma 3, the order
of such torsion unit divides exp(G), so it remains to consider units of orders
10, 12, 14, 21 and 35. But among these numbers, except 12, we prove that
there is no unit of such orders are exist in V (ZG).
Obviously, G has exactly 13 distinct non-singleton conjugacy classes 2a, 2b,

3a, 3b, 4a, 4b, 5a, 6a, 6b, 7a, 7b, 15a and 15b. We consider each possible unit
order separately, where we use Lemma 4 and Equation (1) to determine the
non-zero augmentations νnt for which

∑

Cnt
νnt = 1, and hence use formula (2)

of Lemma 2 to write the appropriate system of inequalities for such order.
• If |u| = 5, then by Lemma 1 and 5, there is only one non-zero partial
augmentation of u.
• Let |u| = 7. Then we have ν7a + ν7b = 1, and hence get the system

µ1(u, χ10, ∗) =
1

7
(4ν7a − 3ν7b + 45) ≥ 0;µ3(u, χ10, ∗)

=
1

7
(−3ν7a + 4ν7b + 45) ≥ 0;

µ1(u, χ2, 2) =
1

7
(−4ν7a + 3ν7b + 4) ≥ 0;µ3(u, χ2, 2) =

1

7
(3ν7a − 4ν7b + 4) ≥ 0,

which has only two trivial solutions (ν7a, ν7b) ∈ {(1, 0), (0, 1)} satisfying that
all µi(u, χj, p) are non-negative integers.
Thus, for units of orders 5 and 7, there is precisely one conjugacy class

with non-zero partial augmentation. So, by Lemma 1, this proves part (ii) of
Theorem 2, except for the unit of order 15, that will be considered later after
studying the units of order 3.
• Let |u| = 2. Then we have ν2a + ν2b = 1, and hence get the system

µ0(u, χ12, ∗) =
1

2
(8ν2a + 56) ≥ 0; µ1(u, χ12, ∗) =

1

2
(−8ν2a + 56) ≥ 0;

µ0(u, χ2, ∗) =
1

2
(−ν2a + 3ν2b + 7) ≥ 0;µ1(u, χ2, ∗) =

1

2
(ν2a − 3ν2b + 7) ≥ 0,

which has only four solutions (ν2a, ν2b) ∈ {(0, 1), (1, 0), (−1, 2), (2,−1)} satis-
fying that all µi(u, χj, p) are non-negative integers.
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• Let |u| = 3. Then we have ν3a + ν3b = 1, and hence get the system

µ0(u, χ5, ∗) =
1

3
(12ν3a + 21) ≥ 0; µ1(u, χ4, 2) =

1

3
(−3ν3a + 6) ≥ 0;

µ0(u, χ2, 2) =
1

3
(−4ν3a + 2ν3b + 4) ≥ 0;

which has the three solutions (ν2a, ν2b) ∈ {(0, 1), (1, 0), (−1, 2)} satisfying that
all µi(u, χj, p) are non-negative integers.
• Let |u| = 15. Then we have ν3a + ν3b + ν5a + ν15a + ν15b = 1. Since χ(u5)
is of order 3, then by part (iv) of Theorem 2, we need to consider 3 cases:
χ(u5) = χ(3a), χ(u5) = χ(3b) and χ(u5) = −χ(3a) + 2χ(3b).
First, using (2) for the case χ(u5) = χ(3a), we get the system

µ1(u, χ4, ∗) =
1

15
(5ν3a−ν3b+15) ≥ 0;µ3(u, χ4, ∗) =

1

15
(−10ν3a+2ν3b+30) ≥ 0,

which implies that t1 = 5ν3a − ν3b ∈ {−15, 0, 15}. If t1 = 15, then

µ5(u, χ4, ∗) =
1

15
(−20ν3a + 4ν3b + 15) = −45,

a contradiction. If t1 = −15, then

µ0(u, χ4, ∗) =
1

15
(40ν3a − 8ν3b + 30) = −90,

a contradiction. Therefore, ν3b = 5ν3a. Let

t2 = 9ν3a + 2ν5a − ν15a − ν15b; t3 = 9ν3a − ν5a − ν15a − ν15b;

t4 = 6ν3a + ν5a + ν15a + ν15b; t5 = 3ν3a − ν5a − 7ν15a + 8ν15b.

Using (2), we get the system

µ0(u, χ2, ∗) =
1

15
(8t2 + 23) ≥ 0;µ3(u, χ2, ∗) =

1

15
(−2t2 + 13) ≥ 0;

µ0(u, χ3, ∗) =
1

15
(8t3 + 8) ≥ 0;µ3(u, χ3, ∗) =

1

15
(−2t3 + 13) ≥ 0;

µ0(u, χ5, ∗) =
1

15
(8t4 + 37) ≥ 0;µ3(u, χ5, ∗) =

1

15
(−2t4 + 32) ≥ 0;

µ1(u, χ6, ∗) =
1

15
(−t5 + 23) ≥ 0;µ1(u, χ2, 2) =

1

15
(t5 + 7) ≥ 0.

