
Acta Mathematica Academiae Paedagogicae Nýıregyháziensis
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ON GENERALIZATIONS OF SOME COMMON FIXED
POINT THEOREMS IN UNIFORM SPACES

ALFRED O. BOSEDE

Abstract. In this paper, we establish some generalizations of some com-
mon fixed point theorems in uniform spaces for selfmappings by using the
notions of A-distance and E-distance. A more general ϕ-contractive-type
condition than those of Aamri and El Moutawakil [1] and Olatinwo [8] was
employed to establish our results. These generalizations can be viewed as
an improvement to some of the results of Aamri and El Moutawakil [1] and
Olatinwo [8].

1. Introduction

Let X be a nonempty set and let Φ be a nonempty family of subsets of
X × X. The pair (X,Φ) is called a uniform space if it satisfies the following
properties:

(i) if G is in Φ, then G contains the diagonal {(x, x)|x ∈ X};
(ii) if G is in Φ and H is a subset of X ×X which contains G, then H is

in Φ;
(iii) if G and H are in Φ, then G

⋂
H is in Φ;

(iv) if G is in Φ, then there exists H in Φ, such that, whenever (x, y) and
(y, z) are in H, then (x, z) is in H;

(v) if G is in Φ, then {(y, x)|(x, y) ∈ G} is also in Φ.

Φ is called the uniform structure of X and its elements are called entourages
or neighbourhoods or surroundings.

If property (v) is omitted, then (X,Φ) is called a quasiuniform space. (For
examples, see Bourbaki [4] and Zeidler [14].) Several researchers such as
Berinde [3], Jachymski [5], Kada et al [6], Rhoades [9], Rus [11], Wang et
al [13] and Zeidler [14] studied the theory of fixed point or common fixed point
for contractive selfmappings in complete metric spaces or Banach spaces in
general.
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Within the last two decades, Kang [7], Montes and Charris [10] established
some results on fixed and coincidence points of maps by means of appropriate
W -contractive or W -expansive assumptions in uniform space.

Later, Aamri and El Moutawakil [1] proved some common fixed point theo-
rems for some new contractive or expansive maps in uniform spaces by intro-
ducing the notions of an A-distance and an E-distance.

Aamri and El Moutawakil [1] introduced and employed the following con-
tractive definition: Let f, g : X → X be selfmappings of X. Then, we have

(1.1) p(f(x), f(y)) ≤ ψ(p(g(x), g(y))), ∀x, y ∈ X,

where ψ : <+ → <+ is a nondecreasing function satisfying

(i) for each t ∈ (0,+∞), 0 < ψ(t),
(ii) limn→∞ ψn(t) = 0, ∀t ∈ (0,+∞).

ψ satisfies also the condition ψ(t) < t, for each t > 0, t ∈ <+.
Recently, Olatinwo [8] established some common fixed point theorems by

employing the following contractive definition: Let f, g : X → X be selfmap-
pings of X. There exist L ≥ 0 and a comparison function ψ : <+ → <+ such
that ∀x, y ∈ X, we have

(1.2) p(f(x), f(y)) ≤ Lp(x, g(x)) + ψ(p(g(x), g(y))), ∀x, y ∈ X.

In this paper, we establish some common fixed point theorems by using a more
general contractive condition than (1.1) and (1.2).

We also employ the concepts of an A-distance, an E-distance as well as the
notion of comparison function in this paper.

2. Preliminaries

The following definitions shall be required in the sequel.
Let (X,Φ) be a uniform space. Without loss of generality, (X, τ(Φ)) denotes

a topological space whenever topological concepts are mentioned in the context
of a uniform space (X,Φ). (For instance, see Aamri and El Moutawakil [1]).
Definitions 2.1− 2.6 are contained in Aamri and El Moutawakil [1].

Definition 2.1. If H ∈ Φ and (x, y) ∈ H, (y, x) ∈ H, x and y are said to be
H-close. A sequence {xn}∞n=0 ⊂ X is said to be a Cauchy sequence for Φ if for
any H ∈ Φ, there exists N ≥ 1 such that xn and xm are H-close for n,m ≥ N .

Definition 2.2. A function p : X ×X → <+ is said to be an A-distance if for
any H ∈ Φ, there exists δ > 0 such that if p(z, x) ≤ δ and p(z, y) ≤ δ for some
z ∈ X, then (x, y) ∈ H.

Definition 2.3. A function p : X ×X → <+ is said to be an E-distance if

(p1) p is an A-distance,
(p2) p(x, y) ≤ p(x, z) + p(z, y), ∀x, y ∈ X.
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Definition 2.4. A uniform space (X,Φ) is called a Hausdorff uniform space if
and only if the intersection of allH ∈ Φ reduces to the diagonal {(x, x)|x ∈ X},
i.e. if (x, y) ∈ H for all H ∈ Φ implies x = y. This guarantees the uniqueness
of limits of sequences. H ∈ Φ is said to be symmetrical if H = H−1 =
{(y, x)|(x, y) ∈ H}.

Definition 2.5. Let (X,Φ) be a uniform space and p be an A-distance on X.

(i) X is said to be S-complete if for every p-Cauchy sequence {xn}∞n=0,
there exists x ∈ X with limn→∞ p(xn, x) = 0.

(ii) X is said to be p-Cauchy complete if for every p-Cauchy sequence
{xn}∞n=0, there exists x ∈ X with limn→∞ xn = x with respect to τ(Φ).

(iii) f : X → X is said to be p-continuous if limn→∞ p(xn, x) = 0 implies
that limn→∞ p(f(xn), f(x)) = 0.

(iv) f : X → X is τ(Φ)-continuous if limn→∞ xn = x with respect to τ(Φ)
implies limn→∞ f(xn) = f(x) with respect to τ(Φ).

(v) X is said to be p-bounded if δp = sup{p(x, y)|x, y ∈ X} <∞.

Definition 2.6. Let (X,Φ) be a Hausdorff uniform space and p an A-distance
on X. Two selfmappings f and g on X are said to be p-compatible if, for each
sequence {xn}∞n=0 of X such that limn→∞ p(f(xn), u) = limn→∞ p(g(xn), u) = 0
for some u ∈ X, then we have limn→∞ p(f(g(xn)), g(f(xn))) = 0.

The following definition which is also required in the sequel to establish some
common fixed point results is contained in Berinde [2], Berinde [3], Rus [11]
and Rus et al [12].

Definition 2.7. A function ψ : <+ → <+ is called a comparison function if

(i) ψ is monotone increasing;
(ii) limn→∞ ψn(t) = 0, ∀t ≥ 0.

Remark 2.8. Every comparison function satisfies the condition ψ(0) = 0.
We also note that both conditions (i) and (ii) imply that ψ(t) < t,∀t >

0, t ∈ <+.

Our aim in this paper is to establish some common fixed point theorems
by using a more general contractive condition than (1.1) and (1.2). Conse-
quently, we shall employ the following contractive definition: Let f, g : X → X
be selfmappings of X. There exist comparison functions ψ1 : <+ → <+ and
ψ2 : <+ → <+ with ψ1(0) = 0 such that ∀x, y ∈ X, we have

(2.1) p(f(x), f(y)) ≤ ψ1(p(x, g(x))) + ψ2(p(g(x), g(y))), ∀x, y ∈ X.

Remark 2.9. The contractive condition (2.1) is more general than (1.2) in the
sense that if ψ1(u) = Lu in (1.3), for L ≥ 0, u ∈ <+, then we obtain

p(f(x), f(y)) ≤ Lp(x, g(x)) + ψ2(p(g(x), g(y))), ∀x, y ∈ X,

which is the contractive condition employed by Olatinwo [8] in (1.2).
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Again, if L = 0 in the above inequality, then we obtain (1.1), which was
employed by Aamri and El Moutawakil [1].

Thus, our contractive condition (2.1) is a generalization of both the contrac-
tive definitions (1.1) and (1.2) of Aamri and El Moutawakil [1] and Olatinwo
[8] respectively.