From which we have t2 = t3 = −1, t4 ∈ {1, 16} and t5 ∈ {−7, 8, 23}, that
gives the solutions (0, 0, 0, 0, 1), (0, 0, 0, 1, 0) and (0, 0, 0,−1, 2), where the last
solution may excluded as it does not satisfy the inequality

µ7(u, χ2, 2) =
1

15
(−2ν3a + ν3b − ν5a + 8ν15a − 7ν15b + 7) ≥ 0.
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Using (2) for the other two cases χ(u5) = χ(3b) and χ(u5) = −χ(3a)+ 2χ(3b),
we get the system

µ0(u, χ4, ∗) =
1

15
(40ν3a − 8ν3b + α1) ≥ 0;

µ5(u, χ4, ∗) =
1

15
(−20ν3a + 4ν3b + α2) ≥ 0,

where (α1, α2) =

{

(18, 21), if χ(u5) = χ(3b);

(6, 27), if χ(u5) = −χ(3a) + 2χ(3b),
,

which has no integral solution satisfying that all µi(u, χj, ∗) are non-negative
integers.
Thus, we prove parts (ii)-(iv) of the Theorem 2. To justify part (i) , we need

to consider possible units of orders 10, 14, 21 and 35.
• Let u be a unit of order 10. We consider the four pairs in part (iii) of the
Theorem 2 and the fact that u5 is of order 2. then , using (2), we get the
system

µ0(u, χ4, ∗) =
1

10
(16t+ 24) ≥ 0;µ5(u, χ4, ∗) =

1

10
(−16t+ 16) ≥ 0;

µ1(u, χ10, ∗) =
1

10
(−3t + 48) ≥ 0;

where t = ν2a + ν2b. This system has no integral solutions satisfying that all
µi(u, χj, ∗) are non-negative integers.
• Let |u| = 14. Since χ(u2) ∈ {χ(7a), χ(7b)} and u7 is of order 2, we consider
four cases defined by part (ii) of the Theorem 2.
Case 1. If χ(u7) = χ(2a), χ(u2) ∈ {χ(7a), χ(7b)}. then we get

µ0(u, χ12, ∗) =
1

14
(48ν2a + 64) ≥ 0;µ7(u, χ12, ∗) =

1

14
(−48ν2a + 48) ≥ 0;

µ0(u, χ2, ∗) =
1

14
(−6ν2a + 18ν2b + 6) ≥ 0;µ7(u, χ2, ∗)

=
1

14
(6ν2a − 18ν2b + 8) ≥ 0;

µ2(u, χ2, ∗) =
1

14
(ν2a − 3ν2b + 6) ≥ 0.

Case 2. If χ(u7) = χ(2b), χ(u2) ∈ {χ(7a), χ(7b)}, then we get

µ0(u, χ12, ∗) =
1

14
(48ν2a + 56) ≥ 0; µ7(u, χ12, ∗) =

1

14
(−48ν2a + 56) ≥ 0;

µ0(u, χ2, ∗) =
1

14
(−6ν2a + 18ν2b + 10) ≥ 0;µ7(u, χ2, ∗)

=
1

14
(6ν2a − 18ν2b + 4) ≥ 0.
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Case 3. If χ(u7) = 2χ(2a)− χ(2b), χ(u2) ∈ {χ(7a), χ(7b)}, then we get

µ0(u, χ12, ∗) =
1

14
(48ν2a + 72) ≥ 0; µ7(u, χ12, ∗) =

1

14
(−48ν2a + 40) ≥ 0.

Case 4. If χ(u7) = −χ(2a) + 2χ(2b), χ(u2) ∈ {χ(7a), χ(7b)}, then we get

µ0(u, χ12, ∗) =
1

14
(48ν2a + 48) ≥ 0; µ7(u, χ12, ∗) =

1

14
(−48ν2a + 64) ≥ 0;

µ0(u, χ2, ∗) =
1

14
(−6ν2a + 18ν2b + 14) ≥ 0;µ7(u, χ2, ∗)

=
1

14
(6ν2a − 18ν2b) ≥ 0.

All these above four systems have no integral solutions satisfying that all
µi(u, χj, ∗) are non-negative integers.
• Let |u| = 21. Since χ(u3) ∈ {χ(7a), χ(7b)} and u7 has order 3, we consider
six cases defined by part (iv) of the Theorem 2.
If (χ(u7), χ(u3)) belongs to

{(χ(3a), χ(7a)), (χ(3a), χ(7b)),

(−χ(3a) + 2χ(3b), χ(7a)), (−χ(3a) + 2χ(3b), χ(7b))},

then we get the system

µ0(u, χ5, ∗) =
1

21
(72ν3a + α1) ≥ 0; µ7(u, χ5, ∗) =

1

21
(−36ν3a + α2) ≥ 0,

where

(α1, α2) =

{

(33, 15), if χ(u7) = χ(3a);

(9, 27), if χ(u7) = −χ(3a) + 2χ(3b),

which has no integral solutions satisfying that all µi(u, χj, ∗) are non-negative
integers.
If (χ(u7), χ(u3)) belongs to {(χ(3b), χ(7a)), (χ(3b), χ(7b))}, then we get the

system

µ0(u, χ2, ∗) =
1

21
(48ν3a + 12ν3b + 9) ≥ 0;µ1(u, χ2, ∗)

=
1

21
(4ν3a + ν3b + 6) ≥ 0;

µ7(u, χ2, ∗) =
1

21
(−24ν3a − 6ν3b + 6) ≥ 0;

which has no integral solution satisfying that all µi(u, χj, ∗) are non-negative
integers.
• Let |u| = 35. In both cases, determined by χ(u5) ∈ {χ(7a), χ(7b)}, using
(2), we get the system

µ0(u, χ2, ∗) =
1

35
(48ν5a + 15) ≥ 0; µ0(u, χ8, ∗) =

1

35
(−48ν5a + 20) ≥ 0,
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which has no integral solution such that all µi(u, χj, ∗) are non-negative inte-
gers.
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