The following Lemma contained in Aamri and El Moutawakil [1], Kang [7]
and Montes and Charris [10] shall be required in the sequel.

Lemma 2.10. Let (X,Φ) be a Hausdorff uniform space and p an A-distance
on X. Let {xn}∞n=0, {yn}∞n=0 be arbitrary sequences in X and {αn}∞n=0, {βn}∞n=0

be sequences in <+ converging to 0. Then, for x, y, z ∈ X, the following hold:

(a) If p(xn, y) ≤ αn and p(xn, z) ≤ βn,∀n ∈ N , then y = z. In particular,
if p(x, y) = 0 and p(x, z) = 0, then y = z.

(b) If p(xn, yn) ≤ αn and p(xn, z) ≤ βn,∀n ∈ N , then {yn}∞n=0 converges
to z.

(c) If p(xn, xm) ≤ αn,∀m > n, then {xn}∞n=0 is a Cauchy sequence in
(X,Φ).

The following remark is contained in Aamri and El Moutawakil [1].

Remark 2.11. A sequence in X is p-Cauchy if it satisfies the usual metric
property.

Example 2.12. In mathematical analysis, a uniform space is a set with a uni-
form structure. Therefore, uniform spaces are topological spaces with addi-
tional structure which is used to define uniform properties such as complete-
ness, uniform continuity and uniform convergence. Uniform spaces generalize
metric spaces and topological groups.

Every metric space (X, d) can be considered as a uniform space, since a
metric is a pseudometric and therefore, the pseudometric definition provides
X with a uniform structure.

However, different metric spaces can have the same uniform structure. An
example is a constant multiple of a metric.

Using metrics, an example of distinct uniform structures with coinciding
topologies can be constructed.

For instance, let d1(x, y) = |x−y| be the usual metric on < and let d2(x, y) =
|ex − ey|, ∀x, y ∈ <.

Then, both metrics induce the usual topology on <, yet the uniform struc-
tures are distinct, since {(x, y) : |x − y| < 1} is an entourage in the uniform
structure for d1 but not for d2. Intuitively, this example can be seen as taking
the usual uniformity and distorting it through the action of a continuous, yet
non-uniformly continuous function.

Clearly, d1 is an A−distance while d2 is an E−distance on <. Indeed, d2 is
also an A−distance which also satisfies condition (p2) of Definition 2.3 of an
E−distance as follows:
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For arbitrary x, y, z ∈ <, we have

d2(x, y) = |ex − ey| ≤ |ex − ez|+ |ez − ey| = d2(x, z) + d2(z, y)

3. The main results

One of our main results in this paper is the existence result for the common
fixed point of f and g given by:

Theorem 3.1. Let (X,Φ) be a Hausdorff uniform space and p an A-distance
on X such that X is p-bounded and S-complete. For arbitrary x0 ∈ X, define
a sequence {xn}∞n=0 iteratively by

xn = f(xn−1), n = 1, 2, . . .

Suppose that f and g are commuting p-continuous or τ(Φ)-continuous self-
mappings of X such that

(i) f(X) ⊆ g(X),
(ii) p(f(xi), f(xi)) = 0, ∀xi ∈ X, i = 0, 1, 2, . . .,
(iii) f, g : X → X satisfy the contractive condition (2.1).

Suppose also that ψ1 : <+ → <+ and ψ2 : <+ → <+ are comparison functions
with ψ1(0) = 0. Then, f and g have a common fixed point.

Proof. For arbitrary x0 ∈ X, select x1 ∈ X such that f(x0) = g(x1). Similarly,
for x1 ∈ X, select x2 ∈ X such that f(x1) = g(x2).

Continuing this process, we select xn ∈ X such that f(xn−1) = g(xn).
Now, we show that the sequence {f(xn)}∞n=0 so generated is a p-Cauchy

sequence. Indeed, since xn = f(xn−1), n = 1, 2, . . ., then by using the contrac-
tive condition (2.1) together with conditions (ii) and (iii) of the Theorem, we
get

p(f(xn), f(xn+m)) ≤ ψ1(p(xn, g(xn))) + ψ2(p(g(xn), g(xn+m)))

= ψ1(p(f(xn−1), f(xn−1))) + ψ2(p(f(xn−1), f(xn+m−1)))

= ψ1(0) + ψ2(p(f(xn−1), f(xn+m−1)))

= 0 + ψ2(p(f(xn−1), f(xn+m−1)))

= ψ2(p(f(xn−1), f(xn+m−1)))

≤ ψ2(ψ1(p(xn−1, g(xn−1))) + ψ2(p(g(xn−1), g(xn+m−1))))

= ψ2(ψ1(p(f(xn−2), f(xn−2))) + ψ2(p(f(xn−2), f(xn+m−2))))

= ψ2(ψ1(0) + ψ2(p(f(xn−2), f(xn+m−2))))

= ψ2(0 + ψ2(p(f(xn−2), f(xn+m−2))))

= ψ2
2(p(f(xn−2), f(xn+m−2)))

≤ . . . ≤ ψn
2 (p(f(x0), f(xm))) ≤ ψn

2 (δp(X))

which implies that

p(f(xn), f(xn+m)) ≤ ψn
2 (δp(X),(3.1)
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where p(f(x0), f(xm))) ≤ δp(X) and δp(X) = sup{p(x, y)|x, y ∈ X} <∞.
Using the definition of comparison function in (3.1) gives

lim
n→∞

ψn
2 (δp(X)) = 0

and hence,

p(f(xn), f(xn+m)) → 0 as n→ ∞.

Therefore, by using Lemma 2.10(c), we have that {f(xn)}∞n=0 is a p-Cauchy
sequence.

But, X is S-complete. Hence, limn→∞ p(f(xn), u)) = 0, for some u ∈ X.
Since, xn ∈ X implies that f(xn−1) = g(xn), therefore, we have

lim
n→∞

p(g(xn), u)) = 0.

Also, since f and g are p-continuous, then

lim
n→∞

p(f(g(xn)), f(u)) = lim
n→∞

p(g(f(xn)), g(u)) = 0.

But, f and g are commuting, therefore fg = gf . Hence,

lim
n→∞

p(f(g(xn)), f(u)) = lim
n→∞

p(f(g(xn)), g(u)) = 0.

By applying Lemma 2.10(a), we have that f(u) = g(u).
Since, f(u) = g(u) and fg = gf , then we have f(f(u)) = f(g(u)) =

g(f(u)) = g(g(u)).
We need to show that p(f(u), f(f(u))) = 0. Suppose on the contrary that

p(f(u), f(f(u))) 6= 0. By using the contractive definition (2.1) and the condi-
tion that ψ(t) < t, ∀t > 0 in the Remark 2.8, we obtain

p(f(u), f(f(u))) ≤ ψ1(p(u, g(u))) + ψ2(p(g(u), g(f(u))))

= ψ1(p(f(u), f(u))) + ψ2(p(f(u), f(f(u))))

= ψ1(0) + ψ2(p(f(u), f(f(u))))

= ψ2(p(f(u), f(f(u))))

< p(f(u), f(f(u))),

which is a contradiction. Hence, p(f(u), f(f(u))) = 0.
By using condition (ii) of the Theorem, we have p(f(u), f(u)) = 0.
Therefore, since p(f(u), f(f(u))) = 0 and p(f(u), f(u)) = 0, by using

Lemma 2.10(a), we get f(f(u)) = f(u), which implies that f(u) is a fixed
point of f .

But, f(u) = f(f(u)) = f(g(u)) = g(f(u)), which shows that f(u) is also a
fixed point of g. Thus, f(u) is a common fixed point of f and g.

The proof of that case when f and g are τ(Φ)-continuous is similar since
S-completeness implies p-Cauchy completeness. This completes the proof. �
Remark 3.2. The existence result in Theorem 3.1 is a generalization of Theorem
3.1 of Aamri and El Moutawakil [1] as well as Theorem 3.1 of Olatinwo [8].
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The uniqueness of the common fixed point of f and g is established by the
next two Theorems.

Theorem 3.3. Let (X,Φ), f, g, ψ1, ψ2, {xn}∞n=0 be as defined in Theorem 3.1
above and p an E-distance on X. Then, f and g have a unique common fixed
point.

Proof. Since an E-distance function p is also an A-distance, then by Theorem
3.1 above, we know that f and g have a common fixed point. Suppose that
there exist u, v ∈ X such that f(u) = g(u) = u and f(v) = g(v) = v.

We need to show that u = v. Suppose on the contrary that u 6= v, i.e. let
p(u, v) 6= 0.

Then, by using the contrative definition (2.1) and the condition that ψ(t) <
t,∀t > 0 in the Remark 2.8, we obtain

p(u, v) = p(f(u), f(v))

≤ ψ1(p(u, g(u))) + ψ2(p(g(u), g(v)))

= ψ1(p(u, u)) + ψ2(p(u, v))

= ψ1(0) + ψ2(p(u, v))

= 0 + ψ2(p(u, v)) = ψ2(p(u, v)) < p(u, v)

which is a contradiction. Hence, we have p(u, v) = 0.
Similarly, we have p(v, u) = 0. By applying condition (p2) of Definition 2.3,

we obtain p(u, u) ≤ p(u, v) + p(v, u), and hence p(u, u) = 0.
Since p(u, u) = 0 and p(u, v) = 0, then by using Lemma 2.10(a), we get

u = v. This completes the proof. �
Remark 3.4. The uniqueness result in Theorem 3.3 is a generalization of The-
orem 3.2 as well as Corollaries 3.1 and 3.2 of Aamri and El Moutawakil [1].

Also, the uniqueness result in Theorem 3.3 is a generalization of Theorem
3.3 of Olatinwo [8].

Theorem 3.5. Let (X,Φ), p, ψ1, ψ2 and {xn}∞n=0 be as defined in Theorem 3.1
above. Suppose that f and g are p-compatible, p-continuous or τ(Φ)-continuous
selfmappings of X satisfying conditions (i), (ii) and (iii) of Theorem 3.1 above.
Then, f and g have a unique common fixed point.

Proof. By Theorem 3.1 above, we know that f and g have a common fixed
point. Hence, for some u ∈ X, we have

lim
n→∞

p(f(xn, u)) = lim
n→∞

p(g(xn, u)) = 0.

Since f and g are p-continuous, then

lim
n→∞

p(f(g(xn)), f(u)) = lim
n→∞

p(g(f(xn)), g(u)) = 0.

Also, since f and g are p-compatible, then

lim
n→∞

p(f(g(xn)), g(f(xn))) = 0.
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By applying condition (p2) of Definition 2.3, we obtain

p(f(g(xn)), g(u)) ≤ p(f(g(xn)), g(f(xn))) + p(g(f(xn)), g(u)).

Letting n→ ∞ and using Lemma 2.10(a) yields

lim
n→∞

p(f(g(xn)), g(u)) = 0.

Since limn→∞ p(f(g(xn)), f(u)) = 0 and limn→∞ p(f(g(xn)), g(u)) = 0, then by
Lemma 2.10(a), we obtain f(u) = g(u).

The rest of the proof goes as in Theorem 3.1 and therefore it is omitted.
This completes the proof. �
Remark 3.6. The uniqueness result in Theorem 3.5 is a generalization of The-
orem 3.3 of Aamri and El Moutawakil [1]. Also, the uniqueness result in
Theorem 3.5 is a generalization of Theorem 3.5 of Olatinwo [8].
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[12] I. A. Rus, A. Petruşel, and G. Petruşel. Fixed point theory: 1950–2000. Romanian
contributions. House of the Book of Science, Cluj-Napoca, 2002.

[13] S. Z. Wang, B. Y. Li, Z. M. Gao, and K. Iséki. Some fixed point theorems on expansion
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